Since momentum is conserved, $M_{a} V_{o}=M_{a} V_{a}+M_{b} V_{b}$. Combining this with the definition of COR, usually denoted by symbol e, gives

$$
V_{a}=\frac{V_{o}\left(M_{a}-e M_{b}\right)}{\left(M_{a}+M_{b}\right)} \quad \text { and } \quad V_{b}=\frac{V_{o}(1+e) M_{a}}{\left(M_{a}+M_{b}\right)}
$$

Note that ball A comes to rest if $M_{a}=e M_{b}$. If $e=0.5$ then ball A comes to rest only if ball B is twice as heavy as ball A. For billiard ball collisions e is close to 1.0 but the actual result depends on how fast the incident ball is spinning, and in what direction.

