

13th US-Japan Workshop on Inertial Electrostatic Confinement Fusion

December 7-8, Sydney, Australia

Generation of Neutron Beam with the Cylindrical Discharge type Fusion

Y. Yamamoto¹, T. Maegawa², K. Noborio³, and S. Konishi²

¹ Dept. of Electrical and Electric Engineering, Kansai University
² Institute of Advanced Energy, Kyoto University
³ Institute of Sustainability Science, Kyoto University

- Background
- Objective
- Simulation by MCNP5
 - model
 - effect of reflector materials
 - problems optics! & current working
- Experiment update
- Summary

Background

Non destructive analysis (radiography, diffraction analysis):

- Compared with X-ray analysis, it can specify the position of light atoms such as hydrogen. This is ideal method for the analysis of biological macromolecules.
- Currently, neutron beams are supplied by large scale facilities (fission reactor or particle accelerator).

Development of small scale neutron beam source using cylindrical neutron source and neutron optics (reflector, moderator).

Objective

Cylindrical discharge type neutron source

- Fusion reaction oh the electrode surface.
- 2.5MeV fast neutron
- Isotropic

Neutron Optics (Reflector Moderator)

- Material
- Geometry

Neutron Beam

- Single directional
- Thermal neutron (<room temp.) or
- Fast neutron

Simulation Method

Analysis on effect of combined materials

Effect of combined reflector materials on the neutron flux distributions

PE+Fe

1.91×10⁻⁶

Effect of combined reflector materials on the energy spectrum at (z, r)=(70,0)

Combined reflector(PE+D2O) is obtained high intensity thermal neutron, but PE reflector is effective for thermalizing fast neutron than combined reflector

4.85%

6.36×10-7

33.3%

9.25×10-8

Effect of combined reflector materials on the neutron flux distributions

Effect of reflector material on energy spectrum at (z, r) = (70cm, 0cm)

W reflector is effectively obtained fast neutron.

Neutron flux on the axis at reflector exit (z=70cm)

- Neutron flux near the reflector exit is increased by adding combined reflector, but it quickly decreases after the exit.
- To find out reasons for this, we look at the direction of particles go through the exit, this time using current tari.

Direction of neutron velocity

Comparison of beam profiles for different reflector configuration

The discharge chamber is put into a water tank so that the chamber is covered completely except for upper port (voltage feed-thru and evacuation) and beam direction.

Device update

100mm

Discharges in this area (between cathode and cylindrical chamber (anode voltage)) may limit IEC operation ?

Anodes

Remove this area

support cathode from outside &

put isolate material between anode and cathode

2009/10/12

Photos

- Neutronics calculation suggested that generation of thermal or fast neutron beam is possible with adequate reflector designs.
- Generation of neutron beam is confirmed to be possible, with a table top fusion neutron source.
- Until recently we focus to increase neutron flux at the exit, but it decreases quickly after there. We are now focusing the optics and make more optimization.
- In the experiments, new device is under development.