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Modal cutoff in microstructured optical fibers
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We analyze the nature of modal cutoff in microstructured optical fibers of finite cross section. In doing so, we
reconcile the striking endlessly single-mode behavior with the fact that in such fibers all propagation constants
are complex. We show that the second mode undergoes a strong change of behavior that is ref lected in the
losses, effective area, and multipolar structure. We establish the parameter subspace in which the fibers are
single mode and an accurate value for the limit of the endlessly single-mode regime. © 2002 Optical Society
of America
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One of the earliest known and most exciting properties
of microstructured optical f ibers (MOFs) is that they
can be endlessly single mode.1 However, this prop-
erty was discovered in a pioneering study1 based on
a simple model that is incapable of accurately deter-
mining the parameter space in which such an end-
lessly single-mode regime occurs or of proving with
absolute certainty that such a regime exists in real
fibers. Recently Mortensen2 suggested a phase dia-
gram of single-mode operation based on the observa-
tion of the evolution of the effective area of the second
mode, established with a supercell method. Although
that research is of great interest, several limitations
still have to be overcome: The suggested diagram was
established with a restricted number of points in a nar-
row region of parameter space, and the effects of the
finite cross section of the fibers such as geometrical
losses and cladding resonances could not be explored.

In conventional fibers the concept of mode num-
ber is well defined3 in that, for a given geometry
and wavelength, a f inite set of bound modes has a
real propagation constant b, with all others hav-
ing complex b. By contrast, all modes of MOFs
with a finite set of confining holes have complex
b.4 – 6 This is true even if, as here, the MOFs are
modeled as air holes in a lossless material, because
the complex nature of b is associated with losses that
are due to the f inite geometry of confining holes.
It is thus of great interest to explore whether the
properties of MOF modes permit the establishment
of a clear criterion for bound modes, replacing the
requirement that b be real. The effective area cri-
terion used by Mortensen2 with periodic boundary
conditions is valuable but can address only geometri-
cal mode properties rather than the energy transport
characteristics. Furthermore, the use of periodic
boundary conditions leads to an artif icial constraint
(the area of the unit cell) that limits the divergence of
the mode area at cutoff.

We investigate here MOFs in silica at a wavelength
of l � 1.55 mm (refractive index, 1.444024), for mi-
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crostructures consisting of 4, 6, 8, and 10 rings of
hexagonally packed circular holes of diameter d, with
pitch L. Each MOF has a single central defect, con-
sisting of a missing hole. We use a recently developed
multipole method4,5 that has the unique ability to
calculate both the modes and their losses accurately.

In Fig. 1,7 we show the imaginary part of neff :

Im�neff� � Im�b�k0� , (1)

where b is the complex propagation constant and k0
is the free-space wave number, for the second mode in
a MOF with 8 rings (216 holes). Note that the multi-
pole method determines this quantity to five f igures or
better if Im�neff � . 10210 and to at least two figures for
the whole of Fig. 1.4,5 At a wavelength l (in microme-
ters), Im�neff� is linked to the geometrical losses L (in
decibels per kilometer) through

Fig. 1. Im�neff� as a function of wavelength/pitch, for a
structure of eight rings of holes in silica at a wavelength of
l � 1.55 mm for several diameter-to-pitch ratios. I �neff �
decreases monotonically with increasing d�L, as this pa-
rameter takes the values 0.40 [curve (1)], 0.41, 0.42, 0.43,
0.45, 0.46, 0.48, 0.49, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75 [curve
(14)].
© 2002 Optical Society of America
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such that at f ixed wavelength the losses and Im�neff �
are directly proportional.

Figure 1 shows a sharp transition in the ratio of
loss �Im�neff�� versus wavelength on pitch �l�L� for
d�L . 0.45, whereas for d�L , 0.45 the transition be-
comes increasingly gradual, disappearing entirely near
d�L � 0.40. Note that the MOF structures of Fig. 1
all support a fundamental mode, with nonzero Im�neff �,
which we do not study here.

To investigate more fully the transition in Fig. 1, we
studied a number of characteristic fiber parameters as
a function of l�L for various ratios d�L; in Fig. 2 we
display f ive of these, for a geometry with d�L � 0.55.
First, the loss is shown for 4-, 8-, and 10-ring geome-
tries [curves (1), (2), and (3)], with the transition be-
coming more acute with an increasing number of rings
but remaining at a fixed l�L ratio. To make the tran-
sition more evident, we calculated the second deriva-
tive of the logarithm of the loss with respect to the
logarithm of the pitch (Q; curve 4):

Q �
d2 log�Im�neff ��

d2 log�L�
. (3)

This quantity exhibits a sharp negative minimum, giv-
ing an accurate value for the transition. Next, we
show the effective radius [curve (5)]:

Reff �

RR
r2Sz�r, u�drduRR
rSz�r, u�drdu

, (4)

where Sz denotes the real part of the component along
the f iber of the Poynting vector and the effective area8

[curve (6)], defined as

Aeff �
�
RR

jEj2�2RR
jEj4

. (5)

In both cases the integrals are taken over the struc-
tured cross section of the f iber only, because for leaky
modes the fields diverge at infinity.3 Parameters Reff
and Aeff change, respectively, by 1 and 2 orders of mag-
nitude at the transition, with numerical errors causing
the Aeff curve to be less smooth. Note that the quan-
tity Aeff was relied on by Mortensen2 in his study of
the mode transition in MOFs.

The multipole method uses a Fourier–Bessel f ield
expansion about each inclusion,4 which, for the mag-
netic f ield in the local cylindrical coordinates of the in-
clusion, takes the form

Hz�r, u� �
X

n
Bn

�H �Hn�k�r�exp�inu� , (6)

where typically 25 # n # 5. This lets us define
the last indicative quantity [curve (7)] shown in
Fig. 2: M is the ratio of the magnetic field monopole
coeff icient �B0

�H �� to the magnetic f ield dipole coef-
ficient �B1

�H �� for a cylinder in the f irst ring of the
MOF geometry. This ratio exhibits a well-defined
minimum just below the transition. According to

Fig. 2. Variation of physical quantities during the tran-
sition for a MOF with d�L � 0.55 used at l � 1.55 mm.
Curves (1), (2), and (3) are Im�neff � for 4, 8, and 10 rings,
and curves (4), (5), (6), and (7) are Q, Reff�L, Aeff�L2, and
M , respectively, as def ined in the text, for eight rings.
Points (a)– (d) indicate the positions of the f ield plots in
Fig. 3.

Fig. 3. Density plots of the real part of the z component
of the Poynting vector of the second mode for four values
of the pitch about the localization transition, for a struc-
ture of eight rings of holes with a diameter-to-pitch ra-
tio d�L � 0.55. (a) Cladding filling state �l�L � 0.81�;
(b), (c) transition states l�L � 0.599 and l�L � 0.537,
respectively; (d) localized state l�L � 0.445. The corre-
sponding points are marked in Fig. 2.
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Fig. 4. Phase diagram of the second mode. The
curves correspond to different def initions of the tran-
sition point: solid, Aeff ; long-dashed, M minimum;
short-dashed, Q minimum; dotted, fit from Eq. (6);
squares, as in Ref. 2. In the lower region the second
mode is confined and the f iber is therefore dual moded.
The dashed vertical line shows the approximation to the
limit of the endlessly single-mode regime.

Fig. 2, the nature of the mode changes quantitatively
and qualitatively in a well-defined narrow region.
We identify this transition with the cutoff of the mode.

In Fig. 3 we show the spatial variation of Poynting
vector component Sz for the mode above [point (a),
Fig. 2], during [points (b), (c)], and below [point (d)]
the transition. Above the transition the mode is well
described9,10 as a space-f illing cladding resonance.
Its electric and magnetic f ields are predominantly
dipolar about each inclusion, and the magnitude of
the Poynting vector decreases to small values in a
smooth fashion both at the center and near the edge
of the MOF structure. During the transition, its Sz
distribution rapidly contracts [points (b), (c)] before
stabilizing in a localized state [point (d)]. It is worth
noting that, when they are localized, the losses seem
to decrease exponentially with the number of rings,
whereas when the mode is space f illing, the decrease
follows a power law.

We carried out similar analyses for 8-ring structures
with 15 values of d�L ranging from 0.75 to 0.4. The
results are shown in Fig. 4 together with the Aeff tran-
sition points from Mortensen,2 which lie in the region
from d�L � 0.47 to d�L � 0.5. Above d�L � 0.45,
all criteria agree on a tightly defined transition curve.
Below 0.45, the criteria become individually more or
less diff icult to apply because of the decreasing sharp-
ness of the transition for f inite systems.

Quantity Q from Eq. (3) in fact is the most sensi-
tive indicator of the transition down to near the value
where the transition ceases to occur. Using a log–log
plot (not shown), we estimated that the transition dis-
appears at d�L � 0.406 6 0.003. Below this ratio, Q
remains positive everywhere.
Mortensen2 and Broeng et al.11 use a value of 0.45
for this significant point, but our investigation is for
finite MOF geometries, whereas Mortensen used peri-
odic boundary conditions. A best fit for the data (Q
minimum) of Fig. 4 gives the single mode–dual-mode
boundary as

l�L � a�d�L 2 0.406�g, (7)

with a � 2.80 6 0.12 and g � 0.89 6 0.02.
In conclusion, we have investigated whether mode

number can be characterized in f inite MOFs. We
have shown that there exists a clear boundary between
single- and dual-mode regions that can be determined
by use of a range of criteria. At the boundary, the
second mode changes rapidly from filling the entire
cross section to being tightly confined about the defect,
thus exhibiting a distinct cutoff.
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