Experimental Results from an IEC Device Employing a 5-stage High Voltage Feedthrough

13th US-Japan workshop on IECF 2011/12/8

Yu Yamagaki, Kai Masuda, Genki Hashimoto, Yoko Kamiya and Kazunobu Nagasaki

Inst. Advanced Energy, Kyoto University, Kyoto, Japan

- Motivation
- Design of 5-stage feedthrough
- Experimental setup
- Experimental results
- Summary and conclusion

RS-MIS IEC Device

Feature of our RS-MIS device • Running either under glow mode or RS-MIS mode.

RS-MIS mode : lons are driven by <u>Ring-Shaped</u> <u>Magnetron lon Source</u> (RS-MIS)

Feature of RS-MIS mode

- •running under extremely low pressure (5 mPa).
- •We have plan of enhancement of ion current.
- Ion trajectory is shorter than mean free path.

Objective1 : To increase ion recirculation number.

HEU Detection Project

 For HEU(<u>highly enriched uranium</u>) detection project, we are planning -200 kV – 5 A pulse power supply.

Problem with Applying High Voltage

In order to apply higher voltage, we need larger bore of feedthrough.

Electric field gets asymmetry.

Recirculation number of ion trajectory decrease.

5

Objective2 : to apply higher voltage (-200 kV) with small bore of feedthrough

Objective

- To enhance ion recirculation.
- To apply higher voltage (-200 kV) with a small bore (ϕ = 200 mm).

We designed a 5-stage high voltage feedthrough

Comparing of 2 mode

	HEU project	Study for beam-beam
Requirement	To apply higher voltage	Improvement of ion recirculation
Pressure	1 Pa	5 mPa
Mean free path	Few tens cm	More than 10 m
Dominant process of ion lost	Charge exchange	Collision to cathode of feedthrough
lon energy	1/3 of applied voltage	About applied voltage
Cross section of D-D fusion	square of applied voltage	Linear of applied voltage

- Motivation
- Design of 5-stage feedthrough
- Experimental setup
- Experimental results
- Summary and conclusion

Threshold Electric Field, *E*_{max} Depend on Applied Voltage

Results from Calculation

- The maximum electric field is 8.7 MV/m when applied voltage is -200 kV.
- The averaged recirculation number of injected ions is 3 times as large as that in the present experimental device.

Kai Masuda, et al., Fusion Science and Technology, vol.60, 2011, p625.

- Motivation
- Design of 5-stage feedthrough
- Experimental setup
- Experiment
- Summary and conclusion

- Motivation
- Design of 5-stage feedthrough
- Experimental setup
- Experimental results
- Summary and conclusion

Experiment

- Conditioning under vacuum
- P-V characteristics of glow discharge with H₂ and D₂ gas
- Measure NPR under glow mode

Conditioning under Vacuum

P-V characteristics of H₂ and D₂

At same applied voltage, P of H₂ gas is less than that of D₂ gas.

Calibration of Neutron Detector

Result of NPR

NPR Dependence on Current

- Motivation
- Design of 5-stage feedthrough
- Experimental setup
- Experimental results
- Summary and conclusion

Summary and Conclusion

- In order to increase ion recirculation and to apply higher voltage, we proposed an IEC device employing a 5-stage feedthrough.
- We expect trajectory with 5-stage feedthrough is 3 times as long as that of single-stage (PIC simulation).
- Applied voltage has reached -180 kV.
- NPR is in proportion to the $V^{2.4\pm0.3}$ when applied voltage is -80 kV to -130 kV.

Future Work

- X-ray shielding.
- Calibration of neutron counter.
- Further conditioning to -200 kV.
- Measure and consider the relation between applied voltage and NPR more.
- Make magnetron ion source for 5-stage device.
- Compare the NPR between single-stage and 5-stage at RS-MIS mode.