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If an inclined pencil is released from rest with its bottom end resting on a table, the bottom end will
slide forward or backward or it will remain at rest at the start of the fall, then slide backward for a
short period before sliding forward. The magnitude and direction of the displacement of the bottom
end of the pencil depends on the initial angle of inclination, the coefficient of friction, and on the
length and mass distribution of the pencil. The same ground reaction forces play a similar role in the
fall of trees and chimneys, the bounce of a football and any other elongated object, and in activities
such as walking and running. When an elongated object is thrown obliquely to the ground, the object
can bounce either forward or backward depending on the angle of inclination at impact. Spherical
objects bounce away from the thrower. The difference arises because the horizontal friction force is
determined not only by the normal reaction force, but also by the line of action of the normal
reaction force relative to the center of mass. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2121752�
I. INTRODUCTION

Suppose that an inclined pencil is released from rest with
its bottom end resting on a table. The subsequent motion of
the pencil has been described for a frictionless table1 and for
a hinged stick2 �the tip of which can accelerate faster than g
under certain conditions�, but the result for a stick or pencil
allowed to slide on a real table is different. On a frictionless
table there is no horizontal friction force and no horizontal
motion of the center of mass. The center of mass therefore
falls vertically while the bottom end of the pencil slides
backward. On a real table the bottom end of the pencil can
slide either backward or forward depending on the initial
angle of inclination and the coefficient of sliding friction �.
In general, the bottom end slides backward at low initial
angles of inclination to the horizontal and slides forward at
high initial angles of inclination. Sometimes the bottom end
will remain at rest at the start of the fall, then slide backward
for a short period before sliding forward.

The falling pencil is just one of many examples where
ground reaction forces control the dynamics. Other examples
include walking and running,3 the felling of a tree or
chimney.4,5 and the bounce of a football. An elongated object
when dropped to the ground will have a falling or rotating
phase while it remains in contact with the ground, with the
result that the centripetal force on the object acts to reduce
the normal reaction force. For example, the maximum walk-
ing speed of a person is limited by the fact that the person
will become airborne if the rotation speed � of his or her
center of mass is large enough.3 Given that the center of
mass pivots about one foot on the ground, a walking stride
will change to a running stride when �2 /R�g, where R is the
height of the center of mass. For most adults, R is about 1 m
so the maximum adult walking speed is about 3.1 ms−1. In
this paper we consider only the case of a falling pencil be-
cause a pencil �or pen� will be within easy reach of all read-
ers. However, the word “pencil” can be taken as a generic
term for any elongated object, including a top-heavy human
leg.

II. EQUATIONS OF MOTION

The geometry is shown in Fig. 1 and the equations of

motion are
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F = Md�x/dt �1a�

N − Mg = Md�y/dt �1b�

and

Icmd�/dt = NH sin � − FH cos � , �2�

where M is the pencil mass, �x and �y are the velocity com-
ponents of the center of mass, H is the distance from the
center of mass to the bottom end of the pencil, Icm is the
moment of inertia about an axis through the center of mass,
and �=d� /dt. We will focus our attention on the relatively
simple case where �x, �y, and � are all zero and where �
=�0 at t=0. A qualitative discussion of the effects of a finite
initial speed is given in Sec. V.

Simple observation indicates that � increases with t so
from Eq. �2�, F�N tan � during the fall. If the contact end
slides on the table, then F=�N, which implies that tan �
��. However, if tan � is less than �, F will be less than �N,
which means that the contact end grips the table instead of
sliding. The pencil will then pivot about the contact end
which will be prevented from sliding by a relatively small
static friction force. There may be a difference between the
static and sliding coefficients of friction but both coefficients
are taken to be equal in this paper for simplicity. No quali-
tative differences result if the coefficients are different, but
the algebra is more cumbersome.

If the pencil pivots about the contact point, then vx
=H� cos � and vy =−H� sin �, so

F = MH�cos �d�/dt − �2sin �� �3�

and

N = Mg − MH�sin �d�/dt + �2cos �� . �4�

Equations �3� and �4� indicate that the acceleration of the
center of mass has a component H�2 directed toward the
contact point and a component d�H�� /dt directed at right
angles to the pencil. The substitution of Eqs. �3� and �4� into

Eq. �2� yields

26© 2006 American Association of Physics Teachers



d�

dt
=

d2�

dt2 = �0
2 sin � , �5�

where �0
2=MgH / I0, and I0= Icm+MH2 is the moment of in-

ertia of the pencil about an axis through the contact end.
Equation �5� can also be derived simply by equating the
torque MgH sin � about the contact point to I0d� /dt. How-
ever, Eq. �5� remains valid only if the contact point remains
at rest.1 For small � where sin ���, the solution of Eq. �5� is

� = �0�e�0t + e−�0t�/2, �6�

showing that the angular displacement and velocity grow
exponentially rather than linearly with time, at least when
�0t is greater than about 3. Equation �5� can be integrated2 to
show that

�2 = 2�0
2�cos �0 − cos �� , �7�

which also follows immediately from energy conservation. F
and N are therefore given by

F = MH�0
2sin ��3 cos � − 2 cos �0� , �8�

and

N = Mg − MH�0
2�1 + 2 cos � cos �0 − 3 cos2�� . �9�

At time t=0 where �=�0, F=MH�0
2 sin �0 cos �0 and N

=Mg−MH�0
2 sin2�0. If the pencil is released from rest from

a near vertical position, then F will be much smaller than N
at that time so the pencil will start to fall without sliding, as
if the contact end were attached to a hinge. Equation �8�
shows that for a near vertical launch where cos �0�1, F
increases with time to a maximum value of 0.305MH�0

2 at
�=26.7°, decreases to zero at �=48.2°, and then reverses
sign. For the same launch condition, Eq. �9� indicates that N
decreases with time to the minimum value Mg−4MH�0

2 /3
when cos �=1/3 or �=70.5�.

If the pencil has a uniform mass distribution so that I0
=4MH2 /3, then the minimum value of N is zero. Conse-
quently, N can decrease to a value where the magnitude of F
might be much larger than �N. However, sliding will com-
mence if the magnitude of F is equal to �N, in which case
Eqs. �3� and �8� are no longer valid. Even if F /N remains
less than � up to the time that F reverses sign, the magnitude
of F /N will increase rapidly to � after F reverses sign. The
pencil will therefore start to slide either forward or backward
after the initial grip phase, depending on the magnitude of �.
From Eqs. �8� and �9� it can be shown that the maximum

Fig. 1. Geometry of a falling pencil. The bottom end of the pencil is free to
slide forward or backward on the table.
positive value of F /N is 0.371 when the pencil is released
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from a near vertical position and that F /N is a maximum
when �=34.9°. Consequently, the bottom end of the pencil
will start to slide backward if ��0.371, but it will start to
slide forward if ��0.371.

During the sliding phase, Eq. �3� can be replaced by the
relation F=�N, which yields

d2�

dt2 =
MH�g − H�2cos ���sin � − � cos ��

Icm + MH2sin ��sin � − � cos ��
. �10�

If the sliding phase commences after F reverses sign, then
F=−�N, in which case the sign of � in Eq. �10� needs to be
reversed. Falling motion essentially terminates when �=90°
at which point d� /dt=MgH / I0 and N=MgIcm/ I0. If the pen-
cil falls onto the table at finite horizontal speed, a significant
fraction of the observed total forward or backward displace-
ment can occur as a result of sliding motion after the pencil
has fallen into a horizontal position. In practice, sliding mo-
tion after the fall is usually also accompanied by bouncing of
one or both ends of the pencil.

III. NUMERICAL SOLUTIONS

Numerical solutions of Eqs. �5� and �10� are shown in
Figs. 2, 3, and 4 for a pencil of mass 10 g with H=0.1 m
released from rest at �0=1° when �=0.15 or �=0.5. The
pencil was assumed to have a uniform mass distribution with
I0=4MH2 /3. Also shown for comparison in Fig. 5 are solu-
tions for a frictionless table where �=0 and for a hinged
pencil where � is effectively infinite.

Comparison of Figs. 2 and 5 shows that the total fall time
is relatively insensitive to � unless � is very small, the rea-
son being that the grip phase at the beginning of the fall lasts
for a relatively long time compared to the sliding phase. The
fall time would be much longer than that shown in Fig. 2 if
the release angle were significantly less than 1°, given that
the angular displacement increases exponentially with time
at the beginning of the fall.

Figure 3 shows the behavior of F and N during the fall.
The behavior of N is essentially the same as that for a hinged

Fig. 2. The angle � versus t for two values of � when �0=1°, M =10 g, and
H=0.1 m.
pencil in that N drops almost to zero when �=70.5° and then
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increases slightly during the remainder of the fall. However,
the behavior of F is quite different after the pencil begins to
slide. For a hinged pencil and the above parameters, F in-
creases to a maximum value of 22.5 mN and then decreases
to −147 mN at the end of the fall. If the pencil is allowed to
slide, it does so as soon as the magnitude of F /N exceeds �,
with the result that the pencil starts to slide backward if �
�0.371 or slides forward if ��0.371.

The displacement of the bottom end of the pencil is shown
in Fig. 4. If ��0.371, the initial backward slide gives way
to a forward slide when F reverses direction. At the begin-
ning of the fall F must be positive in order for the center of
mass to accelerate forward. Toward the end of the fall where
� is large and where the forward acceleration of the center of
mass comes to an end, F changes sign because the horizontal

Fig. 3. F and N versus t for the same conditions as those in Fig. 2. While
F��N, the pencil grips the table. When F= ±�N, the pencil slides along
the table.

Fig. 4. The horizontal displacement of the bottom end of the pencil from its
initial position xp versus t �same conditions as Fig. 2�. While the pencil grips

the table xp remains zero.
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component of the centripetal acceleration exceeds the hori-
zontal component of the linear acceleration, as indicated by
Eq. �3�.

Solutions for other values of M and H show that the fall
time is independent of M and is directly proportional to H1/2.
Similarly, � is independent of M and is inversely propor-
tional to H1/2. This result is expected from Eqs. �5� and �6�,
given that �0 is independent of M and inversely proportional
to H1/2. The net forward or backward displacement of the
bottom end of the pencil was found to increase linearly with
H. For demonstration or experimental purposes, the displace-
ment would therefore be easier to observe visually and better
time resolution could be obtained on film using a meter stick
rather than a pencil.

Under free fall conditions, the center of mass of a pencil
released from rest will drop through a height H in time t
= �2H /g�1/2 or in 0.143 s when H=0.1 m. If a 20 cm pencil
is released at an angle of 1� from the vertical when resting on
a table, the pencil takes about 0.6 s to fall onto the table. The
standard “faster than g” falling stick demonstration works
only if �0�42.1°.2

IV. IS LIFTOFF POSSIBLE DURING THE FALL?

A surprising result of the above calculations is that N can
drop to a minimum value of zero �without reversing sign�, at
least for a pencil with a uniform mass distribution. Such a
result implies that the center of mass of the pencil can fall
with a maximum acceleration equal to g but it cannot fall any
faster. However, Eq. �9� indicates that N can have a mini-
mum value less than zero if I0�4MH2 /3, a situation that can
arise if the pencil is top heavy. Suppose that a mass m is
attached to the top end of a pencil of length L so that I0
= �M /3+m�L2 and H=0.5�M +2m�L / �M +m�. If we assume
that the pencil is released from a near vertical position and
pivots about a fixed point at the bottom end, then the mini-

2

Fig. 5. N and F versus t for a 10 g pencil with H=0.1 m released from rest
at �0=1° when the bottom end slides on a frictionless table or when the
bottom end is hinged.
mum value of N according to Eq. �9� is −m g / �M +3m�.
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From Eq. �1� a negative value of N implies that the magni-
tude of d�y /dt is larger than g. N will be negative near �
=70° if the pencil is hinged at the bottom end, suggesting
that the bottom end is likely to lift off the table if it is not
anchored down. However, a pencil that is free to slide on a
table will do so before N drops to zero and before N has a
chance to reverse sign, because the ratio F /N approaches
infinity as N approaches zero.

Suppose that the bottom end of a top-heavy, sliding pencil
lifts off the table when N drops to zero. N will remain zero
after liftoff, F will also drop to zero, and hence � will remain
constant at its liftoff value. The bottom end will then rise
vertically at speed H� sin � with respect to the center of
mass, while the center of mass will fall with d�y /dt=−g.
Because � continues to increase with time, the bottom end
will rise at an increasing velocity with respect to the center
of mass but the center of mass falls with increasing velocity
after liftoff. In order to remain airborne, the pencil would
need to rotate at a relatively high speed at liftoff. For ex-
ample, if h is about 0.15 m and if the pencil lifts off the table
when � is about 50°, a simple calculation indicates that �
would need to exceed about 70 rad/s in order for the pencil
to remain airborne. In fact, the angular velocity of such a
pencil released from rest is typically less than about
10 rad/s. Liftoff is therefore not possible under these condi-
tions, as suspected by Theron.2 Nevertheless, liftoff would be
possible if the pencil were launched with a high initial angu-
lar velocity. An example of this effect is provided by an
oval-shaped football that rolls end over end. Even at moder-
ately low speeds the football becomes airborne because the
condition �2 /R�g is satisfied at relatively small v when R is
small.

V. PENCIL THROWN AT FINITE SPEED

While experimenting with falling pencils I noticed another
interesting effect, presumably discovered previously by
many others. That is, if the blunt end of a pencil is speared
obliquely onto a horizontal surface, then the pencil can
bounce straight back to the thrower. The effect is easier to
observe and easier to control if the blunt end contains an
eraser, because the pencil bounces to a greater height and
because it more readily grips the surface. The backward
bounce effect is intriguing because a spherical ball almost
always bounces forward when thrown obliquely onto a sur-
face. The exception to this general rule is that a spherical ball
can bounce backward if it is projected with backspin at an
angle close to the normal. However, an elongated object
bounces backward even without backspin, provided it is in-
clined at a backward angle when it impacts the surface.

The essential difference between the bounce of spherical
and nonspherical objects is that the normal reaction force
usually acts through the center of mass of a spherical ball,
but it can act well ahead of or well behind the center of mass
of an elongated object, depending on the angle of inclination
at impact. As a result, the net torque about the center of mass
of an elongated object can be significantly larger or smaller
than that on a spherical object of similar mass. The torque on
an object determines the rate at which it spins, but why
should it affect the change in horizontal velocity?

To compare the bounce of spherical and nonspherical ob-
jects, it is instructive to compare the bounce of a basketball
with that of an oval shaped football of the same mass and

stiffness. If both are thrown without spin at the same speed
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and angle of incidence, both will be subjected to the same
normal reaction force and the same sliding friction force and
both will remain in contact with the ground for about 20 ms.
Consequently, we might expect that both balls should bounce
to a similar height and both should slow down by the same
amount in the horizontal direction. In fact, the basketball will
bounce forward, but the football can bounce either forward
or backward depending on the angle of inclination of the
long axis at impact, as indicated in Fig. 6.

Both balls will initially slide along the surface and the
friction force will act in a backward direction to reduce the
horizontal speed of each ball. Sliding friction can act to bring
an object to rest but it cannot reverse the direction of motion.
Consequently, the backward bounce of a football must be
associated with a static friction force. The friction force on a
spherical ball causes the ball to rotate forward as it slides
until the contact region at the bottom of the ball comes to
rest. The contact region comes to rest when the rotation
speed of the ball R� is equal to the horizontal speed of the
center of mass, where R is the ball radius. The contact region
of the ball will then grip the surface due to the large normal
reaction force acting on the ball while it is compressed. The
result is that the static friction force on the ball decreases to
zero and then reverses direction, effectively propelling the
ball forward.6 Even though the bottom of the ball comes to
rest during the grip phase, the center of mass of the ball
continues to move forward throughout the entire 20 ms
bounce period. The static friction force is determined by the
extent of the elastic deformation of the ball in the horizontal
direction, in the same way that the normal reaction force is
determined by elastic deformation in the vertical direction.

When a football impacts the ground at a backward angle,
the torque due to the friction force is opposed by the torque
due to the normal reaction force, as indicated in Fig. 6�b�.
Consequently, the ball can slide forward without significant
rotation, in which case the same sliding friction force acts on
the ball as it does on the basketball but it acts for a longer
time interval. If there is no rotation of the ball while it slides,
then the whole ball would come to rest when the contact
region comes to rest, provided the ball is infinitely rigid. In
fact, a football is relatively flexible and will experience elas-
tic deformation in the horizontal direction as a result of the

Fig. 6. A basketball and a football of the same mass and stiffness, incident
without spin at the same speed, and angle of incidence on the same surface,
bounce in different directions. The bounce direction of a football depends on
its initial angle of inclination. The normal reaction force N acts through the
center of mass in �a�, ahead of the center of mass in �b�, and behind the
center of mass in �c�.
shear force at the bottom of the ball. At the instant when the
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bottom of the ball comes to rest, the upper part of the ball
will still be moving forward and it will continue to do so
until the whole ball comes to rest in the horizontal direction.
At that point the ball might still be compressing vertically
and it will also store elastic energy due to its horizontal de-
formation. While the ball remains stretched in the horizontal
direction, it exerts a forward force on the ground so the fric-
tion force continues to act in the backward direction and
propels the ball backward. The details of this process are
complicated by the fact that the friction force reverses direc-
tion several times while the ball grips the surface, both on a
basketball and on a football. Multiple reversals of the friction
force are due to transverse vibrations of the ball that occur
while the ball undergoes one half of an oscillation in the
vertical direction. Nevertheless, the net horizontal impulse
acting on a football that bounces backward is clearly greater
than that on a forward bouncing basketball with the same
initial horizontal momentum. Measurements of the friction
force acting on a basketball have been reported.6 Measure-
ments of the unusual bounce properties and the friction force
acting on a football will be described in a separate publica-
tion.

VI. CONCLUSIONS

The behavior of a falling pencil can be explained formally
in terms of the relevant dynamic equations. The behavior
also has a simple qualitative explanation that could illustrate
the nature of accelerated circular motion for teaching pur-
poses. That is, the horizontal force at the bottom end must be
initially positive in order for the center of mass to move
forward. The initial horizontal acceleration is relatively small
and the required force is supplied by static friction. As the
pencil accelerates, the bottom end retains its grip if the co-
30 Am. J. Phys., Vol. 74, No. 1, January 2006
efficient of static friction is large enough, but the bottom end
will commence to slide backward if the coefficient of static
friction is small. Near the end of the fall the friction force
reverses direction because the centripetal force is then larger
than that required to accelerate the center of mass forward.

The backward bounce of a pencil that is speared obliquely
onto a horizontal surface illustrates an effect that is probably
not well known. That is, the magnitude and direction of the
friction force on an object depends not only on the normal
reaction force but also on the line of action of the normal
reaction force relative to the center of mass. The line of
action determines the rate of rotation and hence determines
the duration of the sliding period before the contact region
comes to rest. While the contact region remains at rest, the
magnitude and direction of the static friction force depends
on the extent and direction of elastic deformation in a direc-
tion parallel to the surface. It also depends on the separate
periods of oscillation of the object in directions parallel and
perpendicular to the surface.
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