On the origin of families of quarks and leptons and their mass matrices with the approach unifying spins and charges. Prediction for the observable fourth family?

N.S. Mankoč Borštnik
University of Ljubljana

Collaborators in this project, which has started almost 15 years ago:
A. Borštnik Bračič, G. Bregar, M. Breskvar, D. Lukman, H.B.
Nielsen, Jože Vrabec, others
I am trying to answer the open questions of the Standard model within the **Approach unifying spins and charges**, in this talk in particular those which are connected with the appearance of families and the Yukawa couplings and might be with the **dark matter candidates**;

1. Why do only the left handed spinors carry the weak charge, while the right handed are weak chargeless?
2. Where do families of quarks and leptons come from?
3. What does determine the strength of the Yukawa couplings and accordingly the weak scale?
4. Are among the members of the families the candidates for the dark matter?
Approach unifying spins and charges offers the answers to these questions:

1. The representation of one Weyl spinor of the group SO(1,13), manifests the left handed weak charged quarks and leptons and the right handed weak chargeless quarks and leptons.

2. It is a part of the simple starting Lagrange density which plays the role of the Higgs field of the Standard model. There are two kinds of the Clifford algebra objects. One kind takes care of the spin and the charges. The other kind generates families.
I assume **two kinds of the Clifford algebra objects:**
the Dirac γ^a operators, and
the additional one $\tilde{\gamma}^a$

\[
\begin{align*}
\{\gamma^a, \gamma^b\}_+ &= 2\eta^{ab} = \{\tilde{\gamma}^a, \tilde{\gamma}^b\}_+, \\
\{\gamma^a, \tilde{\gamma}^b\}_+ &= 0, \\
\tilde{\gamma}^a B &= i(-)^{n_B} B \gamma^a,
\end{align*}
\]

\[
\begin{align*}
S^{ab} &:= (i/4)(\gamma^a\gamma^b - \gamma^b\gamma^a), \\
\tilde{S}^{ab} &:= (i/4)(\tilde{\gamma}^a\tilde{\gamma}^b - \tilde{\gamma}^b\tilde{\gamma}^a), \\
\{S^{ab}, \tilde{S}^{cd}\}_- &= 0.
\end{align*}
\]
I assume a simple action for a spinor which carry in \(d = (1 + 13) \) only a spin (no charges)

\[
S = \int d^d x \, \mathcal{L}
\]

\[
\mathcal{L} = \frac{1}{2} (E \bar{\psi} \gamma^a p_{0a} \psi) + h.c.
\]

\[
p_{0a} = f^\alpha_a p_{0\alpha}, \quad p_{0\alpha} = p_\alpha - \frac{1}{2} S^{ab} \omega_{ab\alpha} - \frac{1}{2} \tilde{S}^{ab} \tilde{\omega}_{ab\alpha}
\]

\[
\mathcal{L} = \bar{\psi} \gamma^m (p_m - \sum_{A,i} g^A \tau^{Ai} A^A_{m}) \psi + \left\{ \sum_{s=7,8} \bar{\psi} \gamma^s p_{0s} \psi \right\} + \text{the rest}
\]

\[
\tau^{Ai} = \sum_{a,b} c^{Ai}_{ab} S^{ab},
\]

\[
\{\tau^{Ai}, \tau^{Bj}\} = i \delta^{AB} f^{Aijk} \tau^{Ak}
\]
\[A = 1 \quad U(1) \text{ hyper charge} \quad i = \{1\} \quad \text{usual not. } Y, \]
\[A = 2 \quad SU(2) \text{ weak charge} \quad i = \{1, 2, 3\} \quad \text{usual not. } \tau^i, \]
\[A = 3 \quad SU(3) \text{ colour charge} \quad i = \{1, \ldots , 8\} \quad \text{usual not. } \lambda^i/2, \]
Yukawa couplings

\[-\mathcal{L}_Y = \psi^\dagger \gamma^0 \gamma^s p_{0s} \psi = \psi^\dagger \gamma^0 \{ (+) \ p_{0+} + (-) \ p_{0-} \} \psi,\]

\[p_{0\pm} = (p_7 \mp i \ p_8) - \frac{1}{2} S^{ab} \omega_{ab\pm} - \frac{1}{2} \tilde{S}^{ab} \tilde{\omega}_{ab\pm},\]

\[\omega_{ab\pm} = \omega_{ab7} \mp i \ \omega_{ab8},\]

\[\tilde{\omega}_{ab\pm} = \tilde{\omega}_{ab7} \mp i \ \tilde{\omega}_{ab8} \]

We put \(p_7 = p_8 = 0\).
Our technique to represent spinors and work elegantly with them

both with H.B. Nielsen.

\[
\begin{align*}
 ab (\pm i) : & = \frac{1}{2}(\gamma^a \mp \gamma^b), \\
 [\pm i] & = \frac{1}{2}(1 \pm \gamma^a \gamma^b)
\end{align*}
\]
for \(\eta^{aa} \eta^{bb} = -1 \),

\[
\begin{align*}
 ab (\pm) : & = \frac{1}{2}(\gamma^a \pm i \gamma^b), \\
 [\pm] & = \frac{1}{2}(1 \pm i \gamma^a \gamma^b),
\end{align*}
\]
for \(\eta^{aa} \eta^{bb} = 1 \)

with \(\gamma^a \) which are the usual Dirac operators
\[S^{ab} (k) = \frac{k^{ab}}{2} (k), \quad S^{ab} [k] = \frac{k^{ab}}{2} [k], \]
\[\tilde{S}^{ab} (k) = \frac{k^{ab}}{2} (k), \quad \tilde{S}^{ab} [k] = -\frac{k^{ab}}{2} [k]. \]
\[\gamma^a (k) = \eta^{aa} [-k], \quad \gamma^b (k) = -ik [-k], \]
\[\gamma^a [k] = (-k), \quad \gamma^b [k] = -ik \eta^{aa} (-k) \]
\[\tilde{\gamma}^a (k) = -i \eta^{aa} [k], \quad \tilde{\gamma}^b (k) = -k [k], \]
\[\tilde{\gamma}^a [k] = i [k], \quad \tilde{\gamma}^b [k] = -k \eta^{aa} (k). \]

\[\gamma^a \text{ transform } (k) \text{ into } [-k], \quad \tilde{\gamma}^a \text{ transform } (k) \text{ into } [k]. \]
\[(ab\ ab \ (k)(k) = 0, \ (k)(-k) = \eta^{aa} [k], \ [k][k] = [k], \]
\[(ab\ ab \ [k][-k] = 0, (k)[k] = 0, \ k = (k), \]
\[(ab\ ab \ (k)[-k] = (k), \ [k](-k) = 0.\]

\[(ab\ ab \ (\tilde{\gamma})(\tilde{\gamma}) = 0, \ (\tilde{\gamma})(\gamma)(k) = -i\eta^{aa} [k], \]
\[(ab\ ab \ (\tilde{\gamma})(\gamma)(k)[k] = i(k), \ (\tilde{\gamma})(\gamma)(k)[-k] = 0.\]

\[\frac{ab}{(\pm i)} = \frac{1}{2}(\tilde{\gamma}^a \pm \tilde{\gamma}^b), \ (\pm 1) = \frac{1}{2}(\tilde{\gamma}^a \pm i\tilde{\gamma}^b),\]

N.S. Mankoč Borštnik University of Ljubljana
Families of quarks and leptons
Cartan subalgebra set of the algebra S^{ab}

$$S^{03}, S^{12}, S^{56}, S^{78}, S^{9\ 10}, S^{11\ 12}, S^{13\ 14}.$$

A left handed ($\Gamma^{(1,13)} = -1$) eigen state of all the members of the Cartan subalgebra

$$\begin{equation}
\langle \psi | = \frac{1}{2^7}(\gamma^0 - \gamma^3)(\gamma^1 + i\gamma^2)(\gamma^5 + i\gamma^6)(\gamma^7 + i\gamma^8)(\gamma^9 + i\gamma^{10})(\gamma^{11} - i\gamma^{12})(\gamma^{13} - i\gamma^{14})|\psi\rangle.
\end{equation}$$
The eightplet (the representation of $SO(1, 7)$) of quarks of a particular color charge ($\tau^{33} = 1/2$, $\tau^{38} = 1/(2\sqrt{3})$, and $\tau^{41} = 1/6$)
\(\tilde{S}^{ab} \) generate families.

\[
\tilde{S}^{03} = \frac{i}{2} \left[(+i)(\tilde{+}) + (-i)(\tilde{+}) + (+i)(\tilde{-}) + (-i)(\tilde{-}) \right]
\]

Both vectors bellow describe a right handed \(u \)-quark of the same colour.

\[
\begin{array}{cccc}
03 & 12 \\
(-i)(-) & (+i)(+) & (+)(+) & (+)(-)(-)
\end{array}
\]

\[
\begin{array}{cccc}
03 & 12 & 56 & 78 \\
(+i)(+) & (+)(+) & (+)(-)(-)
\end{array}
\]

\[
[+i][+] \parallel (+)(+) \parallel (+)(-)(-)
\]

\[
(\pm i) = \frac{1}{2} (\tilde{\gamma}^a \mp \tilde{\gamma}^b), (\pm 1) = \frac{1}{2} (\tilde{\gamma}^a \pm i\tilde{\gamma}^b),
\]
Break of symmetries

\[\begin{align*}
\text{SO}(1, 13) & \downarrow \\
\text{SO}(1, 7) \times \text{SU}(3) \times \text{U}(1) & \downarrow \\
\text{SO}(1, 7) \times \text{SU}(3) \times \text{U}(1) & \downarrow \\
\text{SO}(1, 3) \times \text{SU}(2) \times \text{U}(1) & \\
\text{SO}(1, 3) \times \text{U}(1) \times \text{SU}(3) & \\
\end{align*} \]
Yukawa couplings:

\[
\mathcal{L}_Y = \psi^\dagger \gamma^0 \left\{ \begin{array}{c}
78
\begin{align*}
&\left(\sum_{y=Y,Y'} yA_y^+ + \frac{-1}{2} \sum_{(ab)} \tilde{S}^{ab} \tilde{\omega}_{ab+} \right) + \\
&\left(\sum_{y=Y,Y'} yA_y^- + \frac{-1}{2} \sum_{(ab)} \tilde{S}^{ab} \tilde{\omega}_{ab-} \right) \\
&78
\begin{align*}
&\sum_{\{(ac)(bd)\},k,l} \left(\tilde{k})(\tilde{l} \right) \tilde{A}^{kl}_+((ac),(bd)) \right) + \\
&\sum_{\{(ac)(bd)\},k,l} \left(\tilde{k})(\tilde{l} \right) \tilde{A}^{kl}_-((ac),(bd)) \right) \psi,
\end{align*}
\end{array} \right. \\
\right\}
\]

with \(k, l = \pm 1 \), if \(\eta^{aa} \eta^{bb} = 1 \) and \(\pm i \), if \(\eta^{aa} \eta^{bb} = -1 \), while

\(Y = \tau^{21} + \tau^{41} \) and \(Y' = -\tau^{21} + \tau^{41} \), \((ab),(cd), \cdots\) Cartan only.
We assume:

- Breaking symmetries from $SO(1,13)$ to $SO(1,7) \times U(1) \times SU(3)$ occurs at very high energy scale and leave very heavy all the families except one which is left massless.
- There are $2^{8/2-1} = 8$ families (the symmetry $SO(1,7)$ determines them).
- Two ways of breaking from $SO(1,7) \times U(1)$ to $SO(1,3) \times U(1)$ in the $\tilde{S}^{ab}\tilde{\omega}_{ab\pm}$ sector.
A. In the ordinary \((S^{ab}\omega_{ab\pm})\) sector \(S^{sa}\omega_{sa\pm}\), with \(s = 5, 6\) and \(a \neq 5, 6\), would contribute a term, which would transform \(u\)-quarks into \(d\)-quarks—which would mean that the mass term does not conserve the electromagnetic charge. We forbid such terms in the \(\tilde{S}^{ab}\omega_{ab\pm}\) sector as well.

Eight families decouple into two times four families, well separated in masses. We study properties of the lower energy four families with the assumption that mass matrices are real and symmetric (no CP is studied yet).
B. First we break in both sectors $SO(1,7) \times U(1)$ into $SO(1,3) \times SO(4) \times U(1)$ (by putting all $\omega_{am\pm}$ and $\tilde{\omega}_{am\pm}, m = 0, 1, 2, 3, a = 5, 6, 7, 8$ equal to zero), eight families decouple into two times four families.

Then we break $SO(4) \times U(1)$ in two successive breaks first into $SU(2) \times U(1)$ and then to $U(1)$.

The assumption that the first break occurs at much higher energy then the second one (which occurs at the weak scale) makes the two times four families well separated in masses. We then study the properties of the lower four families.
A. Four families of u_R (and correspondingly four octets which can be reached by $(k)(l)$), from the starting family all the rest can be reached by $\tilde{(k)}(\tilde{l})$,

\begin{align*}
I. & (+ i) (+) | (+) (+) \ | \ldots \\
& 03 \ 12 \ 56 \ 78 \\
II. & [+ i] [+] | (+) (+) \ | \ldots \\
& 03 \ 12 \ 56 \ 78 \\
III. & [+ i] (+) | (+) [+] \ | \ldots \\
& 03 \ 12 \ 56 \ 78 \\
IV. & (+ i) [+] | (+) [+] \ | \ldots \\
& 03 \ 12 \ 56 \ 78
\end{align*}
The Yukawa couplings $-\mathcal{L}_Y = \psi^\dagger \gamma^0 \left\{ (+) p_{0+} + (-) p_{0-} \right\} \psi$, with $p_{0\pm}$ expressible in terms of $\omega_{ab\pm}$ (only the diagonal terms) and $\tilde{\omega}_{ab\pm}$ (all the non diagonal and also the diagonal terms) can be represented as

$$\begin{array}{|c|c|c|c|c|}
\hline
\alpha & I_R & II_R & III_R & IV_R \\
\hline
I_L & a_\alpha & \frac{\tilde{\omega}_{327\alpha} + \tilde{\omega}_{018\alpha}}{2} & \frac{\tilde{\omega}_{387\alpha} + \tilde{\omega}_{078\alpha}}{2} & \frac{\tilde{\omega}_{187\alpha}}{2} \\
\hline
II_L & \frac{\tilde{\omega}_{327\alpha} + \tilde{\omega}_{018\alpha}}{2} & a_\alpha + \left(\tilde{\omega}_{127\alpha} - \tilde{\omega}_{038\alpha} \right) & \frac{\tilde{\omega}_{187\alpha}}{2} & \frac{\tilde{\omega}_{387\alpha} - \tilde{\omega}_{078\alpha}}{2} \\
\hline
III_L & \frac{\tilde{\omega}_{387\alpha} + \tilde{\omega}_{078\alpha}}{2} & \frac{\tilde{\omega}_{187\alpha}}{2} & \frac{k_\alpha (\tilde{\omega}_{387\alpha} + \tilde{\omega}_{078\alpha})}{2} & \frac{k_\alpha}{2} \tilde{\omega}_{187\alpha} \\
\hline
IV_L & \frac{\tilde{\omega}_{187\alpha}}{2} & \frac{\tilde{\omega}_{387\alpha} - \tilde{\omega}_{078\alpha}}{2} & \frac{k_\alpha}{2} \tilde{\omega}_{187\alpha} & \frac{k_\alpha (\tilde{\omega}_{387\alpha} - \tilde{\omega}_{078\alpha})}{2} \\
\hline
\end{array}$$

N.S. Mankoč Borštnik University of Ljubljana
Families of quarks and leptons
Taking into account that experimental data for the known families suggest twice weakly coupled two and two families, we require that mass matrices have the shape

$$\begin{pmatrix} A & B \\ B & C = A + kB \end{pmatrix}. \quad (1)$$

with $k_u = -k_d$, $k_\nu = -k_e$, $\tilde{\omega}_{absu,\nu} = b_{absu,\nu} \tilde{\omega}_{absd,e}$, for $(abs) = (018)(078)(127)(387)$. There are 3 angles determining the diagonalization of the mass matrices, those for u related uniquely to those for d and those for ν related to those for e, which lead to
\[\tilde{\omega}_{018}^u = \frac{1}{2} \left[\frac{m_{u2} - m_{u1}}{\sqrt{1 + (a\eta)^2}} + \frac{m_{u4} - m_{u3}}{\sqrt{1 + (b\eta)^2}} \right], \]

\[\tilde{\omega}_{078}^u = \frac{1}{2} \left[\frac{a\eta (m_{u2} - m_{u1})}{\sqrt{1 + (a\eta)^2}} - \frac{b\eta (m_{u4} - m_{u3})}{\sqrt{1 + (b\eta)^2}} \right], \]

\[\tilde{\omega}_{127}^u = \frac{1}{2} \left[\frac{a\eta (m_{u2} - m_{u1})}{\sqrt{1 + (a\eta)^2}} + \frac{b\eta (m_{u4} - m_{u3})}{\sqrt{1 + (b\eta)^2}} \right], \]

\[\tilde{\omega}_{187}^u = \frac{1}{2\sqrt{1 + (k/2)^2}} \left[-\frac{m_{u2} - m_{u1}}{\sqrt{1 + (a\eta)^2}} + \frac{m_{u4} - m_{u3}}{\sqrt{1 + (b\eta)^2}} \right], \]

\[\tilde{\omega}_{387}^u = \frac{1}{2\sqrt{1 + (k/2)^2}} \left[(m_{u4} + m_{u3}) - (m_{u2} + m_{u1}) \right], \]

\[a_u = \frac{1}{2} \left(m_{u1} + m_{u2} - \frac{a\eta (m_{u2} - m_{u1})}{\sqrt{1 + (a\eta)^2}} \right), \]
Equivalently for d quarks, neutrinos and electrons. Here

$$a_{u,\nu} = A_{u,\nu}^l - \frac{1}{2} \tilde{\omega}_{038u,\nu} + \frac{1}{2} \left(\frac{k_{u,\nu}}{2} - \sqrt{1 + \left(\frac{k_{u,\nu}}{2} \right)^2} \right) \left(\tilde{\omega}_{078u,\nu} + \tilde{\omega}_{387u,\nu} \right),$$

and equivalently for the d-quarks and electrons.
No. of parameters 8, no. of data: 9

We use the Monte-Carlo program to fit—within the experimental accuracy—our free parameters $\tilde{\omega}_{abc}$ so that our mass matrices reproduce the experimental data.
We predict—in this very rough estimation because of several assumptions, we made—treating equivalently quarks and leptons

i. masses of the fourth family and
ii. mixing matrices.

N.S. Mankoč Borštnik University of Ljubljana

Families of quarks and leptons
We obtain:

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>d</th>
<th>ν</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-0.085</td>
<td>0.085</td>
<td>-1.25</td>
<td>1.254</td>
</tr>
<tr>
<td>$^a\eta$</td>
<td>-0.225</td>
<td>0.225</td>
<td>1.58</td>
<td>-1.584</td>
</tr>
<tr>
<td>$^b\eta$</td>
<td>0.420</td>
<td>-0.440</td>
<td>-0.162</td>
<td>0.162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>d</th>
<th>u/d</th>
<th>ν</th>
<th>e</th>
<th>ν/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\tilde{\omega}_{018}</td>
<td>$</td>
<td>21205</td>
<td>42547</td>
<td>0.498</td>
<td>10729</td>
</tr>
<tr>
<td>$</td>
<td>\tilde{\omega}_{078}</td>
<td>$</td>
<td>49536</td>
<td>101042</td>
<td>0.490</td>
<td>31846</td>
</tr>
<tr>
<td>$</td>
<td>\tilde{\omega}_{127}</td>
<td>$</td>
<td>50700</td>
<td>101239</td>
<td>0.501</td>
<td>37489</td>
</tr>
<tr>
<td>$</td>
<td>\tilde{\omega}_{187}</td>
<td>$</td>
<td>20930</td>
<td>42485</td>
<td>0.493</td>
<td>9113</td>
</tr>
<tr>
<td>$</td>
<td>\tilde{\omega}_{387}</td>
<td>$</td>
<td>230055</td>
<td>114042</td>
<td>2.017</td>
<td>33124</td>
</tr>
<tr>
<td>a^a</td>
<td>94174</td>
<td>6237</td>
<td></td>
<td>1149</td>
<td>1142</td>
<td></td>
</tr>
</tbody>
</table>
Masses for quarks

\[m_{u_i}/GeV = (0.0034, 1.15, 176.5, 285.2), \]
\[m_{d_i}/GeV = (0.0046, 0.11, 4.4, 224.0), \]

and the corresponding mixing matrix

\[
\begin{pmatrix}
0.974 & 0.223 & 0.004 & 0.042 \\
0.223 & 0.974 & 0.042 & 0.004 \\
0.004 & 0.042 & 0.921 & 0.387 \\
0.042 & 0.004 & 0.387 & 0.921
\end{pmatrix},
\]
Masses for leptons

\[m_{\nu_i}/\text{GeV} = (1 \cdot 10^{-12}, 1 \cdot 10^{-11}, 5 \cdot 10^{-11}, 84.0), \]
\[m_{e_i}/\text{GeV} = (0.0005, 0.106, 1.8, 169.2), \]

and the corresponding mixing matrix

\[
\begin{pmatrix}
0.697 & 0.486 & 0.177 & 0.497 \\
0.486 & 0.697 & 0.497 & 0.177 \\
0.177 & 0.497 & 0.817 & 0.234 \\
0.497 & 0.177 & 0.234 & 0.817
\end{pmatrix}.
\]

Both in agreement with the references

B. We let $SO(1, 7) \times U(1)$ break first to $SO(1, 3) \times SO(4) \times U(1)$ requiring that $\tilde{\omega}_{s m \pm} = 0$, with $s = 5, 6, 7, 8$; $m = 0, 1, 2, 3$.

The eight families break into two decoupled four families. At the break $SO(4) \times U(1)$ into $SU(2) \times U(1)$ (at some large scale) new fields \tilde{A}^Y_\pm and $\tilde{A}^{Y'}_\pm$ are formed:

$$
\tilde{A}^{23}_\pm = \tilde{A}^Y_\pm \sin \tilde{\theta}_2 + \tilde{A}^{Y'}_\pm \cos \tilde{\theta}_2,
$$

$$
\tilde{A}^{41}_\pm = \tilde{A}^Y_\pm \cos \tilde{\theta}_2 - \tilde{A}^{Y'}_\pm \sin \tilde{\theta}_2,
$$

the gauge fields of the new operators:

$$
\tilde{Y} = \tilde{\tau}^{41} + \tilde{\tau}^{23}, \quad \tilde{Y}' = \tilde{\tau}^{23} - \tilde{\tau}^{41} \tan \tilde{\theta}_2,
$$

with $\tilde{\tau}^{23} = \frac{1}{2}(\tilde{S}^{56} + \tilde{S}^{78})$, $\tilde{\tau}^{41} = -\frac{1}{3}(\tilde{S}^{910} + \tilde{S}^{1112} + \tilde{S}^{1314})$.

Small enough $\tilde{\theta}_2$ makes the two four families be well separated in masses. The same must happen in the S^{ab} sector.
At the weak scale $SU(2) \times U(1)$ breaks into $U(1)$ in both sectors.

In the \tilde{S}^{ab} sector new fields $\tilde{A}_\pm, \tilde{Z}_\pm$ appear

\begin{align*}
\tilde{A}_{\pm}^{13} &= \tilde{A}_\pm \sin \tilde{\theta}_1 + \tilde{Z}_\pm \cos \tilde{\theta}_1, \\
\tilde{A}_\pm^Y &= \tilde{A}_\pm \cos \tilde{\theta}_1 - \tilde{Z}_\pm \sin \tilde{\theta}_1,
\end{align*}

the gauge fields of

\begin{align*}
\tilde{Q} &= \tilde{\tau}^{13} + \tilde{Y} = \tilde{S}^{56} + \tilde{\tau}^{41}, \\
\tilde{Q}' &= -\tilde{Y} \tan^2 \tilde{\theta}_1 + \tilde{\tau}^{13},
\end{align*}

with $\tilde{e} = \tilde{g}^Y \cos \tilde{\theta}_1, \tilde{g}' = \tilde{g}^1 \cos \tilde{\theta}_1, \tan \tilde{\theta}_1 = \frac{\tilde{g}^Y}{\tilde{g}^1}$.
The new fields determine the mass matrices, which have the form

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>a_\pm</td>
<td>$\tilde{g}^m\frac{1}{\sqrt{2}}\tilde{A}\pm^{+N+}$</td>
<td>$-\tilde{g}^1\frac{1}{\sqrt{2}}\tilde{A}_\pm^{1+}$</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>$\tilde{g}^m\frac{1}{\sqrt{2}}\tilde{A}\pm^{+N+}$</td>
<td>$a_\pm + \frac{1}{2}\tilde{g}^m(\tilde{A}\pm^{3N-} + \tilde{A}\pm^{3N+})$</td>
<td>0</td>
<td>$-\tilde{g}^1\frac{1}{\sqrt{2}}\tilde{A}_\pm^{1+}$</td>
</tr>
<tr>
<td>III</td>
<td>$\tilde{g}^1\frac{1}{\sqrt{2}}\tilde{A}_\pm^{1-}$</td>
<td>0</td>
<td>$a_\pm + \tilde{e}\tilde{A}\pm + \tilde{g}'\tilde{Z}\pm$</td>
<td>$\tilde{g}^m\frac{1}{\sqrt{2}}\tilde{A}\pm^{+N+}$</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>$\tilde{g}^1\frac{1}{\sqrt{2}}\tilde{A}_\pm^{1-}$</td>
<td>$\tilde{g}^m\frac{1}{\sqrt{2}}\tilde{A}\pm^{-N+}$</td>
<td>$a_\pm + \tilde{e}\tilde{A}\pm + \tilde{g}'\tilde{Z}\pm$</td>
</tr>
</tbody>
</table>

The mass matrix for the lower four families of u-quarks ($-$) and d-quarks ($+$) is not assumed to be real and symmetric.

We parameterize

$$
\begin{pmatrix}
 a_\pm & b_\pm & -c_\pm & 0 \\
 b_\pm & a_\pm + d_{1\pm} & 0 & -c_\pm \\
 c_\pm & 0 & a_\pm + d_{2\pm} & b_\pm \\
 0 & c_\pm & b_\pm & a_\pm + d_{3\pm}
\end{pmatrix}
$$
Fitting these parameters with the Monte-Carlo program to the experimental data within the known accuracy and to the assumed values for the fourth family masses we get for the u-quarks the mass matrix

\[
\begin{pmatrix}
(9, 22) & (-150, -83) & 0 & (-306, 304) \\
(-150, -83) & (1211, 1245) & (-306, 304) & 0 \\
0 & (-306, 304) & (171600, 176400) & (-150, -83) \\
(-306, 304) & 0 & (-150, -83) & 200000
\end{pmatrix}
\]

and for the d-quarks the mass matrix

\[
\begin{pmatrix}
(5, 11) & (8.2, 14.5) & 0 & (174, 198) \\
(8.2, 14.5) & (83, 115) & (174, 198) & 0 \\
0 & (174, 198) & (4260, 4660) & (8.2, 14.5) \\
(174, 198) & 0 & (8.2, 14.5) & 200000
\end{pmatrix}
\]
This corresponds to the following values for the masses of the u and the d quarks:

$$m_{u_i}/\text{GeV} = (0.005, 1.220, 171., 215.),$$
$$m_{d_i}/\text{GeV} = (0.008, 0.100, 4.500, 285.),$$

and the mixing matrix for the quarks:

$$
\begin{pmatrix}
-0.974 & -0.226 & -0.00412 & 0.00218 \\
0.226 & -0.973 & -0.0421 & -0.000207 \\
0.0055 & -0.0419 & 0.999 & 0.00294 \\
0.00215 & 0.000414 & -0.00293 & 0.999
\end{pmatrix}.
Concluding remarks

- We started with a simple Lagrange density suggested by the approach unifying spins and charges with one Weyl spinor in $d = 1 + 13$, which carries only the spin (no charges) and interacts with only the gravity through vielbeins and the two kinds of the spin connection fields, which are the gauge fields of S^{ab} and \tilde{S}^{ab}, respectively.

- There are S^{ab}, which determine in $d = (1 + 3)$ the spin and all the charges. One Weyl spinor representation includes (if analyzed with respect to the Standard model groups) the left handed weak charged quarks and leptons and the right handed weak chargeless quarks and leptons.

- \tilde{S}^{ab} generate an even number of families.
It is a part of a simple starting action which manifests as Yukawa couplings of the Standard model
\[\psi^\dagger \gamma^0 \gamma^s p_{0s} \psi, \ s = 7, 8, \text{ with} \]
\[p_{0s} = -\frac{1}{2} S^{ab} \omega_{abs} - \frac{1}{2} \tilde{S}^{ab} \tilde{\omega}_{abs} \]
contributing to diagonal and off diagonal elements of mass matrices.

Making assumptions about possible ways of breaking symmetries, each of the two assumed ways leads at "low energy sector" to four times four mass matrices for four families of quarks and leptons, two by two weakly coupled and all three also weakly coupled to the fourth one.
The way A. of breaking symmetries leads to the masses of the fourth family in agreement with the experimental data, predicting that the fourth family appears at low enough energies to be measured with new accelerators. The three families are weakly coupled to the fourth one.

The way B., although leading to mass matrices with only two off diagonal elements for each type of quarks and leptons, has too many free parameters to predict the masses of the fourth family. For chosen masses of the fourth family, however, the way B. predicts the couplings of the fourth to the first three families. Letting the fourth family mass growing, the fourth family very slowly decouples from the first three. The way B. also predicts, for example, the changed values for $|V_{31}|/|V_{32}| = 0.128 - 0.149$, acceptable since four instead of three families at weak scale contribute to this value.
The higher four families might be the candidates for the dark matter in both proposed ways. Since as I have learned here: much heavier quarks lead to much heavier nuclei and to different reionization processes and accordingly to different density distributions as the ordinary quarks.

Which one of the two studied ways (if any of these two) is the right way? To answer this question we should go beyond the tree level.

Is the Approach unifying spins and charges the right way to understand the Yukawa couplings and accordingly going beyond the Standard model?
<table>
<thead>
<tr>
<th>α</th>
<th>I_R</th>
<th>II_R</th>
<th>III_R</th>
<th>IV_R</th>
<th>V_R</th>
<th>VI_R</th>
<th>VII_R</th>
<th>$VIII_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_L</td>
<td>XXXX</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>0</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
</tr>
<tr>
<td></td>
<td>((03),(12))</td>
<td>((56),(78))</td>
<td></td>
<td>((03),(78))</td>
<td>((12),(56))</td>
<td>((3),(56))</td>
<td>((12),(78))</td>
<td>((12),(78))</td>
</tr>
<tr>
<td>II_L</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>XXXX</td>
<td>0</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
</tr>
<tr>
<td></td>
<td>((03),(12))</td>
<td></td>
<td>((56),(78))</td>
<td>((12),(78))</td>
<td>((3),(56))</td>
<td>((12),(56))</td>
<td>((3),(56))</td>
<td>((12),(78))</td>
</tr>
<tr>
<td>III_L</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>0</td>
<td>XXXX</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
</tr>
<tr>
<td></td>
<td>((56),(78))</td>
<td></td>
<td></td>
<td>((03),(12))</td>
<td>((3),(56))</td>
<td>((12),(56))</td>
<td>((3),(56))</td>
<td>((12),(78))</td>
</tr>
<tr>
<td>IV_L</td>
<td>0</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>XXXX</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{--}$</td>
</tr>
<tr>
<td></td>
<td>((56),(78))</td>
<td>((03),(12))</td>
<td></td>
<td>((12),(56))</td>
<td>((3),(56))</td>
<td>((3),(56))</td>
<td>((3),(56))</td>
<td>((3),(56))</td>
</tr>
<tr>
<td>V_L</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>XXXX</td>
<td>0</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
</tr>
<tr>
<td></td>
<td>((03),(78))</td>
<td></td>
<td>((12),(78))</td>
<td>((3),(56))</td>
<td></td>
<td>((56),(78))</td>
<td>((3),(56))</td>
<td>((56),(78))</td>
</tr>
<tr>
<td>VI_L</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>0</td>
<td>XXXX</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{--}$</td>
</tr>
<tr>
<td></td>
<td>((12),(56))</td>
<td>((03),(12))</td>
<td>((12),(78))</td>
<td>((3),(78))</td>
<td></td>
<td></td>
<td>((3),(12))</td>
<td></td>
</tr>
<tr>
<td>VII_L</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>XXXX</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>((03),(56))</td>
<td>((12),(56))</td>
<td>((12),(78))</td>
<td>((3),(78))</td>
<td></td>
<td>((56),(78))</td>
<td>((3),(12))</td>
<td></td>
</tr>
<tr>
<td>$VIII_L$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{++}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>$-\tilde{\Lambda}^{--}$</td>
<td>0</td>
<td>XXXX</td>
</tr>
<tr>
<td>I$_R$</td>
<td>03 12 56 78 $(+i)(+)(+)(+)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I$_{IR}$</td>
<td>03 12 56 78 [+]+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III$_R$</td>
<td>03 12 56 78 $(+i)(+)[++]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV$_R$</td>
<td>03 12 56 78 [+][++]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V$_R$</td>
<td>03 12 56 78 +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI$_R$</td>
<td>03 12 56 78 $(+i)[++]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII$_R$</td>
<td>03 12 56 78 +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII$_R$</td>
<td>03 12 56 78 $(+i)[+][++]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>I_R</td>
<td>II_R</td>
<td>III_R</td>
<td>IV_R</td>
<td>V_R</td>
<td>VI_R</td>
<td>VII_R</td>
<td>$VIII_R$</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>I_L</td>
<td>XXXX</td>
<td>$-\tilde{A}^{++}_+(03),(12)$</td>
<td>$\tilde{A}^{++}_+(56),(78)$</td>
<td>0</td>
<td>$\tilde{A}^{++}_+(03),(78)$</td>
<td>$-\tilde{A}^{++}_+(12),(56)$</td>
<td>$\tilde{A}^{++}_+(03),(56)$</td>
<td>$-\tilde{A}^{++}_+(12),(78)$</td>
</tr>
<tr>
<td>II_L</td>
<td>$-\tilde{A}^{--}_+(03),(12)$</td>
<td>XXXX</td>
<td>0</td>
<td>$\tilde{A}^{++}_+(56),(78)$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$-\tilde{A}^{--}_+(03),(56)$</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$-\tilde{A}^{--}_+(03),(78)$</td>
</tr>
<tr>
<td>III_L</td>
<td>$-\tilde{A}^{--}_+(56),(78)$</td>
<td>0</td>
<td>XXXX</td>
<td>$\tilde{A}^{--}_+(03),(12)$</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$-\tilde{A}^{--}_+(03),(78)$</td>
</tr>
<tr>
<td>IV_L</td>
<td>0</td>
<td>$-\tilde{A}^{--}_+(56),(78)$</td>
<td>$-\tilde{A}^{--}_+(03),(12)$</td>
<td>XXXX</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(78)$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$-\tilde{A}^{--}_+(03),(56)$</td>
</tr>
<tr>
<td>V_L</td>
<td>$\tilde{A}^{--}_+(03),(78)$</td>
<td>$-\tilde{A}^{--}_+(12),(78)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>XXXX</td>
<td>0</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
</tr>
<tr>
<td>VI_L</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$-\tilde{A}^{--}_+(03),(56)$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
<td>0</td>
<td>XXXX</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
</tr>
<tr>
<td>VII_L</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
<td>$-\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(78)$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$\tilde{A}^{--}_+(56),(78)$</td>
<td>$\tilde{A}^{--}_+(03),(12)$</td>
<td>XXXX</td>
<td>0</td>
</tr>
<tr>
<td>$VIII_L$</td>
<td>$\tilde{A}^{--}_+(12),(78)$</td>
<td>$-\tilde{A}^{--}_+(03),(78)$</td>
<td>$\tilde{A}^{--}_+(12),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(56)$</td>
<td>$\tilde{A}^{--}_+(03),(12)$</td>
<td>$\tilde{A}^{--}_+(56),(78)$</td>
<td>0</td>
<td>XXXX</td>
</tr>
<tr>
<td>I_R</td>
<td>03 12 56 78 $(+i)(+)$ $[-][−]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II_R</td>
<td>03 12 56 78 $[+i][+]$ $[−][−]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III_R</td>
<td>03 12 56 78 $(+i)(+)(−)(−)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV_R</td>
<td>03 12 56 78 $[+i][−]$ $−$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>03 12 56 78 $+i$ $−$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI_R</td>
<td>03 12 56 78 $(+i)[+]$ $[−]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII_R</td>
<td>03 12 56 78 $+i$ $[−]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VIII_R$</td>
<td>03 12 56 78 $(+i)[+]$ $−$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>