
MPI Course Overview

• Introduction and overview of message passing and MPI
• MPI program structure
• Messages
• Point-to-point communication
• Non-blocking communication
• Collective communication
• Miscellaneous (derived datatypes, MPI IO, topologies, MPI2, ...)
• Debugging and Profiling

MPI References

Books written by authors of the MPI standard:

• Using MPI, Portable Parallel ..., 2nd edition, Gropp et al, MIT Press, 1999
• MPI - The Complete Reference, Volume 1, The MPI Core, 2nd edition, Snir et al, MIT

Press, 1999
• Using MPI-2, Advanced Features of ..., Gropp et al, MIT Press, 1999
• MPI - The Complete Reference, Volume 2, The MPI Extensions, Gropp et al, MIT Press,

1999

Two freely available MPI libraries that you can download and install:

• LAM - http://www.lam-mpi.org
• MPICH - http://www-unix.mcs.anl.gov/mpi/mpich
• OpenMPI - http://www.open-mpi.org (recommended)

Websites

• http://www-unix.mcs.anl.gov/mpi
       - the main MPI web page

• http://www-unix.mcs.anl.gov/mpi/learning.html
       - pointers to teaching material and tutorials

• http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
       - set of guided exercises

• http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
      - MPI 1.1 standard in readable form with rationales and advice
to users

• http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
      - MPI 2.0 standard as an addition to the MPI 1.1 standard (less
useful)



Basic Concepts

Sequential Computer Architecture Paradigm

Sequential Programming Paradigm



Message-Passing Programming Paradigm (cont'd)

• A single program is run on each processor.
• All variables are private.
• Processes communicate via special subroutine calls - MPI is just a library!
• There is no "magic" parallelism.
• Written in a conventional sequential language, i.e. C or Fortran (no special

compiler)

Message-Passing Computer Architecture Paradigm

Message-Passing Programming Paradigm



Exercise 0: Distributed Memory Message-Passing Concepts

 program simple_mp
 integer :: rank, a(0:1), b(0:1), c(5)
 character*64 message

     write(*,*) "Enter rank (0 or 1):"
     read(*,*) rank

      ! passing a message

           open(unit=7,file="message")
           if ( rank == 0 ) then
               write(7,*) "this is the message"
           else
               read(7,'(a)') message
               write(*,*) "I read ", message
           endif

       ! independent work, results not shared

            if ( rank == 0 ) then
                a(0) = 27
            else
                a(1) = 31
            endif
            write(*,*) " a = ", a

       ! getting rid of the "if"

           b(rank) = rank+2
           write(*,*) " b = ", b

       ! assigning a distributed length 10 vector
            do i = 1,5
                c(i) = i+5*rank
            enddo
            write(*,*) " c = ", c
       end program simple_mp

What is SPMD?

• Single Program, Multiple Data
• Same program runs everywhere.
• Restriction on the general message-passing model.
• Some platforms only support SPMD parallel programs
• General message-passing model can be emulated.



Emulating General Message-Passing with SPMD: Fortran

 program
     if (process is to become a controller
process) then
         call CONTROLLER ( /* Arguments */ )
     else
         call WORKER ( /* Arguments */ )
     endif
 end

Emulating General Message Passing with SPMD: C

 main (int argc, char **argv)
 {
     if (process is to become a controller
process)
     {
         Controller( /* Arguments */ );
     }
     else
     {
         Worker( /* Arguments */ );
     }
 }

Messages

• Messages are packets of data moving between processes.
• The message passing system has to be told the following information:

o Sending process
o Source location
o Data type
o Data length
o Receiving process(es)
o Destination location
o Size of receive buffer(s)

Access

• A process needs to be connected to a message passing interface.
• A message passing system is similar to:

o Mail box
o Phone line
o fax machine
o etc.



Addressing

• Messages need to have addresses to be sent to.
• Addresses are similar to:

o Mail address
o Phone number
o fax number
o etc.

Reception

Receiving process must:

1. participate (cf. have a mailbox it checks, a phone it answers, ..)
2. have capacity to receive (have a big enough mailbox etc)

Point-to-Point Communication

• Simplest form of message passing.
• One process sends a message to another
• Both ends must actively participate
• Sending a point-to-point message requires specifying all the details of the message

Point-to-point communication types

Point-to-point communication concepts:

• Synchronous vs asynchronous
• Blocking vs non-blocking
• Buffer space, reliability, ...

Leads to a myriad of different types of point-to-point communication calls.



Collective communications

• Collective communication routines are higher level routines involving several processes
at a time (often all).

• Can be built out of point-to-point communications.

Collective Example: Barrier

Simplest collective communication example is a barrier
synchronises participating processes



Message Passing Interface (MPI) standard

MPI is a standard interface for message passing:

• Defined by MPI Forum - 40 vendor and academic/user organizations
• Provides source-code portability across all systems
• Allows efficient implementation.
• Provides high-level functionality.
• Supports heterogeneous parallel architectures.
• Evolving - MPI-2 is an addition to MPI-1.

MPI Programs

Header files

Should appear everywhere you call MPI procedures.

C:

#include <mpi.h>

Fortran:

include 'mpif.h'

Constants

The header files are full of constants that are used as arguments to MPI procedures.

Examples:

  !   MPI types for Fortran programs
  !
      integer MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION
      integer MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL
  !
      parameter (MPI_COMPLEX=23, MPI_DOUBLE_COMPLEX=24, MPI_LOGICAL=25)
      parameter (MPI_REAL=26, MPI_DOUBLE_PRECISION=27, MPI_INTEGER=28)



MPI Function Format

C:

 int error;
 error = MPI_Xxxxx (parameter, ...);

Fortran:

 integer ierror
 call MPI_XXXXX (parameter, ..., ierror)

Generic:

MPI_XXXXX (parameter, ...)

Initialising MPI

C:

 int MPI_Init (int *argc, char ***argv)

Fortran:

 subroutine MPI_Init(ierror)
      integer ierror

Must be the first MPI procedure called.

Handles

• MPI controls its own internal data structures
• MPI exposes 'handles' to allow programmers to refer to these
• C handles are of defined typedefs
• Fortran handles are integers.



Communicators

• "orthogonal message passing universes"
• human analogy: the mail system is one communicator and the phone system another
• every message "travels" in a communicator (every message passing call has a

communicator argument)
• more than just groups of processes - "context"
• very useful for libraries (library messages dont interfere with library users messages)
• referred to by a "handle" (of type MPI_Comm in C).

MPI_COMM_WORLD communicator

• MPI_COMM_WORLD is the default communicator setup by MPI_Init()
• contains all processes
• for today, just use it whereever a communicator is required!
• MPI_COMM_WORLD is a handle (look in header file)

Rank

How do you identify different processes?

C:

 int MPI_Comm_rank(MPI_Comm comm, int *rank);

Fortran:

 subroutine MPI_Comm_rank(comm, rank, ierror)
 integer comm, rank, ierror



Size

How many processes are contained within a communicator?

C:

 int MPI_Comm_size(MPI_Comm comm, int *size);

Fortran:

 subroutine MPI_Comm_size(comm, size, ierror)
 integer comm, size, ierror

Exiting MPI

Must be the last MPI procedure called by each process.

C:

 int MPI_Finalize();

Fortran:

      subroutine MPI_Finalize(ierror)
      integer ierror

To abort all processes of an MPI job:

C:

 int MPI_Abort(MPI_Comm comm, int errcode);

Fortran:

 subroutine MPI_Abort(comm, errcode, ierr)
      integer comm, errcode, ierr

The Four Essentials

MPI_Init()
     MPI_Comm_size()
     MPI_Comm_rank()
      ...
     MPI_Finalize()



Basic Fortran MPI Program

Fortran:

   program firstmpi

     ! The most basic MPI Program

     include 'mpif.h'

     integer :: mpierror, mpisize, mpirank

     call MPI_Init(mpierror)
     call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
     call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)

     ! Do work here
     

     call MPI_Finalize(mpierror)

   end program firstmpi

Basic C MPI Program

C:

#include <mpi.h>

     void main(int argc, char *argv[])
     {

    /* The most basic MPI Program */

    int mpierror, mpisize, mpirank;

    mpierror=MPI_Init(&argc, &argv);
    mpierror=MPI_Comm_size(MPI_COMM_WORLD, &mpisize);
    mpierror=MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

    /* Do work here */

    mpierror=MPI_Finalize();

}



Using MPI (AC)

On the Altix AC (http://nf.apac.edu.au/facilities/userguide/ac):

The relevant modules to use MPI are loaded for you at login.

Compile:

  > ifort foo.f -o foo.exe -lmpi
  > icc foo.c -o foo.exe -lmpi

Execute:

  > mpirun -np 4 ./foo.exe

or

  > qsub -q express -lncpus=4,walltime=30:00,vmem=400mb -wd
  mpirun ./a.out
  cntrl-D

(Note that on AC you can use either mpirun or prun as these are both wrappers to the
underlying anumpirun command.)



Exercise 1: Hello World - the minimal MPI program

1. Write a minimal MPI program which prints "hello world" from multiple processes.
Compile and run it on 1, 2 and 4 procesors.

2. Add the writing processes rank as part of the output. (Also note the -t option for
mpirun.)

3. Use Fortran:

integer mpi_log_fd=11
          character*10 filenm
          ...
          write(filenm,'("mpilog.",i2.2)') mpirank
          open(unit=mpi_log_fd, file=filenm)

or C:

FILE *mpi_log_fd;
          char filenm[10];
          ...
          sprintf(filenm, "mpilog.%2.2d" , mpirank);
          mpi_log_fd = fopen(filenm,"w" );

to open a log file for each process and write to it.
(To use such log files for debugging, it may be necessary to use flush() after each
write/fprintf -- dont use flush() except for debugging.)

4. What happens to IO before MPI_Init() or after MPI_Finalize() on different
machines?

[Solution in hello.f/f90/c ]



Messages

Message Datatypes

• A message contains a number of elements of some particular datatype.
• MPI datatypes:

o Basic types.
o Derived types.

• Derived types can be built up from basic types.
• C types are different from Fortran types.
• Each MPI call accepts messages of any datatype - datatype given as an extra

argument

MPI Basic Datatypes - C

MPI Datatype C Datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double



MPI Basic Datatypes - Fortran

MPI Datatypes Fortran Datatypes

MPI_INTEGER integer

MPI_REAL real

MPI_DOUBLE_PRECISION double precision

MPI_COMPLEX complex

MPI_LOGICAL logical

MPI_CHARACTER character

MPI_BYTE  

MPI_PACKED  

Point-to-Point Communication

Point-to-Point Communication

• Communication between two
processes.

• Source process sends message to
destination process.

• Communication takes place
within a communicator.

• Destination process is identified
by its rank in the communicator.

• Various types of communication



Synchronous Sends

Provide information about the relative execution points of sender and receiver - causes
synchronization of the two.

Asynchronous Sends

Sender only know when the message has left.



Synchronous vs Asynchronous

Telephone analogy:

• synchronous - the receiver answers
• asynchronous - the answering machine answers

Blocking Operations

• Relates to when the local operation has completed.
• Only return from the MPI procedure call when the operation (whether it is send or

receive) has completed.

Non-Blocking Operations

• Return immediately from MPI procedure (before it has completed).
• Your program does other work while MPI does message-passing operation "in the background".
• At some later time program can test or wait for the completion of the non-blocking operation.



Non-Blocking Operations (cont'd)

• All non-blocking operations should have matching wait operations. Some systems cannot
free resources until wait has been called.

• A non-blocking operation immediately followed by a matching wait is equivalent to a
blocking operation.

• Non-blocking operations are not the same as sequential subroutine calls as the operation
continues after the call has returned.

Non-Blocking Operation Examples

Non-blocking Send:
requesting secretary to organise a meeting with colleague:

• usually you check on completion later.
• dont know when or if colleague receives notification.

Non-blocking Receive:
hanging your Xmas stocking! You're not allowed to hang around waiting ...

Summary

• "Orthogonal" concepts
o Synchronous vs asynchronous is a "non-local" issue describing the relative

timings of sender and receiver
o Blocking vs non-blocking is a "local" concept describing completion of operation

in either sender or receiver independently
• Both concepts impact performance and semantics

The rest of this section describes various modes of blocking communication



Communication modes

Sender mode Notes Synchronous?

Synchronous
send

Message goes directly to receiver.
Only completes when the receive has begun synchronous

Buffered send

Message is copied in to a "buffer" (provided by the
application).
Always completes (unless an error occurs), irrespective
of receiver.

asynchronous

Standard send Either synchronous or buffered (into a fixed size buffer
provided by MPI system) both/hybrid

Ready send

Assumes the receiver is ready.
Always completes (unless an error occurs), irrespective
of whether
the receive was ready.

neither

Receive Completes when a message has arrived  

MPI Blocking Sender Modes

Operation MPI Call

Standard send MPI_Send

Synchronous send MPI_Ssend

Buffered send MPI_Bsend

Ready send MPI_Rsend

Receive MPI_Recv</code



Sending a message

C:

 int MPI_Ssend(void *buf, int count,
               MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm)

Fortran:

 subroutine MPI_Ssend(buf, count, datatype,
dest,
                      tag, comm, ierror)
 <type> buf(*)

       integer count, datatype, dest, tag
       integer comm, ierror

Receiving a message

C:

 int MPI_Recv(void *buf, int count,
                    MPI_Datatype datatype, int source,
                    int tag, MPI_Comm comm,
                    MPI_Status *status);

Fortran:

 subroutine MPI_Recv(buf, count, datatype, source, tag,
                     comm, status, ierror)

       <type> buf(*)
       integer count, datatype, source, tag, comm, ierror
       integer status(MPI_STATUS_SIZE)

Synchronous Blocking Message-Passing

• Processes synchronise.
• Sender process specifies the synchronous mode.
• Blocking - both processes wait until the transaction has completed.



For a communication to succeed:

• Sender must specify a valid destination rank.
• Receiver must specify a valid source rank.
• The communicator must be the same.
• Tags must match.
• Message types must match.
• Receiver's buffer must be large enough.

Wildcarding

• Receiver can wildcard.
• To receive from any source - MPI_ANY_SOURCE
• To receive with any tag - MPI_ANY_TAG
• Actual source and tag are returned in the receiver's status parameter.

Communication Envelope Information

• Envelope information is returned from MPI_Recv as status
• Information includes:

o Source: status.MPI_SOURCE or status(MPI_SOURCE)
o Tag: status.MPI_TAG or status(MPI_TAG)
o Count: call MPI_Get_count()

Communication Envelope



Received Message Count

C:

 int MPI_Get_count (MPI_Status *status,
                    MPI_Datatype datatype,
                    int *count);

Fortran:

 subroutine MPI_Get_count (status, datatype,
                           count, ierror)
 integer status(MPI_STATUS_SIZE), datatype
 integer count, ierror

Message Order Preservation

• Matching messages do not
overtake each other -
they are received in the order
sent even with wildcarding

• This is true even for non-
synchronous sends.

• Non-identical messages can be
received out of order (use tag,
source rank etc)



Exercise 2: Ping pong

1. Write a simple program to use MPI_Send() and MPI_Recv() to pass data between
two processes.

2. Try using MPI_SSend() with messages going in both directions simultaneously .

 Proc 0:        Proc 1:
 MPI_Ssend()    MPI_Ssend()
 MPI_Recv()     MPI_Recv()

Now try it with MPI_Send() - by increasing the message size you should be able to
determine the system buffer size.

3. Modify your program to repeatedly pass a message back and forth. Such a program is
generally called pingpong.

4. Use MPI_Wtime() to time the data transfers for different size messages. The timer
probably does not have great resolution so for short messages you will need to time
multiple transfers. Try comparing the times for MPI_Send(), MPI_Bsend() and
MPI_Ssend().

5. Try using MPI_Bsend(). Try just replacing MPI_Send() by MPI_Bsend() -- does
it work? Now use MPI_Buffer_attach(buffer, size) to provide buffer space.

[Solution in pingpong.f/f90/c ]

Timers

C:

 double MPI_Wtime(void);

Fortran:

 double precision MPI_Wtime()

• Time is measured in seconds.
• Time to perform a task is measured by consulting the timer before and after.
• Modify your program to measure its execution time and print it out.



Buffers

• Just memory in your processes
• Term used for three different concepts:

1. Your programs variables or arrays (or part thereof) that are
used as the "message space" arguments to any MPI routine
passing a message,
eg. MPI_Send( a, ....)

2. The buffer space specifically allocated for MPI_Bsend() using
MPI_Buffer_attach(). An "external" buffer space you have
to control.

3. The buffer space provided by the system



Non-Blocking Communications

Non-Blocking Communications

Separate communication into three phases:

• Initiate non-blocking communication.
• Do some work (perhaps involving other communications?)
• Wait for non-blocking communication to complete.

Deadlock

Non-Blocking Send



Non-Blocking Receive

Handles used for Non-blocking Communication

• datatype - same as for blocking (MPI_Datatype or integer)
• communicator - same as for blocking (MPI_Comm or integer)
• request - MPI_Request or integer
• A request handle is allocated when a communication is initiated.

Non-blocking Synchronous Send

C:

 MPI_Request request;
      MPI_Issend(buf, count, datatype, dest, tag,
                 comm, &request);
      MPI_Wait(&request, &status);

Fortran:

 integer request
 call MPI_Issend(buf, count, datatype, dest, tag,
                 comm, request, ierror)
 call MPI_Wait(request, status, ierror)



Non-blocking Receive

C:

 MPI_Request request;
 MPI_Irecv(buf, count, datatype, src, tag,
           comm, &request);
 MPI_Wait(&request, &status);

Fortran:

 integer request
      call MPI_Irecv(buf, count, datatype, src, tag,
                     comm, request, ierror)
      call MPI_Wait(request, status, ierror)

Blocking and Non-Blocking

• Send and receive can be blocking or non-blocking.
• A blocking send can be used with a non-blocking receive, and vice-versa.
• Non-blocking sends can use any mode - synchronous, buffered, standard, or ready.
• Synchronous mode affects completion, not initiation.

Non-Blocking Restrictions

• Cannot read or write buffer while non-blocking request (either send or receive) is
outstanding

• State of data in buffer is indeterminate until request is completed
• Beware of using temporary storage deallocation for message buffers,

eg. Fortran90 array sections and C and Fortran variables.

Communication Modes

Non-Blocking Operation MPI Call

Standard send MPI_Isend

Synchronous send MPI_Issend

Buffered Send MPI_Ibsend

Ready send MPI_Irsend

Receive MPI_Irecv



Completion

Waiting versus Testing.

C:

 int flag;
 MPI_Request request;
 MPI_Status status;
 MPI_Wait(&request, &status);
 MPI_Test(&request, &flag, &status)

Fortran:

 logical flag
 MPI_Wait(request, status, ierror)
 MPI_Test(request, flag, status, ierror)

flag is a boolean which is true when the operation has completed.

Multiple Communications

• Test or wait for completion of one message.
• Test or wait for completion of all messages.
• Test or wait for completion of as many messages as possible.
• Arguments become arrays of handles.
• MPI_Wait_all(), MPI_Test_some(), ....

Testing Multiple Non-Blocking Communications

• multiple outstanding
receives

• buffers waiting to
accept
messages from
matching senders.

• MPI calls to test/wait
on
all/some of these
requests.



Exercise 3: Non-blocking communication

1. Construct a set of processes in a ring (so that 0 passes to 1 passes to ... n-2 passes n-1
passes to 0). Have each processor pass its rank to it's neighbour and keep passing each
message it receives until it gets it' s own rank back. Let each processor keep a sum of the
messages it receives and print the sum out when done. Use non-blocking communication
to ensure safety .

[Solution in ring.f/f90/c]

2. Write your own all-to-all broadcast using non-blocking communication. Have process i
o send i + j to process j for each j
o receive all the messages sent to it
o iteratively test for completion of any it's sends printing the number done each

time until they are all done.
o write out the messages received

[Solution in alltoall.f/f90/c ]

ring.f90

 program ring
   include "mpif.h"
   integer :: ierror, rank, size, left, right, other, &
            & sum, i, request
   integer, dimension(MPI_STATUS_SIZE) :: send_status, &
                                        & recv_status
   call MPI_Init(ierror)
   call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)
   call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

   right = modulo(rank + 1, size)
   left = modulo(rank - 1, size)
   sum = 0

   do i = 0, size-1
      call MPI_Issend(rank, 1, MPI_INTEGER, right, 1, &
                    & MPI_COMM_WORLD, request, ierror)
      call MPI_Recv(other, 1, MPI_INTEGER, left, 1, &
                  & MPI_COMM_WORLD, recv_status, ierror)
      call MPI_Wait(request, send_status, ierror)
      sum = sum + other
      rank = other
   enddo

   write(*, '("PE",i1,": Sum = ",i4)') rank, sum
      call MPI_Finalize(ierror)
 end program ring



Collective Communications

Collective Communication

• Communications involving a group of processes.
• Called by all processes in a communicator.
• Examples:

o Barrier synchronisation
o Broadcast, scatter, gather.
o Global sum, global maximum, etc.

Barrier

Synchronise participating processes



Broadcast

A one-to-all communication.

Reduction Operations

Combine data from several processes to produce a "reduced"
result the same size as each contribution, eg. SUM

Characteristics of Collective Communication

• Collective action over a communicator
• All processes must communicate
• Synchronisation may or may not occur
• All collective operations are blocking.
• No tags.
• Receive buffers must be exactly the right size



Collective communications

• Collective communication routines are higher level routines involving several
processes at a time (often all).

• Can be built out of point-to-point communications.

Barrier Synchronisation

C:

int MPI_Barrier(MPI_Comm comm);

Fortran:

     subroutine MPI_Barrier(comm, ierror)
     integer comm, ierror

Broadcast

C:

 int MPI_Bcast(void *buffer, int count,
               MPI_Datatype datatype,
               int root, MPI_Comm comm);

Fortran:

 subroutine MPI_Bcast (buffer, count, datatype,
                       root, comm, ierror)
 <type> buffer(*)
 integer count, datatype, root, comm, ierror

 

root is the rank of the broadcaster.



Scatter

 

MPI_Scatter(sendbuf, sendcount, sendtype,
                        recvbuf, recvcount, recvtype, root, comm)

Gather

MPI_GATHER(sendbuf, sendcount, sendtype,
                              recvbuf, recvcount, recvtype, root, comm)



Global Reduction Operations

• Used to compute a result involving data distributed over a group of processes.
• Examples:

o global sum or product
o global maximum or minimum
o global user-defined operation

C:
   int MPI_Reduce(void *inbuf, void *outbuf, int count,

             MPI_Datatype datatype, MPI_Op op,
             int root, MPI_Comm comm);

Fortran:

   subroutine MPI_Reduce (inbuf, outbuf, count, datatype,
                     op, root, comm, ierror)

   <type> inbuf(*), outbuf(*)
   integer count, datatype, op, root, comm, ierror

Example of Global Reduction

Integer global sum

C:

 MPI_Reduce(&x, &result, 1, MPI_INT, MPI_SUM,
            3, MPI_COMM_WORLD)

Fortran:
 call MPI_Reduce(x, result, 1, MPI_INTEGER,
MPI_SUM,
                 3, MPI_COMM_WORLD, ierror)

 

Sum of all the x values is placed in result.

The result is only placed there on process 3 (the root process).



Predefined Reduction Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum and location



MPI_REDUCE

Variants of MPI_REDUCE

• MPI_Allreduce - no root process
• MPI_Reduce_scatter - result is scattered
• MPI_Scan - "parallel prefix"



MPI_ALLREDUCE

MPI_SCAN



User-Defined Reduction Operators

Reducing using an arbitrary operator, n

C: function of type MPI_User_function

   void my_operator (void *invec, void *inoutvec,
                int *len, MPI_Datatype *datatype)

Fortran: function of type

   function my_operator (invec(*), inoutvec(*),
                    len, datatype)
  <type> invec(len), inoutvec(len)
  integer len, datatype

Reduction Operator Functions

• Operator function for n must act as:

for (i = 1 to len)
inoutvec(i) = inoutvec(i)
n invec(i)

• Operator n need not commute

Registering a User-Defined Reduction Operator

Operator handles have type MPI_Op or INTEGER

C:

   int MPI_Op_create (MPI_User_function *function,
                    int commute, MPI_Op *op)

Fortran:

   MPI_Op_create (funct, commute, op, ierror)

      external func
      logical commute
      integer op, ierror



Exercise 4: Collective Communication

Miscellaneous

MPI Datatypes

• Basic types
• Derived types

o vectors
o structs
o others

Derived Datatypes - Type Maps

Creating a derived datatype requires describing the layout of the data in memory, i.e. the
displacement to each component type.

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

1. The code in Exercises/serial_pi.f/f90/c implements a simple mid-point rule to
evaluate

Use MPI_Bcast() and MPI_Reduce() to parallelize the code.

[Solution in pi.f/f90/c]

2. One way to organize output from multiple processes is to nominate one of the processes to receive
output from the other processes and do the writes (in rank order) only from that process. Use
MPI_Gather() to implement this idea to write out the "hello world from proc ..." strings.

[Solution in IO_gather.f/f90/c]



MPI IO

MPI IO allows data across multiple processes to be saved to disk in a convenient fashon.

• Cooperative IO operations that can produce files usable outside MPI
• Somewhat C oriented interface - have to emulate Fortran sequential IO

Example:

 MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDWR,
               info, fh);
 MPI_File_write_ordered(fh, a, n, MPI_INT, mpistatus);
 MPI_File_close(fh);

MPI IO (cont'd)

• MPI IO is not necessarily high performance
• Multiple ways to access the file

o individual file pointer
o shared file pointer

Virtual Topologies

• Convenient process naming
• Naming scheme to fit the communication pattern
• Simplifies writing of code
• Can allow MPI to optimise communications

How to use a Virtual Topology

• Creating a topology produces a new communicator
• MPI provides "mapping functions"
• Mapping functions compute processor ranks, based on the topology naming scheme.

MPI 2

• One-sided communications:
o direct access to another processes memory
o MPI_Put, MPI_Get, ...
o requires setting up address mappings between processes ("windows")
o gets in to shared memory issues like locking

• Dynamic process
o create and destroy processes dynamically
o MPI_Spawn

• C++ and Fortran90 bindings



Tools for Developing MPI Programs

Debugging - Totalview

• TotalView debugger control all processes (and threads) from a single session.
• Setup your environment by doing

> module load totalview

• Compile code with -g compiler option.
• Start totalview debugger with

totalview mpirun -a -n 2 mpiprog

• Comes up with mpirun source code! Hit "g" and answer "yes" to the prompt
• See the APAC-NF Totalview software page

(http://nf.apac.edu.au/facilities/software/) and links from there for more details
and links to User Guides.



Totalview Exercise

  cd Solutions/F
  ifort -g par_laplace.f -o lap –lmpi

  Part 1
  ------
  qsub -I -q express -wd -lncpus=4,vmem=400mb -v DISPLAY

  Wait for prompt then enter

  totalview mpirun -a -n 4 ./lap

  Type "g" then select "Yes" to get beyond the mpirun source

  Scroll source window and click on line 38 block

  Type "G" to run all processes to run to line 38

  Click on rank variable to see value.

  Use "P+" and "P-" button to see other processes and compare rank.

  Use options under Process and Group menu to step one and all processes.

  Part 2
  ------
  Use Restart under the Group menu to restart the debug session.

  Set breakpoint at line 146  Right click on breakpoint in bottom right window

  Select Properties

  Select Evaluate and enter

  if (iter == 100) then

    $stop

  endif

  Click OK

  Type "G" for group go.

  Check that iter = 100

  Double click on the variable name "u"

  Select Tools the Visualize

  Use middle button to rotate

  Use the "P+" button on the main window to find the rank 3 process (prun.3)

  Repeat above

  Exit totalview AND exit qsub

  Part 3
  ------
  Edit line 124 of par_laplace.f to replace "tag" by "tag+1"

  Recompile and restart totalview.

  Type "G" to start all processes

  Select "Halt" when things are hung

  Select "Tools" then "Message Queue" to see messages

  Select "Tools" then "Message Queue Graph" to see messages

  Double click on message to see message details.



Profiling - Intel Trace Collector/Analyzer

• The Intel Trace Collector and Analyzer gives a myriad performance profiling
information including a "timeline" view of the MPI activity of each process as well as
summary performance information.

• Setup your environment by doing

module load intel-itc module load intel-ita

• Link code with:
-L$VT_ROOT -lVT -lmpi -ldwarf -lelf -lvtunwind -lnsl -lm -lpthread for
Fortran and C code.

• Run code as normal. For an executable a.out, a number of files a.out.stf.* will be
created.

• Then run
traceanalyzer a.out.stf

• See the software web page for further details.

Profiling - Jumpshot

• The Jumpshot profiler gives a "timeline" view of the MPI activity of each process as well
as summary performance information.

• Setup your environment by doing

module load jumpshot

• Link code with:
-L$JUMPSHOT_LIB -lmpe_f2cmpi -llmpe -lmpe -lmpi for Fortran code and
-L$JUMPSHOT_LIB -llmpe -lmpe -lmpi -lm for C code.

• Run code as normal. A file Unknown.clog will be created in the same directory as the
executable

• Then do
jumpshot Unknown.clog

• The first step will be to convert the clog file to slog2 format.
• See the software web page for further details.



Communication Modes

Synchronous mode:

Synchronous send requires a matching receive before it can return.

Buffered mode:

Buffered send requires the user to provide buffer space with
MPI_Buffer_attach(type buf(*), integer size) (there is an analogous detach
command). The MPI system may provide some buffer space by default but not
standard. Returns when message is copied in to buffer.

Standard mode:

Standard send can be either synchronous or buffered using a system provided
buffer and will possibly be a hybrid depending on the message size. Cannot rely
on either behaviour being used. Programs that assume the receiver has received
the message when the send returns or rely on having sufficient system buffering
space to complete are "unsafe". A lot of programs do this though.

Ready mode:

Ready sends only used when you absolutely know the receiver is ready (like
when it makes a request).



MPI vs OpenMP

MPI

Pros:

• Very portable
• Requires no special compiler
• Requires no special hardware but can make use of high performance hardware
• Very flexible -- can handle just about any model of parallelism
• No shared data! (You dont have to worry about processes "treading on each other's data"

by mistake.)
• Can download free libraries for your Linux PC!
• Forces you to do things the "right way" in terms of decomposing your problem.

Cons:

• All-or-nothing parallelism (difficult to incrementally parallelise existing serial codes)
• No shared data! Requires distributed data structures
• Could be thought of assembler for parallel computing -- you generally have to write

more code
• Partitioning operations on distributed arrays can be messy.

OpenMP

Pros:

• Incremental parallelism -- can parallelize existing serial codes one bit at a time
• Quite simple set of directives
• Shared data!
• Partitioning operations on arrays is very simple.

Cons:

• Requires proprietary compilers
• Requires shared memory multiprocessors
• Shared data!
• Having to think about what data is shared and what data is private
• Cannot handle models like master/slave work allocation (yet)
• Generally not as scalable (more synchronization points)
• Not well-suited for non-trivial data structures like linked lists, trees etc


