

Theoretical Exploration of UW IEC

Device Operation at Moderate Pressures*

John F. Santarius, Gilbert A. Emmert, and Eric C. Alderson

> Fusion Technology Institute University of Wisconsin

13th US-Japan (Australia) Workshop on Inertial Electrostatic Confinement Fusion

> Sydney, Australia December 7-8, 2011

* Research supported by the US Dept. of Energy under grant DE-FG02-04ER54745 and by the Grainger Foundation.

Outline

- Effect of changing parameters
 - Source species mix
 - ➢ Voltage
 - > Pressure
 - Cathode and anode radii
- Future directions
- Summary and conclusions

Base Case Input Parameters

Cathode Radius	0.10 m	Cathode (
Anode Radius	0.20 m	Gas press
Wall Radius	0.45 m	Ion energ
Cathode Voltage	70 kV	Gas densi
Potential Model: v	Cathode t	
No cold ions in ca	athode region	Anode tra
Source ion fractio	ons:	
D+ 0.06		Number of
D2+ 0.23		Inter
D3+ 0.71		Catho
		Sourc

Cathode Current	30 mA
Gas pressure	2 mTorr
Ion energy at anode	0.01 keV
Gas density 6.40	00e+19 m^-3
Cathode transparency	0.92
Anode transparency	1.00
Number of zones:	
Intergrid region	100
Cathode region	30
Source region	30
Energy grid	30

D⁺ Somewhat Favored for Source Species

Dependence on Source Ion Species

D⁺ Slightly Favored for Source Species

• Dots independently rainbow colored with purple low and red high.

V = 70. kV, P = 2. mTorr

2 mTorr (0.27 Pa), 30 mA, 70 kV, r_c =0.1 m, r_a =0.2 m

Increasing the Voltage Increases Neutron Production

THE UNIVERSITY

MADISO

Projectile-Target Cross Sections for Key Fusion Fuels

Increasing the Pressure Strongly Increases Neutron Production

JFS, GAE, ECA 2011 Fusion Technology Institute, University of Wisconsin

THE UNIVERSITY

ADISO

Higher Voltage and Pressure Increase Neutron Production Strongly

30 mA, $r_c=0.1$ m, $r_a=0.20$ m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

THE UNIVERSITY

MADISO

At Low Pressure, Atomic Physics Effects Are Relatively Small

70 kV, 30 mA, r_c =0.10 m, r_a =0.20 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

THE UNIVERSITY

MADISO

At Higher Pressure, **Atomic Physics Effects Are Strong**

70 kV, 30 mA, $r_c=0.10$ m, $r_a=0.20$ m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

THE UNIVERSITY

ADISO

Increasing Pressure Increases Neutron Production Rate and Affects the Origin of the Fusion Neutrons

70 kV, 30 mA, r_c =0.1 m, r_a =0.2 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

Units of 10⁵ n/s	0.1 mTorr	1 mTorr	5 mTorr
D ⁰ - Gas	0.09	8.7	166
D ₂ ⁰ - Gas	0.03	2.5	31
D⁻ - Gas	0.003	1.1	45
D ⁺ - Gas	0.60	7.7	33
D ₂ ⁺ - Gas	0.49	3.6	8
D ₃ ⁺ - Gas	0.51	3.2	7
Total neutrons	1.7	26.8	299

Neutron Production Varies More Strongly with Cathode Radius than with Anode Radius

70 kV, 30 mA, 2 mTorr, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

D–D neutron production $(10^8 s^{-1})$

D–D neutron production $(10^8 s^{-1})$

JFS, GAE, ECA 2011

Fusion Technology Institute, University of Wisconsin

³He-³He Fuel Performs Best at Small Radii and High Pressure

THE UNIVERSITY MISCONSIN MADISON

Future Directions

- Funded tasks during present 3-year DOE theory grant
 - > implement planar and cylindrical geometries,
 - ▹ include D-T fuel and the He⁺⁺ ionization state,
 - > further benchmark against experimental data, and
 - > scope space-charge effects of converging ions in core.
- Other tasks
 - > include D-³He and p-¹¹B fuels,
 - refine cross section data,
 - implement electrons as a separate species
 - > allow a glow discharge ion source distribution, and
 - > optimize the configuration and plasma parameters

Summary and Conclusions

- UW's VICTER integral transport code now creates files with detailed output for all species as functions of r and E.
- VICTER now includes negative ions, post-processed because they typically are a ~10% effect.
- We have developed a reasonable understanding of the key active processes in moderate pressure (0.1-5 mTorr) plasmas.
- VICTER predicts that the neutron production rate:
 - rises strongly with voltage and pressure,
 - rises moderately with cathode radius and wall radius,
 - depends linearly on current, and
 - > depends very little on anode radius.