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Goal

• Make quantum computers easier to scale up

• Can we do uniform blind operations in the bulk and all the info processing on 
the boundary?

• Can we accommodate very bad measurements? 

NEWS & VIEWS

910 nature physics | VOL 4 | DECEMBER 2008 | www.nature.com/naturephysics

Gaussian noise through amplitude noise 
on one of the beams5 and through phase 
noise on both beams6, respectively. !e 
two groups have di"erent ways of detecting 
information for the gatekeeper and for the 
post-selection of the data, but in both cases 
they verify that the degree of entanglement 
of the distilled information stream is close 
in quality to that of the unperturbed pair 
of beams.

!ese proof-of-principle 
demonstrations show that the proper 

protocols can make use of entanglement in 
practical situations. !ere are many ways 
of generating the pairs of entangled beams, 
and the in#uence of the environment has 
to be analysed carefully and the distillation 
protocol has to be adapted to the individual 
situations. We will not $nd a universal 
solution that is optimal for all cases, but 
the impressive technical progress reported 
by Dong et al.5 and Hage et al.6 can give us 
con$dence that optical entanglement will 
be useful in practical applications.
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Optical atomic clocks are rapidly 
moving from being clocks of the 
future to present-day devices, mainly 

thanks to advances in laser cooling, laser 
stabilization and optical frequency combs1. 
Bene$ting from their high oscillation 
frequencies, the best optical atomic clocks 
are now ten to a hundred times more precise 
than their microwave counterparts, which 
have traditionally been the workhorse for 
precision-timing applications such as global 
positioning systems2,3. On page 954 of this 
issue, Tomoya Akatsuka, Masao Takamoto 
and Hidetoshi Katori report an important 
advance in this $eld, in which the most 
promising approach for a neutral-atom 
optical clock has been realized in full for 
the $rst time4. !ey have designed and 
demonstrated a three-dimensional lattice 
whose micrometre-sized compartments 
contain at most one atom (see Fig. 1), 
thereby suppressing contaminating atom–
atom interactions. 

At the heart of every optical atomic 
clock is a stabilized laser — ticking at 1015 
times per second — whose frequency is 
locked to that of an atomic transition1. 
Clocks di"er in the choice of transition and 
how the atoms are prepared. Historically 
there have been two main approaches to 
building atomic clocks: those based on 

trapped ions and those based on clouds of 
neutral atoms. For making the most accurate 
clocks, single trapped ions are attractive 
because they can be well isolated from 
external e"ects that perturb the intrinsic 
atomic (or ionic) frequency. Already 
two di"erent ion clocks have achieved 
uncertainties an order of magnitude below 
that of the best existing microwave clocks2. 
Neutral atoms on the other hand hold 
great appeal because they can be trapped 
and cooled in large numbers, o"ering the 
possibility of a high signal-to-noise ratio 

that can produce an extremely precise clock. 
Clouds of neutral atoms, however, have the 
troublesome property for clockmakers of 
causing unwanted frequency shi&s when 
individual atoms get too close together (that 
is, when they collide). 

In 2001, Katori and his co-workers 
proposed a solution to this problem by 
identifying optical transitions that could 
make use of the features of atoms con$ned 
in an optical lattice, which is an array of 
egg-carton-like potential wells formed by 
intersecting laser beams5–7. In this way 
one could hope to have large numbers of 
atoms con$ned in an ion-like environment. 
Several groups jumped on this idea, and 
today there exist more than half a dozen 
lattice clock experiments around the world. 
!is research has removed the main doubts 
about whether the lattices themselves could 
be engineered by appropriately controlling 
their wavelength and polarization, so as not 
to perturb the clock transition. And future 
prospects look extremely promising8,9. 
However, experiments thus far have used 
one-dimensional (1D) standing-wave 
light $elds that provide submicrometre 
con$nement in only one dimension. In this 
geometry, there are typically tens of atoms 
con$ned in each of several hundred disks, so 
the possibility of collision shi&s still exists. 

Akatsuka and colleagues4 investigate 
two solutions to this problem. !e $rst is 
to continue the use of 1D lattices, which 
are comparatively easy to handle, but to 
load them with ultracold fermionic atoms, 
which, by the laws of quantum statistics, are 

The demonstration of an optical clock in which individual atoms are confined in a 
three-dimensional optical lattice moves us closer to the atomic clockmaker’s dream: tens 
of thousands of isolated atoms that work in parallel.

OPTICAL LATTICE CLOCKS

Keeping time in three dimensions 

Figure 1 Kept in isolation. Akatsuka et al.4 have built 
a clock consisting of some 100,000 atoms trapped 
at separate sites of an optical lattice (red), preventing 
signal-deteriorating collisions between them. 
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Outline

• Quantum error correction made unitary

• A choice of code:  Bacon-Shor QECC

• Error thresholds

- Unitary gate threshold:  pg=3.76 x 10-5

- Measurement and preparation threshold:  pp=pm=1/3

• An architecture using boundary control

• Summary & Outlook 

G. Paz-Silva, GKB, J. Twamley, Phys. Rev. Lett. 105, 100501 (2010)
G. Paz-Silva, GKB, J. Twamley, New J. Phys.  13, 013011 (2011)

G. Paz-Silva, GKB, J. Twamley, Phys. Rev.  A 80, 052318 (2009)
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• Stages of ideal circuit based QC

• Problem:  Real operations have errors and take time

Introduction
Methods: A tale of two codes

Conclusions
Extras

QEC & FT
Threshold in perspective

Motivation

A quantum computer is a collection of

i Preparation of states.

ii Unitary gates.

iii Measurement in some basis.

Paz-Silva, Macquarie University CQCT Workshop 2010

Introduction
Methods: A tale of two codes

Conclusions
Extras

QEC & FT
Threshold in perspective

Motivation

But real world operations have errors and take time...

Error rates −→ {pp, pg , pm}
Execution time −→ {tp, tg , tm}

The bigger the computation more accuracy we need ?!?

Errors tend to propagate !?!

X • X�������� X

Paz-Silva, Macquarie University CQCT Workshop 2010

Quantum error correction
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Problems with measurement

Introduction
Methods: A tale of two codes

Conclusions
Extras

QEC & FT
Threshold in perspective

Experiments in perspective

Typical pthreshold ∼ 10−2 − 10−6

For 9 qubit Bacon-Shor code3: pth = 1.2× 10−4

A fidelity ∼ 0.9998 is required for all operations!.

Current experiments: p ∼ 10−2 − 10−4

{preparation/gates/measurement}= different values 4

3Aliferis and Cross, PRL 98, 220502 (2007)
4Myerson et al, PRL 100, 200502; Benhelm et al. Nat. Phys. 4, 463 (2008)

Paz-Silva, Macquarie University CQCT Workshop 2010

Introduction
Methods: A tale of two codes

Conclusions
Extras

QEC & FT
Threshold in perspective

Measurements in perspective

In a 100 logical qubit quantum computer, e.g. 9-qubit Bacon-Shor
code, k = 4 levels of concatenation.

Physical qubits ∼ N × (9k + 2× 9k) = 1968300 ∼ 106

N × 3k = 8100 ∼ 103 − 104 simultaneous and
distinguishable measurements at every EC step.

Key issues: lack of space, time, ...

Paz-Silva, Macquarie University CQCT Workshop 2010

pm~2x10-3 ion traps, 
3x10-2 quantum dots 
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Problems with measurement

• Computations of threshold usually assume

- all error rates are the same:

- all operation times are the same:

- but in many systems measurements are slow and very faulty 

• Slow measurements can be allowed during error correction by compensating 
with rotated Pauli frame

• Faulty unitary gates can be improved using dynamical decoupling strategies

- doesn’t work for measurement step

• Goal to find a way to accommodate slow and noisy measurements/preparation 
with small impact to unitary gate threshold value

pg = pp = pm

tg = tp = tm

DiVencenzo and Aliferis, PRL 98, 020501 (2007)

5

To put this result in perspective, notice that p(g) = 1.39×10−6 is not a threshold value but the required value such that effective
preparation and gate error rates are sensibly below our threshold (0.75× pthresh). In comparison, under the same assumptions
the best known result [3] implies that quantum computing is possible, with reasonable overhead, when p(p,g,m) ∼ 9.5× 10−5.
So the price we pay to push measurement and error rates within reach of current technology (an improvement of three and two
orders of magnitude respectively), is demanding roughly two orders of magnitude more stringent gate error rates. The result is
even more significant if one considers recent results which show that arbitrarily accurate unitary gates (and not measurement
and preparation) can, in principle, be achieved via open system control strategies [10]. Furthermore note that the required
measurement and preparation error rates have already been reported: in trapped ions [4], p(m) = 2.3× 10−3 while in quantum
dots [5], p(m) = 3×10−2.

We point out that the threshold value for gates computed here is by no means tight as we wanted to keep calculations simple.
We have overcounted malignant pairs of locations, and certainly the design of our circuits may not be the optimal one in terms of
error locations, thus in principle the threshold can be improved. On the other hand, restricting ourselves to two-qubit interactions
only, and decomposing TOFFOLI gates into one and two qubit gates degrades the gate and preparation threshold value to
2.69×10−5. Also restricting to nearest-neighbor only interactions will degrade the threshold value [19]. In our circuits ancillas
can be prepared offline and we have been careful to limit measurement only to when the data is encoded (at the highest level of
concatenation), thus physical systems with slow measurement or preparation are allowed.

In conclusion, we have shown that measurement-free QEC is viable, considerably relaxing the time and error rate constraints
on preparation and measurement operations, and pushing them within reach of current technology, while yielding only a small
penalty to the gate threshold. This small penalty seems even less relevant if one considers recent results showing that arbitrarily
accurate unitary gates can, in principle, be achieved using open system control [10]. Those results complement the methods
developed here and bring fault-tolerant quantum computing closer to reality.

Acknowledgments.- We acknowledge valuable discussions with P. Aliferis, D. Bacon, and D. Lidar. GAPS acknowledges
support from a Macquarie University Research Excellence award and CQCT.
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A QC with bad measurement

Introduction
Methods: A tale of two codes

Conclusions
Extras

UQEC
Clifford operations
Magic states
Algorithmic Cooling
Threshold

What does a Quantum Computer look like?

Paz-Silva, Macquarie University CQCT Workshop 2010

Monday, 31 January 2011



Removing measurement from QEC

• Measurement based syndrome extraction and correction

• Coherent version

Introduction
Methods: A tale of two codes

Results
Conclusions

Extras

Step 1: Removing measurements from QEC

|Ψ�� • Recovery |Ψ0�

|ancilla0� Synd ��������S • |ancilla��
(a)

|Ψ�� • Recovery |Ψ0�

|ancilla0� USynd • |ancilla��
(b)

Figure: (a) Measurement assisted QEC (standard approach) and (b)
Coherent feedback QEC (UQEC)–uncharted area.

G. A. Paz-Silva, G. K. Brennen, and J. Twamley Fault-tolerance with slow and noisy measurement & preparation. arXiv:1002.1536
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Unitary QEC

• Quantum repetition (QR) code

• A majority voter:  the       gate (version          ) 

- Corrects one bit flip error

M

Introduction
Methods: A tale of two codes

Results
Conclusions

Extras

A toy model: Quantum repetition (QR) code

|φ� = a |000� + b |111�

(X )� |φ� • • �������� |φ�
|000� �������� R �������� •

|000� �������� R2 �������� •

M gate: Majority voting gadget. Exists for larger QR codes, and
qudits.
R: cyclic rotation of qubits.

G. A. Paz-Silva, G. K. Brennen, and J. Twamley Fault-tolerance with slow and noisy measurement & preparation. arXiv:1002.1536

Introduction
Methods: A tale of two codes

Results
Conclusions

Extras

Quantum Error correction (QEC)

� Redundify and conquer!

a |0�+ b |1� → a |000�+ b |111�

� Thumb rule: More physical qubits per logical qubit → more
protection!

� Codes exist to protect against arbitrary errors. e.g.
Bacon-Shor code, Steane code.

� Schematic algorithm
i Unitarily extract syndrome info
ii Measure syndrome
iii Process the measurement result & unitarily correct

G. A. Paz-Silva, G. K. Brennen, and J. Twamley Fault-tolerance with slow and noisy measurement & preparation. arXiv:1002.1536
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FIG. 1: Measurement-free QEC routines for the QR and BS code. The inputs are
����0(k)

�
= |000�⊗3k−1

and
����+(k)

�
= |+++�⊗3k−1

. (a) The
M gate. An X-encoded majority voting gadget of level-(k + 1) of concatenation. Here all CNOTs are bitwise, i.e. each CNOT depicted
corresponds to three CNOT (k), and subscript R corresponds to a cyclic k-encoded rotation of the targets of the corresponding gate. In the
QR code the TOFFOLI gate depicted is bitwise. The M gate can also be designed for a Z-encoded quantum majority voting, with

����+(k)
�

ancillas and the obvious Hadamard conjugation of gates. When the need to distinguish them arises we shall denote X and Z encoded majority
votings M (X) and M (Z) respectively. (b) A subroutine acting on ancilla for processing error syndrome information extracted from the data.
The circuit shows one row, (V N )i(k), of the fully contracted exRec V N (k) = �N (k+1)� representing a collection of k-level protected gates
acting on row i of ancilla which take part in an EC(k+1) step. Note that in this circuit the output top lines are discarded so no EC gadget must
protect them. With this, the exRec corresponding to N at degree of concatenation k is N (k) = EC(k)×∏i∈rows(V N )i(k− 1)×EC(k). In
our circuits �G(k)� denotes the implementation of gate G, in terms of level-(k−1) gates, without the prepended and appended EC(k) routines,
and W denotes a waiting gate. (c) Full error correction (EC) gadget for the BS code. Here, a TOFFOLI with � controls is a Z −TOFFOLI;
CX = ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j) is a set of transversal CNOTs, CX (±)

PR
= ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j±1) and CXPC

(±) = ∏3
i, j=1 CNOT (k)

(c,i, j±1),(t,i, j). The
control of the gates in boxes is always the top input of the gate. The last gate is a bTOFFOLI.

by (i) starting with a 3× 3 array of |0�, and (ii) executing a M (Z) in every row. (II) Clifford group generators: CNOT,H,Z1/2:
The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
be implemented using the circuit in Fig. (2(a)), provided one can prepare a logical ancilla in |±iL� = (|0L�± i |1L�)/

√
2. Since

the Z1/2 gate is not part of the EC routines, it is only needed at the highest level of concatenation. Furthermore, as it is the only
complex gate, it can be shown that by always using the same logical ancilla prepared in |0L�= 1/

√
2(|+iL�+ |−iL�) to activate the

circuit in Fig. (2(a)), then the entire quantum computation splits into two noninterfering paths (evolution by Ucomp and U∗
comp) and

the measurements of real, Hermitian operators at the end have the same expectation values as for evolution by Ucomp alone [17].
Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
measuring encoded logical operators can be achieved measuring only one row or column of the 9k ×9k encoding array.
Threshold calculation for Clifford operations.- We use the extended rectangle (exRec) method developed in [3] to compute the
threshold (see Supplementary Material for more details). An exRec of a gate is constructed by prepending and appending error
correction routines on the inputs and outputs. The exRec with the largest number of malignant pairs, i.e. the number of pairs of
faults which generate two or more errors in the data, will determine the threshold value. A quick inspection reveals that the largest
exRec is the one corresponding to the CNOT gate. Following [3], only at level k = 1 must one consider all elements: preparation
and gates (including waiting gates). At level k > 1, using contraction of exRecs, preparation locations can be omitted. This means

7

Figure 2. Measurement-free QEC routines for the QR and BS codes. The inputs
are |�0(k)� = |000�⊗3k−1

and |�+(k)� = | + ++�⊗3k−1
. (a) TheM-gate. An X-encoded

majority voting gadget of (k + 1)-level of concatenation. Here all CNOTs are
bitwise, i.e. each CNOT depicted corresponds to three CNOT(k), and subscript
R corresponds to a cyclic k-encoded rotation of the targets of the corresponding
gate. In the QR code, the TOFFOLI gate depicted is bitwise. The M-gate can
also be designed for a Z -encoded quantum majority voting, with |�+(k)� ancillas
and the obvious Hadamard conjugation of gates. When the need to distinguish
them arises, we shall denote X and Z encoded majority votings by M(X) and
M(Z), respectively. (b) A subroutine acting on ancillas for processing error
syndrome information extracted from the data. The circuit shows one row,
(VN )i(k), of the fully contracted exRec VN (k) representing a collection of
k-level protected gates acting on row i of ancillas which take part in an EC(k + 1)
step. Note that in this circuit the output top lines are discarded, so no EC
gadget must protect them. With this, the exRec corresponding to N at degree
of concatenation k is N (k) = EC(k) ×

�
i∈rows(VN )i(k − 1) × EC(k). In our

circuits, �G(k)� denotes the implementation of gate G, in terms of (k − 1)-level
gates, without the prepending or appending EC(k). (c) Full EC gadget for the BS
code. The orange and pink boxes represent the syndrome extraction stage. Here,
a TOFFOLI with � controls is a Z -TOFFOLI; CX =

�3
i, j=1 CNOT(k)

(c,i, j),(t,i, j)

is a set of transversal CNOTs, CX(±)
PR

=
�3

i, j=1 CNOT(k)
(c,i, j),(t,i, j±1) and CXPC

(±) =
�3

i, j=1 CNOT(k)
(c,i, j±1),(t,i, j). The control of the gates in boxes is always the top

input of the gate. The W gate is a wait (identity) gate, and the last gate on the
upper and the lower half is a transversal bTOFFOLI.

New Journal of Physics 13 (2011) 013011 (http://www.njp.org/)
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The     gate
• Correct a single bit flip error error

MIntroduction
Methods: A tale of two codes

Conclusions
Extras

M in action
UQEC for BS
UQEC for BS in action
|cat� state verification
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������
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�
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������
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������
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�
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�
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�

Paz-Silva, Macquarie University CQCT Workshop 2010
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QR code the TOFFOLI gate depicted is bitwise. The M gate can also be designed for a Z-encoded quantum majority voting, with

����+(k)
�

ancillas and the obvious Hadamard conjugation of gates. When the need to distinguish them arises we shall denote X and Z encoded majority
votings M (X) and M (Z) respectively. (b) A subroutine acting on ancilla for processing error syndrome information extracted from the data.
The circuit shows one row, (V N )i(k), of the fully contracted exRec V N (k) = �N (k+1)� representing a collection of k-level protected gates
acting on row i of ancilla which take part in an EC(k+1) step. Note that in this circuit the output top lines are discarded so no EC gadget must
protect them. With this, the exRec corresponding to N at degree of concatenation k is N (k) = EC(k)×∏i∈rows(V N )i(k− 1)×EC(k). In
our circuits �G(k)� denotes the implementation of gate G, in terms of level-(k−1) gates, without the prepended and appended EC(k) routines,
and W denotes a waiting gate. (c) Full error correction (EC) gadget for the BS code. Here, a TOFFOLI with � controls is a Z −TOFFOLI;
CX = ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j) is a set of transversal CNOTs, CX (±)

PR
= ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j±1) and CXPC

(±) = ∏3
i, j=1 CNOT (k)

(c,i, j±1),(t,i, j). The
control of the gates in boxes is always the top input of the gate. The last gate is a bTOFFOLI.

by (i) starting with a 3× 3 array of |0�, and (ii) executing a M (Z) in every row. (II) Clifford group generators: CNOT,H,Z1/2:
The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
be implemented using the circuit in Fig. (2(a)), provided one can prepare a logical ancilla in |±iL� = (|0L�± i |1L�)/

√
2. Since

the Z1/2 gate is not part of the EC routines, it is only needed at the highest level of concatenation. Furthermore, as it is the only
complex gate, it can be shown that by always using the same logical ancilla prepared in |0L�= 1/

√
2(|+iL�+ |−iL�) to activate the

circuit in Fig. (2(a)), then the entire quantum computation splits into two noninterfering paths (evolution by Ucomp and U∗
comp) and

the measurements of real, Hermitian operators at the end have the same expectation values as for evolution by Ucomp alone [17].
Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
measuring encoded logical operators can be achieved measuring only one row or column of the 9k ×9k encoding array.
Threshold calculation for Clifford operations.- We use the extended rectangle (exRec) method developed in [3] to compute the
threshold (see Supplementary Material for more details). An exRec of a gate is constructed by prepending and appending error
correction routines on the inputs and outputs. The exRec with the largest number of malignant pairs, i.e. the number of pairs of
faults which generate two or more errors in the data, will determine the threshold value. A quick inspection reveals that the largest
exRec is the one corresponding to the CNOT gate. Following [3], only at level k = 1 must one consider all elements: preparation
and gates (including waiting gates). At level k > 1, using contraction of exRecs, preparation locations can be omitted. This means
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and W denotes a waiting gate. (c) Full error correction (EC) gadget for the BS code. Here, a TOFFOLI with � controls is a Z −TOFFOLI;
CX = ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j) is a set of transversal CNOTs, CX (±)

PR
= ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j±1) and CXPC

(±) = ∏3
i, j=1 CNOT (k)

(c,i, j±1),(t,i, j). The
control of the gates in boxes is always the top input of the gate. The last gate is a bTOFFOLI.

by (i) starting with a 3× 3 array of |0�, and (ii) executing a M (Z) in every row. (II) Clifford group generators: CNOT,H,Z1/2:
The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
be implemented using the circuit in Fig. (2(a)), provided one can prepare a logical ancilla in |±iL� = (|0L�± i |1L�)/
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2. Since

the Z1/2 gate is not part of the EC routines, it is only needed at the highest level of concatenation. Furthermore, as it is the only
complex gate, it can be shown that by always using the same logical ancilla prepared in |0L�= 1/
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circuit in Fig. (2(a)), then the entire quantum computation splits into two noninterfering paths (evolution by Ucomp and U∗
comp) and

the measurements of real, Hermitian operators at the end have the same expectation values as for evolution by Ucomp alone [17].
Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
measuring encoded logical operators can be achieved measuring only one row or column of the 9k ×9k encoding array.
Threshold calculation for Clifford operations.- We use the extended rectangle (exRec) method developed in [3] to compute the
threshold (see Supplementary Material for more details). An exRec of a gate is constructed by prepending and appending error
correction routines on the inputs and outputs. The exRec with the largest number of malignant pairs, i.e. the number of pairs of
faults which generate two or more errors in the data, will determine the threshold value. A quick inspection reveals that the largest
exRec is the one corresponding to the CNOT gate. Following [3], only at level k = 1 must one consider all elements: preparation
and gates (including waiting gates). At level k > 1, using contraction of exRecs, preparation locations can be omitted. This means
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M gate. An X-encoded majority voting gadget of level-(k + 1) of concatenation. Here all CNOTs are bitwise, i.e. each CNOT depicted
corresponds to three CNOT (k), and subscript R corresponds to a cyclic k-encoded rotation of the targets of the corresponding gate. In the
QR code the TOFFOLI gate depicted is bitwise. The M gate can also be designed for a Z-encoded quantum majority voting, with
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ancillas and the obvious Hadamard conjugation of gates. When the need to distinguish them arises we shall denote X and Z encoded majority
votings M (X) and M (Z) respectively. (b) A subroutine acting on ancilla for processing error syndrome information extracted from the data.
The circuit shows one row, (V N )i(k), of the fully contracted exRec V N (k) = �N (k+1)� representing a collection of k-level protected gates
acting on row i of ancilla which take part in an EC(k+1) step. Note that in this circuit the output top lines are discarded so no EC gadget must
protect them. With this, the exRec corresponding to N at degree of concatenation k is N (k) = EC(k)×∏i∈rows(V N )i(k− 1)×EC(k). In
our circuits �G(k)� denotes the implementation of gate G, in terms of level-(k−1) gates, without the prepended and appended EC(k) routines,
and W denotes a waiting gate. (c) Full error correction (EC) gadget for the BS code. Here, a TOFFOLI with � controls is a Z −TOFFOLI;
CX = ∏3

i, j=1 CNOT (k)
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by (i) starting with a 3× 3 array of |0�, and (ii) executing a M (Z) in every row. (II) Clifford group generators: CNOT,H,Z1/2:
The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
be implemented using the circuit in Fig. (2(a)), provided one can prepare a logical ancilla in |±iL� = (|0L�± i |1L�)/

√
2. Since

the Z1/2 gate is not part of the EC routines, it is only needed at the highest level of concatenation. Furthermore, as it is the only
complex gate, it can be shown that by always using the same logical ancilla prepared in |0L�= 1/

√
2(|+iL�+ |−iL�) to activate the

circuit in Fig. (2(a)), then the entire quantum computation splits into two noninterfering paths (evolution by Ucomp and U∗
comp) and

the measurements of real, Hermitian operators at the end have the same expectation values as for evolution by Ucomp alone [17].
Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
measuring encoded logical operators can be achieved measuring only one row or column of the 9k ×9k encoding array.
Threshold calculation for Clifford operations.- We use the extended rectangle (exRec) method developed in [3] to compute the
threshold (see Supplementary Material for more details). An exRec of a gate is constructed by prepending and appending error
correction routines on the inputs and outputs. The exRec with the largest number of malignant pairs, i.e. the number of pairs of
faults which generate two or more errors in the data, will determine the threshold value. A quick inspection reveals that the largest
exRec is the one corresponding to the CNOT gate. Following [3], only at level k = 1 must one consider all elements: preparation
and gates (including waiting gates). At level k > 1, using contraction of exRecs, preparation locations can be omitted. This means
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acting on row i of ancilla which take part in an EC(k+1) step. Note that in this circuit the output top lines are discarded so no EC gadget must
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The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
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Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
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Xi ,1;ZL =
3�

i=1

Z1,i

Gauge operations:
Pairs of X in same row, Pairs of Z in same column.

G. A. Paz-Silva, G. K. Brennen, and J. Twamley Fault-tolerance with slow and noisy measurement & preparation. arXiv:1002.1536

• A [[9,1,3]] code:  encodes 1 logical qubit in 9 and corrects for 1 error

• Subsystem structure

13

we expect the idea of using quantum probes for many body
control will suggest new strategies for information processing
in strongly correlated states of matter.
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Appendix A: A subsystem code

The Hamiltonian Hcp differs from the 2D Ising type
model introduced in [3], namely: H

� = −J(∑x−links σxσx +
∑y−links(σxσx + σzσz)+ ∑z−links σzσz). However, both mod-
els possess the same subsystem structure. Stabilizer operators
are generated by the 2(n−1) members of the set {V

X

j
,V Z

j
}n−1

j=1
where the generators are adjacent planes of σx operators in the
x̂− ŷ plane and σz operators in the ŷ− ẑ plane:

V
X

i
=

n

∏
j,k=1

σx

i, j,kσx

i+1, j,k, V
Z

k
=

n

∏
i, j=1

σz

i, j,kσz

i, j,k+1.

The Hamiltonian Hcp can encode one qubit of information
in a subsystem of the total Hilbert space H

⊗n
3

2 . For clarity, we
recall the argument given in [3] for the subsystem structure of
the energy eigenspaces. It is understood by considering invari-
ant subspaces of the Hamiltonian with respect to three sets of
operators: L ,V ,T . The set T , which is a group, consists of
all products of Pauli operators consisting of an even number
of σx operators in each x̂− ŷ plane and an even number of σz

operators in each ŷ− ẑ plane. It is generated under multiplica-
tion by product operators, i.e.

T = �{σx

i, j,kσx

i+1, j,k,σx

i, j,kσx

i, j+1,k,σz

i, j,kσz

i, j+1,k,σ
z

i, j,kσz

i, j,k+1}�
(A1)

The Hamiltonian, in particular, is in the real span of T . The
stabilizer set V , also a group, is generated under multiplica-
tion as

V = �{V
X

k
,V Z

k
}n−1

k=1� (A2)

V is an abelian subgroup of T . Finally, the set L consists of
operators with an odd number of ŷ− ẑ plane operators L

X

i
=

∏n

j,k=1 σx

i, j,k and an odd number of x̂− ŷ plane operators L
Z

k
=

∏n

i, j=1 σz

i, j,k, i.e.

L = �{L
X

k
}�/�{V

X

k
}���{L

Z

i
}�/�{V

Z

i
}� (A3)

This set is clearly not a group (e.g. it has no identity element)
but L ∪V is. Note that ∀t ∈ T ,v ∈ V ,� ∈ L , the following
commutation relations hold vtv

−1 = t, t�t−1 = �.

We can partition the Hilbert space into ±1 eigenspaces of
the 2(n−1) independent stabilizer generators {V

X

k
,V Z

i
}:

H =⊕
vX ,vZ H

vX ,vZ (A4)

where v
X = (vX

1 ,vX

2 , . . . ,vX

n−1) is an n− 1 bit string of the
eigenvalues of V

X

k
and v

Z = (vZ

1 ,vZ

2 , . . . ,vZ

n−1) is an n− 1 bit
string of the eigenvalues of V

Z

k
. Because the Hamiltonian

Hcp ∈ spanRT , its eigenspaces are block diagonal in {v
X ,vZ}.

Furthermore, because all elements of L commute with ele-
ments of T , we further decompose the eigenspaces as

H
vX ,vZ = H

T

vX ,vZ ⊗H
L

vX ,vZ (A5)

Operators in L commute with T and V so they leave those
spaces invariant. In a given stabilizer eigenspace, any oper-
ator in L can be reduced to the simple product of one plane
operator L

X

1 and one plane operator L
Z

1 . Because n is odd these
operators anticommute: {L

X

1 ,LZ

1} = 0, hence they form a rep-
resentation of a two dimensional Clifford algebra. By dimen-
sion counting then: dimH T

vX ,vZ = 2n
3−2n+1 and dimH L

vX ,vZ = 2.
It is in the subspace L that a logical qubit can be stored. Fur-
thermore, the logical operators on the qubit subspace corre-
spond to single plane operators. Writing L

Z

1 L
X

1 = iL
Y

1 , the al-
gebra spanR{L

X

1 ,LY

1 ,LZ

1} then forms a representation of the
algebra su(2); i.e. they are the logical qubit operators.

There is another way to see the action of these op-
erators on the ground states of Hcp. Note that Hcp is
time reversal symmetric and the number of spin−1/2 par-
ticles in the system is n

3 (odd). Hence by Kramer’s The-
orem, each eigenspace has degeneracy which is a multi-
ple of 2. The eigenstates come in pairs (|λ�,✵|λ�) where
the anti-linear time reversal operator acts as ✵|λ� = KC |λ�
where C is the complex conjugation operation and K =
∏n

i, j,k=1(−iσy

i, j,k). Because the Hamiltonian is real, the
eigenstates can be chosen real such that any pair are given
by (|λ�,K|λ�). Now K = −∏n

i, j,k=1 σz

i, j,k ∏n

i, j,k=1 σx

i, j,k =

−[∏(n−1)/2
k=1 V

Z

2k
]LZ

1 [∏(n−1)/2
i=1 V

X

2i
]LX

1 . But in a given stabi-
lizer eigenspace H

vX ,vZ , the action of this operation is K =
−(∏(n−1)/2

i,k=1 v
X

2i
v

Z

2k
)LZ

1 L
X

1 . Restricting to the subspace v
X

i
=

v
Z

k
= 1∀i,k, we have K =−iL

Y

1 . This then defines (−i) times
the logical Y operation on that subspace. From the commuta-
tion relations the operators L

X

1 and L
Z

1 are the logical X and Z

operations respectively.
A logical CNOT operation can be done transversally be-

tween two code blocks. This follows by considering the action
of the CNOTi, j operation on the Pauli operators:

CNOTi, jXiCNOTi, j = XiXj, CNOTi, jZiCNOTi, j = Zi,

CNOTi, jXjCNOTi, j = Xj, CNOTi, jZ jCNOTi, j = ZiZ j,
(A6)

Hence, by the group homomorphism, the joint stabilizer
groups for the control I and target J logical qubits V ×V is
preserved under conjugation by CNOT⊗n

3
= CNOTI,J . This

is easily checked by noting that even numbers of planar L
X ,LZ

operators get mapped to even numbers of planar operators of

13

we expect the idea of using quantum probes for many body
control will suggest new strategies for information processing
in strongly correlated states of matter.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge conversations with D. Bacon,
H. P. Buchler, E. Demler, A. V. Gorshkov, M. Hafezi, L.
Ioffe. Work at Harvard is supported by NSF, ARO-MURI,
CUA, DARPA, AFOSR, and the Packard Foundation. Work
at Innsbruck is supported by the Austrian Science Foundation,
the EU under grants OLAQUI, SCALA, and the Institute for
Quantum Information.

Appendix A: A subsystem code

The Hamiltonian Hcp differs from the 2D Ising type
model introduced in [3], namely: H

� = −J(∑x−links σxσx +
∑y−links(σxσx + σzσz)+ ∑z−links σzσz). However, both mod-
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where the generators are adjacent planes of σx operators in the
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∏
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The Hamiltonian Hcp can encode one qubit of information
in a subsystem of the total Hilbert space H

⊗n
3

2 . For clarity, we
recall the argument given in [3] for the subsystem structure of
the energy eigenspaces. It is understood by considering invari-
ant subspaces of the Hamiltonian with respect to three sets of
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T = �{σx

i, j,kσx

i+1, j,k,σx

i, j,kσx

i, j+1,k,σz

i, j,kσz

i, j+1,k,σ
z

i, j,kσz

i, j,k+1}�
(A1)

The Hamiltonian, in particular, is in the real span of T . The
stabilizer set V , also a group, is generated under multiplica-
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3 (odd). Hence by Kramer’s The-
orem, each eigenspace has degeneracy which is a multi-
ple of 2. The eigenstates come in pairs (|λ�,✵|λ�) where
the anti-linear time reversal operator acts as ✵|λ� = KC |λ�
where C is the complex conjugation operation and K =
∏n

i, j,k=1(−iσy

i, j,k). Because the Hamiltonian is real, the
eigenstates can be chosen real such that any pair are given
by (|λ�,K|λ�). Now K = −∏n

i, j,k=1 σz

i, j,k ∏n

i, j,k=1 σx

i, j,k =

−[∏(n−1)/2
k=1 V

Z

2k
]LZ

1 [∏(n−1)/2
i=1 V

X

2i
]LX

1 . But in a given stabi-
lizer eigenspace H

vX ,vZ , the action of this operation is K =
−(∏(n−1)/2

i,k=1 v
X

2i
v

Z

2k
)LZ

1 L
X

1 . Restricting to the subspace v
X

i
=

v
Z

k
= 1∀i,k, we have K =−iL

Y

1 . This then defines (−i) times
the logical Y operation on that subspace. From the commuta-
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Clifford operations in BS code
• Transversal gates

• Z1/2  gate

- The only complex gate & is not transversal for BS code:  need ancilla state

- Fixed logical qubit at end of register prepared in                                         
and always use this to perform gate

- Entire computation spits into two paths

- Final computational observables A are Hermitian and can choose Real      

X Z CNOT H+ 90º rotation

3

����+(k)
�⊗3

CXPC
(−)

♦
����+(k)

�⊗3

C3N (Z)
♦

���+(k)
�⊗9

CX CXPC
(+)���Ψ(k+1)

�

CX CX (+)
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���0(k)

�⊗9

C3N (X)����0(k)
�⊗3

CX (−)
PR

•
����0(k)

�⊗3
•

FIG. 2: Full error correction (EC) gadget for the BS code.
Here, a TOFFOLI with � controls is a Z − TOFFOLI; CX =
∏3

i, j=1 CX (k)
(c,i, j),(t,i, j) is a set of transversal CNOTs, CX (±)

PR
=

∏3
i, j=1 CX (k)

(c,i, j),(t,i, j±1) is a set of transversal CNOTs with row-

permuted targets and CXPC
(±) = ∏3

i, j=1 CX (k)
(c,i, j),(t,i, j±1) is a set of

transversal CNOTs with column-permuted controls; and C3N (Z) =
∏i, j CN (Z,k)

(c,i, j),(t,1, j), C3N (X) = ∏i, j CN (X ,k)
(c,i, j),(t,i,1) are simultaneous

CN gates with shared targets and controls respectively(see Sec.A 3
for more details on propagation of errors in this step). Here

����0(k)
�

is

an X-basis majority voting and
����+(k)

�
corresponds to a Z-basis ma-

jority voting encoded k times. The controls of these gates is always
the top input of the gate. All gates are encoded with the exception of
the bTOFFOLI gate. Here W denotes a waiting gate. Note that the
execution time of a M gate is roughly half of the EC execution time,
and thus W can be omitted at higher levels (k > 1).

ingly to correct the error, however choose to execute a coher-
ent feedback as we want to avoid measurements in the QEC
gadget. We replace the protected TOFFOLI, by the combi-
nation of CN and a subsequent bitwise TOFFOLI, (denoted
bTOFFOLI), controlled by the classical strings targeted by the
CN gate. After the CN our ancillas are highly vulnerable to Z
errors; however note that they are not entangled with the data
and will only interact with it through bTOFFOLIs, thus such
errors are irrelevant to our protected data. Note that in the QR
code, all the gates used in M are transversal, and thus M is
a transversal QEC gadget for that code. For us, the M gate
will double as an error correction gadget for the quantum
repetition code (dropping the superfluous CN gates) and
as the building element for the Bacon Shor EC gadget. At
degree k of concatenation the TOFFOLI gates we are using
only need 3k targets and two sets of 3k controls. Motivated
by this, and exploiting the gauge structure of the code, we de-
fine CN (X) (and CN (Z)), gates for the BS code at level k of
concatenation, acting on |0L�(k)⊗

����0(k)
�

CN (X ,k)
c,t =

3k

∏
j=1

3k

∏
i=1

CNOT(c,i, j),(t,i,1) (3)

CN (Z,k)
c,t =

3k

∏
i=1

3k

∏
j=1

CNOT(c,1, j),(t,i, j) . (4)

|φL� • • eiπ/4Z1/2 |φL�
|+iL� �������� • |+iL�

(a)

|+L� • H •

|0L� Ũ Ũ f lip |φ0�
(b)

FIG. 3: (a) Circuit used to execute an encoded Z1/2 gate on an arbi-
trary input |φL�. To prepare the special ancilla required we use circuit
(b). In this circuit, |0L� = α |φ0�+ β |φ1�; Ũ

��φ j
�

= (−1) j ��φ j
�

and
Ũ f lip |φ0�= |φ1�. Note that making Ũ = iXZ and Ũ f lip = Z prepares
the desired |φ0�= |+iL�. Because the Z1/2 operation is only needed
at the highet level of concatenation one could alternative inject the
|+i� state using the circuit in Fig. (5).

where A(�,r,c) denotes gate A acting on the qubit in row r and
column c of logical qubit �. The (X) or (Z) version of the
gate is used depending on the correction subroutine in which
it is being used, e.g. to correct X-errors (as in Fig. (1)), we
use CN (X). This gate is essentially a CNOT between the two
codes, and at level-k is constructed as a CNOT would: the
input and output are protected with EC and M gadgets, from
level k to level 1, and uses the same number (9k) of physical
CNOTS, albeit with only 3k different targets (see Eq. (4)), to
execute the gate. Because EC is essentially a composition of
six M gates used to correct X and Z errors, then the number of
error prone locations is larger. It follows that a CN protected
gate is smaller than a CNOT protected gate in terms of the
number of pairs of error prone locations.

We are now ready to describe the remaining elements of
our Bacon-Shor code fault- tolerant scheme. Recall that for a
quantum computer we essentially need preparation, gates and
measurement.
Preparation of |0L� and |+L�states: (i) Starting with a 3× 3
array of |+�, and (ii) applying a M (X) in every column we can
prepare a |+L�. Similarly |0L� is obtained (i) starting with a
3×3 array of |0�, and (ii) executing a M (Z) in every row.
Clifford group generators: CNOT,H,Z1/2: The CNOT gate
is bitwise and thus already transversal, the H gate can also
be implemented in a bitwise fashion but, because stabilizers
are rotated by this action, it is followed up by a physical
π/2-rotation. The Z1/2 can be implemented using the cir-
cuit [19] in Fig. (3(a)), provided one can prepare an |+iL� =
(|0L�+ i |1L�)/

√
2 ancilla. To prepare such an ancilla we use a

modified version (Fig. (3(b)) of the circuit introduced in [16],
which uses only encoded inputs and gates. It is worth stressing
that, as EC gadgets do not require Z1/2 gates, this operation is
only required at the highest level of concatenation.

X and Z basis measurements.- Again, as we do not use mea-
surements in the EC gadgets, they are only required at the
highest level of concatenation. Furthermore, given their form,
measuring encoded logical operators can be achieved measur-
ing only one row or column of the 9k×9k encoding array.

The above set of operations, plus the EC gadget described
before, are enough to fault tolerantly simulate any Clifford op-
eration provided the preparation, gate, and measurement error
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5.13. We can expand |0� ∝ |+i�+ |−i� and, for each of the two terms, we can consider the two paths

of the subsequent computation which are executed in superposition. In one path S is simulated

and in the other S∗. Thus, if every time we want to simulate S in our circuit we use the same

ancillary |0� state and because S is the only complex gate in our gate set, the final state of the

computation will be a linear superposition of one term where the desired computation unitary, U ,

has been implemented and a second term where U∗ has been implemented instead. In other words,

if the initial computation state is |ψinitial�, then the final computation state will be

|ψfinal� =
|+i� ⊗ U |ψinitial�+ |−i� ⊗ U∗|ψinitial�√

2
. (5.20)

In the end of the computation some operator A will be measured which we can take to be real

(and so, due to hermiticity, AT = A). We now want to see that the expectation value for A will be

the same as if the desired U had been simulated all along. Indeed, we compute

�A� = �ψinitial|
U†AU + (U∗)†AU∗

2
|ψinitial� = �ψinitial|U†AU |ψinitial� , (5.21)

since, ∀|ψ�, �ψ|(U∗)†AU∗|ψ� = �ψ|U†AT U |ψ� = �ψ|U†AU |ψ�.

We can use this procedure at the logical level as well. The only penalty we pay for simulating

the logical S gate in this way is that we need to swap around the ancillary logical |0� block we

use for the simulation if we are constrained to use only local interactions; but this will only give

us a linear penalty in the size of the computation. Of course, we should emphasize that this trick

works because the S gate is not used in implementing error correction. As a consequence, we only

need to implement logical S gates at the highest level of the recursive fault-tolerant simulation and,

moreover, it is not necessary that we execute different logical S gates in parallel anywhere in our

computation. Therefore, provided the physical noise strength is below the accuracy threshold for

CSS operations, we may obtain any desired accuracy in the simulation of the logical S gates at the

highest level of our recursive simulation by choosing this highest level appropriately.

Noisy |+i� Distillation

In cases when S is not the only complex gate in our gate set, there is also a straightforward

procedure for fault-tolerantly preparing the required ancillary “quantum software:” We can begin

by preparing many noisy logical |+i� states and use them to progressively distill less and less noisy

copies. A possible distillation circuit is shown in figure 5.14.

The measurement outcome in this circuit is ideally +1, and an error on one of the two |+i�

states can be detected. We note that because Y stabilizes the state |+i�, we need only worry about

Z errors—we can write X = iZY which is, up to the irrelevant phase i, equivalent to Z when it

acts on |+i�. Postselecting on the +1 measurement outcome, the fidelity of the output |+i� state is

|0L� =
1√
2
(| + iL�+ |− iL�)
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Clifford gates cont.

• Preparation of  

• Measurements in X, Z bases

- Only required at highest level k of concatenation

|0L�, |+L�

|0� |0� |0�
|0� |0� |0�
|0� |0� |0�

M(Z)

M(Z)

M(Z)

M(X)

|+� |+� |+�
|+� |+� |+�
|+� |+� |+�

M(X)M(X)

X Z
9k−1 qubits
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Extras

How is this useful?

Key observation:

M is an EC gadget for QR codes

Bacon-Shor code = composition of quantum repetition codes

But...

i Toffoli gate must be built at every level of concatenation!

ii What about propagation of errors ?

iii How to account for Bacon-Shor gauge freedom?

G. A. Paz-Silva, G. K. Brennen, and J. Twamley Fault-tolerance with slow and noisy measurement & preparation. arXiv:1002.1536
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7

Figure 2. Measurement-free QEC routines for the QR and BS codes. The inputs
are |�0(k)� = |000�⊗3k−1

and |�+(k)� = | + ++�⊗3k−1
. (a) TheM-gate. An X-encoded

majority voting gadget of (k + 1)-level of concatenation. Here all CNOTs are
bitwise, i.e. each CNOT depicted corresponds to three CNOT(k), and subscript
R corresponds to a cyclic k-encoded rotation of the targets of the corresponding
gate. In the QR code, the TOFFOLI gate depicted is bitwise. The M-gate can
also be designed for a Z -encoded quantum majority voting, with |�+(k)� ancillas
and the obvious Hadamard conjugation of gates. When the need to distinguish
them arises, we shall denote X and Z encoded majority votings by M(X) and
M(Z), respectively. (b) A subroutine acting on ancillas for processing error
syndrome information extracted from the data. The circuit shows one row,
(VN )i(k), of the fully contracted exRec VN (k) representing a collection of
k-level protected gates acting on row i of ancillas which take part in an EC(k + 1)
step. Note that in this circuit the output top lines are discarded, so no EC
gadget must protect them. With this, the exRec corresponding to N at degree
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i∈rows(VN )i(k − 1) × EC(k). In our
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Error correction

• Unitary gadget for combined X (lower half) and Z (upper half) correction

3
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FIG. 1: Measurement-free QEC routines for the QR and BS code. The inputs are
����0(k)

�
= |000�⊗3k−1

and
����+(k)

�
= |+++�⊗3k−1

. (a) The
M gate. An X-encoded majority voting gadget of level-(k + 1) of concatenation. Here all CNOTs are bitwise, i.e. each CNOT depicted
corresponds to three CNOT (k), and subscript R corresponds to a cyclic k-encoded rotation of the targets of the corresponding gate. In the
QR code the TOFFOLI gate depicted is bitwise. The M gate can also be designed for a Z-encoded quantum majority voting, with

����+(k)
�

ancillas and the obvious Hadamard conjugation of gates. When the need to distinguish them arises we shall denote X and Z encoded majority
votings M (X) and M (Z) respectively. (b) A subroutine acting on ancilla for processing error syndrome information extracted from the data.
The circuit shows one row, (V N )i(k), of the fully contracted exRec V N (k) = �N (k+1)� representing a collection of k-level protected gates
acting on row i of ancilla which take part in an EC(k+1) step. Note that in this circuit the output top lines are discarded so no EC gadget must
protect them. With this, the exRec corresponding to N at degree of concatenation k is N (k) = EC(k)×∏i∈rows(V N )i(k− 1)×EC(k). In
our circuits �G(k)� denotes the implementation of gate G, in terms of level-(k−1) gates, without the prepended and appended EC(k) routines,
and W denotes a waiting gate. (c) Full error correction (EC) gadget for the BS code. Here, a TOFFOLI with � controls is a Z −TOFFOLI;
CX = ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j) is a set of transversal CNOTs, CX (±)

PR
= ∏3

i, j=1 CNOT (k)
(c,i, j),(t,i, j±1) and CXPC

(±) = ∏3
i, j=1 CNOT (k)

(c,i, j±1),(t,i, j). The
control of the gates in boxes is always the top input of the gate. The last gate is a bTOFFOLI.

by (i) starting with a 3× 3 array of |0�, and (ii) executing a M (Z) in every row. (II) Clifford group generators: CNOT,H,Z1/2:
The CNOT gate is transversal, the H gate can also be implemented in a bitwise fashion but, because stabilizers are rotated by
this action, it is followed up by a physical π/2-rotation accommodated by relabeling or rewiring of gates. The Z1/2 gate can
be implemented using the circuit in Fig. (2(a)), provided one can prepare a logical ancilla in |±iL� = (|0L�± i |1L�)/

√
2. Since

the Z1/2 gate is not part of the EC routines, it is only needed at the highest level of concatenation. Furthermore, as it is the only
complex gate, it can be shown that by always using the same logical ancilla prepared in |0L�= 1/

√
2(|+iL�+ |−iL�) to activate the

circuit in Fig. (2(a)), then the entire quantum computation splits into two noninterfering paths (evolution by Ucomp and U∗
comp) and

the measurements of real, Hermitian operators at the end have the same expectation values as for evolution by Ucomp alone [17].
Alternatively one can use the distillation circuit in [3] at the highest level provided one can prepare it with an error rate below
p(i−anc) = 1/2. (III) X and Z basis measurements.- They are only required at the highest level of concatenation. Given their form,
measuring encoded logical operators can be achieved measuring only one row or column of the 9k ×9k encoding array.
Threshold calculation for Clifford operations.- We use the extended rectangle (exRec) method developed in [3] to compute the
threshold (see Supplementary Material for more details). An exRec of a gate is constructed by prepending and appending error
correction routines on the inputs and outputs. The exRec with the largest number of malignant pairs, i.e. the number of pairs of
faults which generate two or more errors in the data, will determine the threshold value. A quick inspection reveals that the largest
exRec is the one corresponding to the CNOT gate. Following [3], only at level k = 1 must one consider all elements: preparation
and gates (including waiting gates). At level k > 1, using contraction of exRecs, preparation locations can be omitted. This means

Z-decoder on row i of 
ancilla (unprotected 

against Z errors)

Majority voter
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Error threshold
• To get threshold we count disastrous error events (two data errors after EC

+gate+EC).  Most error prone modules:

• CNOT exREC has most possible error locations

• So need 

p(1) ≤ A(k=1)(p(0))2

p(k) ≤ A(k>1)(p(k−1))2 , for k > 1

p(k) ≤ 1
A(k>1)

�p(0)

pth

�2k

pp, pg < pth

pth =
1�

A(k=1)A(k>1)
= 3.76× 10−5
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• Parameters AM , m, m̄ and β can be defined for the quantum repetition code and its error correcting gadget, the M gate.

because at this point we have to assume that the size of the circuits varies with every level of concatenation, then each parameter

will have a (k) denoting the level of concatenation it corresponds to.

Let us now proceed with the calculation. The number of malignant pairs in the CNOT (1), (V N )i(1), and N (1) exRecs are

then given by

ACNOT (1) ≤ (4AEC(1) +16u(1) +u(1)ū(1) +4uα(1) +18α(1) +36)

A(V N )i(1) ≤ (3AECX (1) +AM(1) +3uX(1)ūX(1) +66uX(1) +3uX(1)β(1) +33β(1) +363),

AbTOFF(1) = (2AEC(1) +2AM(1))+m(1)m̄(1) +2u(1)m̄(1) +u(1)α+2m(1)α+8u(1) +16m(1) +9α(1) +36

while a direct count gives the value for the malignant-error parameters {AEC(1) = 4182,u(1) = 63, ū(1) = 56,α(1) = 42,AECX (1) =

2031,uX(1) = 45, ūX(1) = 30,αX(1) = 20,AM(1) = 177,m(1) = 12, m̄(1) = 8,β(1) = 5,}. This yields p
(1)
(V N )i

= (11836)(p
(0))2 ≤

1

2
(33036)(p

(0))2 = 1

2
p
(1)
CNOT

and p
(1)
bTOFF

=(14784)(p
(0))2 ≤ 1

2
(33036)(p

(0))2 = 1

2
p
(1)
CNOT

. Now, for k = 2, we obtain the following

failure probabilities, using that bTOFFOLI(1) and (V N )i(1) fail with half the probability of a CNOT (1) gate.

ACNOT (k) = (4AEC(k) +16u(k) +u(k)ū(k) +4uα(k) +18α(k) +36)

A(V N )i(k) = (3AECX (k) +AM(k) +3uX(k)ūX(k) +72uX(k) +3uX(k)β(k) +36β(k) +432),

AbTOFF(k) = (2AEC(k) +2AM(k))+m(k)m̄(k) +2u(k)m̄(k) +u(k)α(k) +2m(k)α(k)

+8u(k) +16m(k) +9α(k) +36 (A7)

with corresponding parameter values {AEC(k>1) = 1953u(k>1) = 63, ū(k>1) = 56, α(k>1) = 33, AECX (k>1) = 1128, uX(k>1) =
45, ūX(k>1) = 30, αX(k>1) = 16, AM(k>1) = 105, m(k>1) = 12, m̄(k>1) = 8, β(k>1) = 4, }. A direct calculation shows again

p
(2)
(V N )i

< 1

2
p
(2)
CNOT

and p
(2)
bTOFF

< 1

2
p
(2)
CNOT

. From this point on, the structure of the level k error correction circuits, and thus the

corresponding malignant error parameter values, are the same of the level k = 2 circuits, so repeating the process for k = 3,4, ...,k
leads us to the conclusion that the CNOT exRec is in fact the largest exREC to be considered and the one which will determine

our threshold value.

EC • EC

EC �������� EC

(a)CNOT(k) exREC

EC �������� EC

M1 • M2

M3 • M4

(b)bTOFFOLI(k) exRec

ECX (k) W •

ECX (k) •

ECX (k) �X� �X� N (X)(k−1) M (X)(k−1)

(c)V N i(k) contracted exREC

FIG. 3: The largest exRecs to be considered. An EC gate corresponds to a BS QEC routine while a M gate corresponds to a QR QEC routine.

The circuit (3(c)) is executed in every row of the 3× 3 array. Because in the N exRec we are discarding the top-lines we do not require

output M gadgets appended to them. Moreover, at level k = 1 there is no need for the waiting (W) gate and both CNOTs can be executed

simultaneously.

2. Error analysis for the encoder circuit

The error analysis for the encoder circuit is as follows: to encode a level k state provided a level k−1 state, we have that step

(i) uses 8 CNOTS, 20 waiting gates, and 8 |0� preparations failing with probability p
(k−1)

and step (ii) can introduce unwanted

phases with a single error (note that this is not a problem in Clifford ancilla preparations e.g. |0� states.) thus we count all

locations in the M gates. A M (1) contributes with 27 level-0 locations, while a M (k), for k > 1, contribute with 24 level-(k-1)

locations. So we have

p
(L)
anc ≤ 10p

(0) +108

L−1

∑
j=0

p
( j), (A8)

which justifies our encoder circuit error analysis.
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45, ūX(k>1) = 30, αX(k>1) = 16, AM(k>1) = 105, m(k>1) = 12, m̄(k>1) = 8, β(k>1) = 4, }. A direct calculation shows again

p
(2)
(V N )i

< 1

2
p
(2)
CNOT

and p
(2)
bTOFF

< 1

2
p
(2)
CNOT

. From this point on, the structure of the level k error correction circuits, and thus the

corresponding malignant error parameter values, are the same of the level k = 2 circuits, so repeating the process for k = 3,4, ...,k
leads us to the conclusion that the CNOT exRec is in fact the largest exREC to be considered and the one which will determine

our threshold value.

EC • EC

EC �������� EC

(a)CNOT(k) exREC

EC �������� EC

M1 • M2

M3 • M4

(b)bTOFFOLI(k) exRec

ECX (k) W •

ECX (k) •

ECX (k) �X� �X� N (X)(k−1) M (X)(k−1)

(c)V N i(k) contracted exREC

FIG. 3: The largest exRecs to be considered. An EC gate corresponds to a BS QEC routine while a M gate corresponds to a QR QEC routine.

The circuit (3(c)) is executed in every row of the 3× 3 array. Because in the N exRec we are discarding the top-lines we do not require

output M gadgets appended to them. Moreover, at level k = 1 there is no need for the waiting (W) gate and both CNOTs can be executed

simultaneously.

2. Error analysis for the encoder circuit

The error analysis for the encoder circuit is as follows: to encode a level k state provided a level k−1 state, we have that step

(i) uses 8 CNOTS, 20 waiting gates, and 8 |0� preparations failing with probability p
(k−1)

and step (ii) can introduce unwanted

phases with a single error (note that this is not a problem in Clifford ancilla preparations e.g. |0� states.) thus we count all

locations in the M gates. A M (1) contributes with 27 level-0 locations, while a M (k), for k > 1, contribute with 24 level-(k-1)

locations. So we have

p
(L)
anc ≤ 10p

(0) +108

L−1

∑
j=0

p
( j), (A8)

which justifies our encoder circuit error analysis.

8

• Parameters AM , m, m̄ and β can be defined for the quantum repetition code and its error correcting gadget, the M gate.

because at this point we have to assume that the size of the circuits varies with every level of concatenation, then each parameter

will have a (k) denoting the level of concatenation it corresponds to.

Let us now proceed with the calculation. The number of malignant pairs in the CNOT (1), (V N )i(1), and N (1) exRecs are

then given by

ACNOT (1) ≤ (4AEC(1) +16u(1) +u(1)ū(1) +4uα(1) +18α(1) +36)
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Measurement threshold

• Threshold for Clifford measurements (X and Z basis)

- They are only needed at the highest level of encoding thus

- for k large enough              , negligible and

- Threshold value for Clifford basis measurement

p(k) � 1

p(k+1)
m < 32k+1−1(p(0)

m )2
k+1

pm <
1
3

4

that one has to solve the recursion relationships for the error p( j)
at level j:

p(1) ≤ A�
(k=1)(p(0))2

; p(k) ≤ A�
(k>1)(p(k−1))2, for k > 1, (2)

where A�
(k) =

A(k)
2

�
1+

�
1+ 4B

(A(k))
2

�
, B denotes all possible three-site errors, and A(k) denotes the number of malignant pairs in

the largest exRec of that level. This process can be repeated for four site errors, etc. to get an even tighter bound [3]. Executing

this algorithm with our largest exRec, the CNOT, we obtain a threshold value, for preparation and gates, p(p,g)thresh = 3.76×10
−5

.

This value is not a bound for measurement error rates since they are not needed during the QEC process and are only required at

the highest level of concatenation. So it follows that

p(k+1)
(m) ≤ 3(p(k)(m))

2 +O(p(k)). (3)

If preparation and gate error rates are below threshold, then for k large enough p(k) is vanishingly small and the terms O(p(k))
can be neglected. Then the threshold condition for X and Z measurements is p(m)thresh = 1/3.

Encoded non-Clifford operations.- The missing component to achieve universality is the FT execution of a non-Clifford gate.

Using the circuit in Fig. (2(b)) we translate the problem into preparing the |HL� ancilla. To create an ancilla at the highest

level we will use an encoder circuit which will allow us to keep the p(m)thresh ≤ 1/3. To encode an arbitrary state we use

the following algorithm: (i) we start with the level-0 state |φ� we want to encode and 8 |0� states, then (ii) we use CNOT

gates, including waiting times such that never in one step does one qubit interact with more than one qubit, to create the state����φ
�

3×3

= a
����0
�

3×3

+b
����1
�

3×3

. Finally (iii) we execute a M
(Z)

gate in every row, to create the state |φL�= a |0L�+b |1L�. We can

recursively use the same algorithm to create the state at any level of concatenation k. Repeating this process recursively yields

an error rate for the encoding at the highest level of concatenation k = L, p(L)anc ≤ 10p(0) +108∑L−1

j=0
p( j)

. Clearly p(L)(anc) cannot be

|φL� • • Z±1/2
L |φL�

|±iL� �������� • |±iL�
(a)

|φL� • Z
1/2
L

∝ Z
1/4
L

|φL�

|HL� �������� �� ���� ��ZL •
(b)

FIG. 2: These circuits need only be implemented at the highest level of concatenation, and thus all operations depicted are encoded operations.

(a) Circuit used to execute an encoded Z1/2
Clifford gate on an arbitrary input |φL� [17] . (b) Circuit implementing the non-Clifford operation

Z1/4
given the encoded resource magic state |HL�.

made arbitrarily small, however, provided p(0)(g) ≤ pthresh, it can be made small enough to give p(L)(anc) ≤ sin
2 π/8, and then one can

use MSD to achieve FTUQC [8].

Additionally, we promised that preparation errors can in fact be much higher than gate error rates. The argument proceeds by

using a variant of the algorithmic cooling algorithm introduced in Ref. [18]. For a group of three qubits (a,b,c) with identical

probabilities p(p) = ε(0) < 1/2, to be in the erroneous state |1�, we apply TOFFOLI((c,b),a)CNOT(a,c)CNOT(a,b). The reduced

state of qubit a is colder, i.e. has lower error (ε(1) < ε(0)). Concatenating the process, after j rounds using a total of 3
j

qubits,

the final error of the one output qubit satisfies the recursion relation ε( j) = (ε( j−1))2(3−2ε( j−1)). Including gate errors, the total

error of this preparation process is p( j)
(p) ≤ ε( j) + 3

2
(3 j −1)p(0)(g).

We are now ready to combine our tools. If we are sensibly below threshold, say with p(g,p) = 0.75p(g,p)thresh = 2.82× 10
−5

,

then with p(m) = 33% we get p(6)(g) ∼ 10
−13

and p(6)anc = 8.32×10
−3

which is safely below the 14.6% needed for |HL� distillation

(and certainly below the 50% needed for the |+iL� distillation [3]). Thus FTUQC is achievable with noisy and currently

achievable measurement error rates, but with only a small impact to the threshold value as compared to the best known result

(1.26 × 10
−4

) for the same code allowing measurements [3]. One can go further and use algorithmic cooling to also push

preparation error rates within reach of current technology. We find that if one has physical preparation error rates of p(p) = 1%,

then two rounds of AC and physical gate error rates p(g) = 2.32× 10
−6

allow for FTUQC. Preparation rates as high as 1/3 can

also be allowed, at the cost of demanding a lower gate error rate. For p(p) ≥ 1/3, one can instead use noisy measurement since

measurement followed by a unitary is preparation.

Monday, 31 January 2011



Preparation threshold

• Variant of algorithmic cooling.  Prepare 3 ancilla close to |0> with error 

• Iterate for j rounds on 3j ancilla 

• Total preparation error of single output ancilla is

• For small enough gate errors can always purify to

• Since measurement is preparation, threshold is
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Magic state distillation
• Protocol*:  many badly prepared physical states to one good logical state

• Prepare ancillary qubit state close to                    

- Encode into a logical state

- Apply recursively to prepare ancillary      at level L concatenation w/error

- Provided gate errors are below threshold then  

- Now can distill a better state.  Prepare many copies (e.g. 15 copies for Reed-
Muller Code).  Use FT Clifford ops to distill one purer state closer to logical       
state.
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Figure5.20.Adecodingcircuitforthe9-qubitBacon-Shorcode.Thequbitsinthecodeblockare

arrangedstartingwiththequbitonthetopleftcornerinthelatticeinfigure5.6andmovingfrom

lefttorightacrosssuccessiverows.
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qubitancillarystates,wefindthattheprobabilityofafaultthatissupportedonaspecificoneof
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However,itisnotnecessarythatwereviseourboundonpthr.Thereasonwhywechosetodescribe

thedistillationof|Toffoli�statesin§5.3.4.2isbecausethedistillationprocedurewasconceptually

simpleandthedistillationthresholdconditionwaseasytoderive;however,muchhigherdistillation

thresholdsarepossibleifweusemorecomplexprotocolsfordistillingcertain“magic”single-qubit

statesasexplainedin[97].Inparticular,thedistillationthresholdforthe|H�magicstateisatleast

14%[97]whichissignificantlyabove2.15%showingthatifpisbelow1.26×10
−4

universalquantum

computationisstillpossible.

The25-QubitBacon-ShorCode

Wemayrepeatthesamecalculationbyusingtherecursionequations(5.19)andalso
9

D=48.

9Adecodingcircuitcaneasilybeconstructedsimilartothatinfigure5.20:Weconnectwithcnotgatesallqubits
inthefirstfourrowstothequbitsinthefifthrow(4×5=20gates)and,then,weconnectwithcnotgatesthe
lastqubitinthefifthrowtoeveryotherqubitinthesamerow(another4gates).Finally,weadd24single-qubit
measurements.
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To put this result in perspective, notice that p(g) = 1.39×10−6 is not a threshold value but the required value such that effective
preparation and gate error rates are sensibly below our threshold (0.75× pthresh). In comparison, under the same assumptions
the best known result [3] implies that quantum computing is possible, with reasonable overhead, when p(p,g,m) ∼ 9.5× 10−5.
So the price we pay to push measurement and error rates within reach of current technology (an improvement of three and two
orders of magnitude respectively), is demanding roughly two orders of magnitude more stringent gate error rates. The result is
even more significant if one considers recent results which show that arbitrarily accurate unitary gates (and not measurement
and preparation) can, in principle, be achieved via open system control strategies [10]. Furthermore note that the required
measurement and preparation error rates have already been reported: in trapped ions [4], p(m) = 2.3× 10−3 while in quantum
dots [5], p(m) = 3×10−2.

We point out that the threshold value for gates computed here is by no means tight as we wanted to keep calculations simple.
We have overcounted malignant pairs of locations, and certainly the design of our circuits may not be the optimal one in terms of
error locations, thus in principle the threshold can be improved. On the other hand, restricting ourselves to two-qubit interactions
only, and decomposing TOFFOLI gates into one and two qubit gates degrades the gate and preparation threshold value to
2.69×10−5. Also restricting to nearest-neighbor only interactions will degrade the threshold value [19]. In our circuits ancillas
can be prepared offline and we have been careful to limit measurement only to when the data is encoded (at the highest level of
concatenation), thus physical systems with slow measurement or preparation are allowed.

In conclusion, we have shown that measurement-free QEC is viable, considerably relaxing the time and error rate constraints
on preparation and measurement operations, and pushing them within reach of current technology, while yielding only a small
penalty to the gate threshold. This small penalty seems even less relevant if one considers recent results showing that arbitrarily
accurate unitary gates can, in principle, be achieved using open system control [10]. Those results complement the methods
developed here and bring fault-tolerant quantum computing closer to reality.

Acknowledgments.- We acknowledge valuable discussions with P. Aliferis, D. Bacon, and D. Lidar. GAPS acknowledges
support from a Macquarie University Research Excellence award and CQCT.

[1] D. Aharonov and M. Ben-Or, SIAM J. on Computing 38, 1207 (2008); quant-ph/9906129.
[2] D. Gottesman, arXiv:0904.2557
[3] P. Aliferis, PhD thesis (Caltech), 2007; arXiv: 0703230.
[4] T. Schaetz et al. Appl. Phys. B 79, 978 (2004).
[5] T. Meunier et al. Phys. Stat. Solidi (b) 243, 3855 (2006).
[6] D.P. DiVincenzo and P. Aliferis, Phys. Rev. Lett. 98, 020501 (2007).
[7] E. Knill, Nature 434, 39 (2005).
[8] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005); B. Reichardt, Quant. Inf. Comp. 9, 1030 (2009).
[9] H.K. Ng et al., arXiv:0911.3202; J. R. West, et al. arXiv:0911.2398v1.

[10] K. Khodjasteh, D. A. Lidar and L. Viola, Phys. Rev. Lett. 104, 090501 (2010); K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501
(2009); Phys. Rev. A 80, 032314 (2009).]

[11] A.H. Myerson et al. Phys. Rev. Lett. 100, 200502 (2008).
[12] P.O. Boykin et al., Proc. of the 2004 International Conf. on Dependable Systems and Networks, 157 (2004).
[13] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098; A. M. Steane, Proc. Roy. Soc. Lond. A 452, 2551 (1996).
[14] The Clifford group on a set V of qubits is �{Hi,CNOTi, j,Z

1/2
i ∀i, j ∈V}�.

[15] D. Bacon, Phys. Rev. A 73, 012340 (2006).
[16] E.Knill, R. Laflamme and W. Zurek, Science 279, 342 (1998).
[17] E. Dennis et al., J. Math. Phys. 43, 4452 (2002).
[18] P. O. Boykin and V. P. Roychowdhury, Proc. of the 2005 International Conf. on Dependable Systems and Networks, 444 (2005); P. O.

Boykin, et al., PNAS March 19, 2002, vol. 99 no. 6 3388-3393; L. J. Schulman, T. Mor, and Y. Weinstein, Phys. Rev. Lett 94, 120501
(2005).

[19] K. M. Svore et al., Quant. Inf. Comp. 7, 297 (2007); F. M. Spedalieri and V. P. Roychowdhury, Quant. Inf. Comp. 9, 0666 (2009).
[20] H.P. Buchler, A. Micheli and P. Zoller, Nature Physics 3, 726 (2007).

5

To put this result in perspective, notice that p(g) = 1.39×10−6 is not a threshold value but the required value such that effective
preparation and gate error rates are sensibly below our threshold (0.75× pthresh). In comparison, under the same assumptions
the best known result [3] implies that quantum computing is possible, with reasonable overhead, when p(p,g,m) ∼ 9.5× 10−5.
So the price we pay to push measurement and error rates within reach of current technology (an improvement of three and two
orders of magnitude respectively), is demanding roughly two orders of magnitude more stringent gate error rates. The result is
even more significant if one considers recent results which show that arbitrarily accurate unitary gates (and not measurement
and preparation) can, in principle, be achieved via open system control strategies [10]. Furthermore note that the required
measurement and preparation error rates have already been reported: in trapped ions [4], p(m) = 2.3× 10−3 while in quantum
dots [5], p(m) = 3×10−2.

We point out that the threshold value for gates computed here is by no means tight as we wanted to keep calculations simple.
We have overcounted malignant pairs of locations, and certainly the design of our circuits may not be the optimal one in terms of
error locations, thus in principle the threshold can be improved. On the other hand, restricting ourselves to two-qubit interactions
only, and decomposing TOFFOLI gates into one and two qubit gates degrades the gate and preparation threshold value to
2.69×10−5. Also restricting to nearest-neighbor only interactions will degrade the threshold value [19]. In our circuits ancillas
can be prepared offline and we have been careful to limit measurement only to when the data is encoded (at the highest level of
concatenation), thus physical systems with slow measurement or preparation are allowed.

In conclusion, we have shown that measurement-free QEC is viable, considerably relaxing the time and error rate constraints
on preparation and measurement operations, and pushing them within reach of current technology, while yielding only a small
penalty to the gate threshold. This small penalty seems even less relevant if one considers recent results showing that arbitrarily
accurate unitary gates can, in principle, be achieved using open system control [10]. Those results complement the methods
developed here and bring fault-tolerant quantum computing closer to reality.

Acknowledgments.- We acknowledge valuable discussions with P. Aliferis, D. Bacon, and D. Lidar. GAPS acknowledges
support from a Macquarie University Research Excellence award and CQCT.

[1] D. Aharonov and M. Ben-Or, SIAM J. on Computing 38, 1207 (2008); quant-ph/9906129.
[2] D. Gottesman, arXiv:0904.2557
[3] P. Aliferis, PhD thesis (Caltech), 2007; arXiv: 0703230.
[4] T. Schaetz et al. Appl. Phys. B 79, 978 (2004).
[5] T. Meunier et al. Phys. Stat. Solidi (b) 243, 3855 (2006).
[6] D.P. DiVincenzo and P. Aliferis, Phys. Rev. Lett. 98, 020501 (2007).
[7] E. Knill, Nature 434, 39 (2005).
[8] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005); B. Reichardt, Quant. Inf. Comp. 9, 1030 (2009).
[9] H.K. Ng et al., arXiv:0911.3202; J. R. West, et al. arXiv:0911.2398v1.

[10] K. Khodjasteh, D. A. Lidar and L. Viola, Phys. Rev. Lett. 104, 090501 (2010); K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501
(2009); Phys. Rev. A 80, 032314 (2009).]

[11] A.H. Myerson et al. Phys. Rev. Lett. 100, 200502 (2008).
[12] P.O. Boykin et al., Proc. of the 2004 International Conf. on Dependable Systems and Networks, 157 (2004).
[13] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098; A. M. Steane, Proc. Roy. Soc. Lond. A 452, 2551 (1996).
[14] The Clifford group on a set V of qubits is �{Hi,CNOTi, j,Z

1/2
i ∀i, j ∈V}�.

[15] D. Bacon, Phys. Rev. A 73, 012340 (2006).
[16] E.Knill, R. Laflamme and W. Zurek, Science 279, 342 (1998).
[17] E. Dennis et al., J. Math. Phys. 43, 4452 (2002).
[18] P. O. Boykin and V. P. Roychowdhury, Proc. of the 2005 International Conf. on Dependable Systems and Networks, 444 (2005); P. O.

Boykin, et al., PNAS March 19, 2002, vol. 99 no. 6 3388-3393; L. J. Schulman, T. Mor, and Y. Weinstein, Phys. Rev. Lett 94, 120501
(2005).

[19] K. M. Svore et al., Quant. Inf. Comp. 7, 297 (2007); F. M. Spedalieri and V. P. Roychowdhury, Quant. Inf. Comp. 9, 0666 (2009).
[20] H.P. Buchler, A. Micheli and P. Zoller, Nature Physics 3, 726 (2007).

*

and column c of the logical qubit. The (X) or (Z) version of
the gate is chosen depending on the correction subroutine
in which it is being used; e.g., to correct X errors [as in the
lower part of Fig. 1(c)], we use N ðXÞ. TheN ðXÞðN ðZÞÞ is
a ZðXÞ decoder, where one keeps only the convenient
protection while completely unprotecting against the other
type of errors. Moreover, after the X syndrome extraction
stage, the corresponding ancilla does not need protection
against Z error, so only the lower stage (ECX) of EC must
be used. This greatly reduces the overall execution time for
encoded gates acting on those ancillas. We found that, due
to this property, the subroutine ðVN ÞiðkÞ not only takes
less time, in terms of execution time of level-(k# 1) gates,
but it can be shown to fail with a probability smaller than a
CNOTðkÞ, for k > 1. For k ¼ 1 EC gadgets, there is no need
to use N since N ð0Þ ¼ Id. We detail this in the supple-
mentary material [15].

We are now ready to describe the remaining elements of
our BS code fault-tolerant scheme. First, we describe the
elements needed to fault-tolerantly simulate any circuit
based solely on Clifford operations. (I) Preparation of
j0Li and jþLi states.—By (i) starting with a 3& 3 array
of jþi and (ii) applying a MðXÞ in every column, we can
prepare a jþLi. Similarly, j0Li is obtained by (i) starting
with a 3& 3 array of j0i and (ii) executing aMðZÞ in every
row. (II) Clifford group generators: CNOT, H, and Z1=2.—
The CNOT andH gates are transversal, i.e., bitwise, modulo
physical rotations of the array. The Z1=2 gate can be im-
plemented by using the circuit in Fig. 2(a), provided one
can either (a) prepare a logical ancilla j'iLi ¼ ðj0Li'
ij1LiÞ=

ffiffiffi
2

p
with an error rate below pði-ancÞ ¼ 1=2 [3], or

(b) since this gate is not part of the EC routine [15,17],
always use the same j0Li ¼ 1=

ffiffiffi
2

p
ðjþiLiþ j#iLiÞ ancilla

whenever one executes the gate. (III) X and Z basis mea-
surements.—They are required only at the highest level of
concatenation. Given their form, measuring encoded logi-
cal operators can be achieved by measuring only one row
or column of the 3k & 3k encoding array.

Threshold calculation for Clifford operations.—We use
the extended rectangle (exRec) method developed in
Ref. [3] to compute the threshold (see [15] for details).
An exRec of a gate is constructed by prepending and
appending error correction routines on the inputs and out-
puts. The exRec with the largest number of malignant
pairs, i.e., the number of pairs of faults which generate

two or more errors in the data, will determine the threshold
value. A quick inspection reveals that the largest exRec is
the one corresponding to the CNOT gate. Following Ref. [3],
only at level k ¼ 1 must one consider all elements: prepa-
ration and gates (including waiting gates). At level k > 1,
by using contraction of exRecs, preparation locations can
be omitted. This means that one has to solve the recursion
relationships for the error pðjÞ at level j:

pð1Þ ( A0
ðk¼1Þðpð0ÞÞ2; pðkÞ ( A0

ðk>1Þðpðk#1ÞÞ2 ðk> 1Þ;

where A0
ðkÞ ¼

AðkÞ
2 f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4B=ðAðkÞÞ2*

q
g, B denotes all

possible three-site errors, and AðkÞ denotes the number of
malignant pairs in the largest exRec of that level. This
process can be repeated for four-site errors, etc., to get an
even tighter bound [3]. Executing this algorithm with our
largest exRec, the CNOT, we obtain a threshold value, for
preparation and gates, pðp;gÞthresh ¼ 3:76& 10#5. This
value is not a bound for measurement error rates since
they are not needed during the QEC process and are
required only at the highest level of concatenation. So it

follows that pðkþ1Þ
ðmÞ ( 3ðpðkÞ

ðmÞÞ2 þOðpðkÞÞ. If preparation

and gate error rates are below threshold, then for k large
enough pðkÞ is vanishingly small and the terms OðpðkÞÞ can
be neglected. Then the threshold condition for X and Z
measurements is pðmÞthresh ¼ 1=3.
Encoded non-Clifford operations.—The missing

component to achieve universality is the fault-tolerant
execution of a non-Clifford gate. Using the circuit in
Fig. 2(b), we translate the problem into preparing the
jHLi ancilla. To create an ancilla at the highest level we
will use an encoder circuit. To encode an arbitrary state we
use the following algorithm: (i) We start with the level-0
state j!i we want to encode and 8 j0i states, and then
(ii) we use CNOT gates, including waiting times such that
never in one step does one qubit interact with more than

one qubit, to create the state j ~!i3&3 ¼ aj~0i3&3 þ bj~1i3&3.
Finally, (iii) we execute aMðZÞ gate in every row, to create
the state j!Li ¼ aj0Liþ bj1Li. We can recursively use the
same algorithm to create the state at any level of concat-
enation k. Repeating this process recursively yields an
error rate for the encoding at the highest level of concat-

enation k ¼ L: pðLÞ
anc ( 10pð0Þ þ 108

PL#1
j¼0 pðjÞ. Clearly,

pðLÞ
ðancÞ cannot be made arbitrarily small; however, provided

pð0Þ
ðgÞ ( pthresh, it can be made small enough to give pðLÞ

ðancÞ (
sin2"=8, and then one can use magic state distillation to
achieve FTUQC [13].
Additionally, we promised that preparation errors can in

fact be much higher than gate error rates. The argument
proceeds by using a variant of the algorithmic cooling
algorithm introduced in Ref. [18]. For a group of three
qubits (a, b, and c) with identical probabilities pðpÞ ¼
"ð0Þ < 1=2, to be in the erroneous state j1i, we apply
TOFFOLI½ðc;bÞ;a*CNOTða;cÞCNOTða;bÞ. The reduced state of qu-

FIG. 2. These circuits need to be implemented only at the
highest level of concatenation, and thus all operations depicted
are encoded operations. (a) Circuit used to execute an encoded
Z1=2 Clifford gate on an arbitrary input j!Li [17]. (b) Circuit
implementing the non-Clifford operation Z1=4 given the encoded
resource magic state jHLi.
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and column c of the logical qubit. The (X) or (Z) version of
the gate is chosen depending on the correction subroutine
in which it is being used; e.g., to correct X errors [as in the
lower part of Fig. 1(c)], we use N ðXÞ. TheN ðXÞðN ðZÞÞ is
a ZðXÞ decoder, where one keeps only the convenient
protection while completely unprotecting against the other
type of errors. Moreover, after the X syndrome extraction
stage, the corresponding ancilla does not need protection
against Z error, so only the lower stage (ECX) of EC must
be used. This greatly reduces the overall execution time for
encoded gates acting on those ancillas. We found that, due
to this property, the subroutine ðVN ÞiðkÞ not only takes
less time, in terms of execution time of level-(k# 1) gates,
but it can be shown to fail with a probability smaller than a
CNOTðkÞ, for k > 1. For k ¼ 1 EC gadgets, there is no need
to use N since N ð0Þ ¼ Id. We detail this in the supple-
mentary material [15].

We are now ready to describe the remaining elements of
our BS code fault-tolerant scheme. First, we describe the
elements needed to fault-tolerantly simulate any circuit
based solely on Clifford operations. (I) Preparation of
j0Li and jþLi states.—By (i) starting with a 3& 3 array
of jþi and (ii) applying a MðXÞ in every column, we can
prepare a jþLi. Similarly, j0Li is obtained by (i) starting
with a 3& 3 array of j0i and (ii) executing aMðZÞ in every
row. (II) Clifford group generators: CNOT, H, and Z1=2.—
The CNOT andH gates are transversal, i.e., bitwise, modulo
physical rotations of the array. The Z1=2 gate can be im-
plemented by using the circuit in Fig. 2(a), provided one
can either (a) prepare a logical ancilla j'iLi ¼ ðj0Li'
ij1LiÞ=

ffiffiffi
2

p
with an error rate below pði-ancÞ ¼ 1=2 [3], or

(b) since this gate is not part of the EC routine [15,17],
always use the same j0Li ¼ 1=

ffiffiffi
2

p
ðjþiLiþ j#iLiÞ ancilla

whenever one executes the gate. (III) X and Z basis mea-
surements.—They are required only at the highest level of
concatenation. Given their form, measuring encoded logi-
cal operators can be achieved by measuring only one row
or column of the 3k & 3k encoding array.

Threshold calculation for Clifford operations.—We use
the extended rectangle (exRec) method developed in
Ref. [3] to compute the threshold (see [15] for details).
An exRec of a gate is constructed by prepending and
appending error correction routines on the inputs and out-
puts. The exRec with the largest number of malignant
pairs, i.e., the number of pairs of faults which generate

two or more errors in the data, will determine the threshold
value. A quick inspection reveals that the largest exRec is
the one corresponding to the CNOT gate. Following Ref. [3],
only at level k ¼ 1 must one consider all elements: prepa-
ration and gates (including waiting gates). At level k > 1,
by using contraction of exRecs, preparation locations can
be omitted. This means that one has to solve the recursion
relationships for the error pðjÞ at level j:

pð1Þ ( A0
ðk¼1Þðpð0ÞÞ2; pðkÞ ( A0

ðk>1Þðpðk#1ÞÞ2 ðk> 1Þ;

where A0
ðkÞ ¼

AðkÞ
2 f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4B=ðAðkÞÞ2*

q
g, B denotes all

possible three-site errors, and AðkÞ denotes the number of
malignant pairs in the largest exRec of that level. This
process can be repeated for four-site errors, etc., to get an
even tighter bound [3]. Executing this algorithm with our
largest exRec, the CNOT, we obtain a threshold value, for
preparation and gates, pðp;gÞthresh ¼ 3:76& 10#5. This
value is not a bound for measurement error rates since
they are not needed during the QEC process and are
required only at the highest level of concatenation. So it

follows that pðkþ1Þ
ðmÞ ( 3ðpðkÞ

ðmÞÞ2 þOðpðkÞÞ. If preparation

and gate error rates are below threshold, then for k large
enough pðkÞ is vanishingly small and the terms OðpðkÞÞ can
be neglected. Then the threshold condition for X and Z
measurements is pðmÞthresh ¼ 1=3.
Encoded non-Clifford operations.—The missing

component to achieve universality is the fault-tolerant
execution of a non-Clifford gate. Using the circuit in
Fig. 2(b), we translate the problem into preparing the
jHLi ancilla. To create an ancilla at the highest level we
will use an encoder circuit. To encode an arbitrary state we
use the following algorithm: (i) We start with the level-0
state j!i we want to encode and 8 j0i states, and then
(ii) we use CNOT gates, including waiting times such that
never in one step does one qubit interact with more than

one qubit, to create the state j ~!i3&3 ¼ aj~0i3&3 þ bj~1i3&3.
Finally, (iii) we execute aMðZÞ gate in every row, to create
the state j!Li ¼ aj0Liþ bj1Li. We can recursively use the
same algorithm to create the state at any level of concat-
enation k. Repeating this process recursively yields an
error rate for the encoding at the highest level of concat-

enation k ¼ L: pðLÞ
anc ( 10pð0Þ þ 108

PL#1
j¼0 pðjÞ. Clearly,

pðLÞ
ðancÞ cannot be made arbitrarily small; however, provided
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ðgÞ ( pthresh, it can be made small enough to give pðLÞ

ðancÞ (
sin2"=8, and then one can use magic state distillation to
achieve FTUQC [13].
Additionally, we promised that preparation errors can in

fact be much higher than gate error rates. The argument
proceeds by using a variant of the algorithmic cooling
algorithm introduced in Ref. [18]. For a group of three
qubits (a, b, and c) with identical probabilities pðpÞ ¼
"ð0Þ < 1=2, to be in the erroneous state j1i, we apply
TOFFOLI½ðc;bÞ;a*CNOTða;cÞCNOTða;bÞ. The reduced state of qu-

FIG. 2. These circuits need to be implemented only at the
highest level of concatenation, and thus all operations depicted
are encoded operations. (a) Circuit used to execute an encoded
Z1=2 Clifford gate on an arbitrary input j!Li [17]. (b) Circuit
implementing the non-Clifford operation Z1=4 given the encoded
resource magic state jHLi.
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and column c of the logical qubit. The (X) or (Z) version of
the gate is chosen depending on the correction subroutine
in which it is being used; e.g., to correct X errors [as in the
lower part of Fig. 1(c)], we use N ðXÞ. TheN ðXÞðN ðZÞÞ is
a ZðXÞ decoder, where one keeps only the convenient
protection while completely unprotecting against the other
type of errors. Moreover, after the X syndrome extraction
stage, the corresponding ancilla does not need protection
against Z error, so only the lower stage (ECX) of EC must
be used. This greatly reduces the overall execution time for
encoded gates acting on those ancillas. We found that, due
to this property, the subroutine ðVN ÞiðkÞ not only takes
less time, in terms of execution time of level-(k# 1) gates,
but it can be shown to fail with a probability smaller than a
CNOTðkÞ, for k > 1. For k ¼ 1 EC gadgets, there is no need
to use N since N ð0Þ ¼ Id. We detail this in the supple-
mentary material [15].

We are now ready to describe the remaining elements of
our BS code fault-tolerant scheme. First, we describe the
elements needed to fault-tolerantly simulate any circuit
based solely on Clifford operations. (I) Preparation of
j0Li and jþLi states.—By (i) starting with a 3& 3 array
of jþi and (ii) applying a MðXÞ in every column, we can
prepare a jþLi. Similarly, j0Li is obtained by (i) starting
with a 3& 3 array of j0i and (ii) executing aMðZÞ in every
row. (II) Clifford group generators: CNOT, H, and Z1=2.—
The CNOT andH gates are transversal, i.e., bitwise, modulo
physical rotations of the array. The Z1=2 gate can be im-
plemented by using the circuit in Fig. 2(a), provided one
can either (a) prepare a logical ancilla j'iLi ¼ ðj0Li'
ij1LiÞ=

ffiffiffi
2

p
with an error rate below pði-ancÞ ¼ 1=2 [3], or

(b) since this gate is not part of the EC routine [15,17],
always use the same j0Li ¼ 1=

ffiffiffi
2

p
ðjþiLiþ j#iLiÞ ancilla

whenever one executes the gate. (III) X and Z basis mea-
surements.—They are required only at the highest level of
concatenation. Given their form, measuring encoded logi-
cal operators can be achieved by measuring only one row
or column of the 3k & 3k encoding array.

Threshold calculation for Clifford operations.—We use
the extended rectangle (exRec) method developed in
Ref. [3] to compute the threshold (see [15] for details).
An exRec of a gate is constructed by prepending and
appending error correction routines on the inputs and out-
puts. The exRec with the largest number of malignant
pairs, i.e., the number of pairs of faults which generate

two or more errors in the data, will determine the threshold
value. A quick inspection reveals that the largest exRec is
the one corresponding to the CNOT gate. Following Ref. [3],
only at level k ¼ 1 must one consider all elements: prepa-
ration and gates (including waiting gates). At level k > 1,
by using contraction of exRecs, preparation locations can
be omitted. This means that one has to solve the recursion
relationships for the error pðjÞ at level j:

pð1Þ ( A0
ðk¼1Þðpð0ÞÞ2; pðkÞ ( A0

ðk>1Þðpðk#1ÞÞ2 ðk> 1Þ;

where A0
ðkÞ ¼

AðkÞ
2 f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4B=ðAðkÞÞ2*

q
g, B denotes all

possible three-site errors, and AðkÞ denotes the number of
malignant pairs in the largest exRec of that level. This
process can be repeated for four-site errors, etc., to get an
even tighter bound [3]. Executing this algorithm with our
largest exRec, the CNOT, we obtain a threshold value, for
preparation and gates, pðp;gÞthresh ¼ 3:76& 10#5. This
value is not a bound for measurement error rates since
they are not needed during the QEC process and are
required only at the highest level of concatenation. So it

follows that pðkþ1Þ
ðmÞ ( 3ðpðkÞ

ðmÞÞ2 þOðpðkÞÞ. If preparation

and gate error rates are below threshold, then for k large
enough pðkÞ is vanishingly small and the terms OðpðkÞÞ can
be neglected. Then the threshold condition for X and Z
measurements is pðmÞthresh ¼ 1=3.
Encoded non-Clifford operations.—The missing

component to achieve universality is the fault-tolerant
execution of a non-Clifford gate. Using the circuit in
Fig. 2(b), we translate the problem into preparing the
jHLi ancilla. To create an ancilla at the highest level we
will use an encoder circuit. To encode an arbitrary state we
use the following algorithm: (i) We start with the level-0
state j!i we want to encode and 8 j0i states, and then
(ii) we use CNOT gates, including waiting times such that
never in one step does one qubit interact with more than

one qubit, to create the state j ~!i3&3 ¼ aj~0i3&3 þ bj~1i3&3.
Finally, (iii) we execute aMðZÞ gate in every row, to create
the state j!Li ¼ aj0Liþ bj1Li. We can recursively use the
same algorithm to create the state at any level of concat-
enation k. Repeating this process recursively yields an
error rate for the encoding at the highest level of concat-

enation k ¼ L: pðLÞ
anc ( 10pð0Þ þ 108
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ðancÞ (
sin2"=8, and then one can use magic state distillation to
achieve FTUQC [13].
Additionally, we promised that preparation errors can in

fact be much higher than gate error rates. The argument
proceeds by using a variant of the algorithmic cooling
algorithm introduced in Ref. [18]. For a group of three
qubits (a, b, and c) with identical probabilities pðpÞ ¼
"ð0Þ < 1=2, to be in the erroneous state j1i, we apply
TOFFOLI½ðc;bÞ;a*CNOTða;cÞCNOTða;bÞ. The reduced state of qu-

FIG. 2. These circuits need to be implemented only at the
highest level of concatenation, and thus all operations depicted
are encoded operations. (a) Circuit used to execute an encoded
Z1=2 Clifford gate on an arbitrary input j!Li [17]. (b) Circuit
implementing the non-Clifford operation Z1=4 given the encoded
resource magic state jHLi.
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and column c of the logical qubit. The (X) or (Z) version of
the gate is chosen depending on the correction subroutine
in which it is being used; e.g., to correct X errors [as in the
lower part of Fig. 1(c)], we use N ðXÞ. TheN ðXÞðN ðZÞÞ is
a ZðXÞ decoder, where one keeps only the convenient
protection while completely unprotecting against the other
type of errors. Moreover, after the X syndrome extraction
stage, the corresponding ancilla does not need protection
against Z error, so only the lower stage (ECX) of EC must
be used. This greatly reduces the overall execution time for
encoded gates acting on those ancillas. We found that, due
to this property, the subroutine ðVN ÞiðkÞ not only takes
less time, in terms of execution time of level-(k# 1) gates,
but it can be shown to fail with a probability smaller than a
CNOTðkÞ, for k > 1. For k ¼ 1 EC gadgets, there is no need
to use N since N ð0Þ ¼ Id. We detail this in the supple-
mentary material [15].

We are now ready to describe the remaining elements of
our BS code fault-tolerant scheme. First, we describe the
elements needed to fault-tolerantly simulate any circuit
based solely on Clifford operations. (I) Preparation of
j0Li and jþLi states.—By (i) starting with a 3& 3 array
of jþi and (ii) applying a MðXÞ in every column, we can
prepare a jþLi. Similarly, j0Li is obtained by (i) starting
with a 3& 3 array of j0i and (ii) executing aMðZÞ in every
row. (II) Clifford group generators: CNOT, H, and Z1=2.—
The CNOT andH gates are transversal, i.e., bitwise, modulo
physical rotations of the array. The Z1=2 gate can be im-
plemented by using the circuit in Fig. 2(a), provided one
can either (a) prepare a logical ancilla j'iLi ¼ ðj0Li'
ij1LiÞ=

ffiffiffi
2

p
with an error rate below pði-ancÞ ¼ 1=2 [3], or

(b) since this gate is not part of the EC routine [15,17],
always use the same j0Li ¼ 1=

ffiffiffi
2

p
ðjþiLiþ j#iLiÞ ancilla

whenever one executes the gate. (III) X and Z basis mea-
surements.—They are required only at the highest level of
concatenation. Given their form, measuring encoded logi-
cal operators can be achieved by measuring only one row
or column of the 3k & 3k encoding array.

Threshold calculation for Clifford operations.—We use
the extended rectangle (exRec) method developed in
Ref. [3] to compute the threshold (see [15] for details).
An exRec of a gate is constructed by prepending and
appending error correction routines on the inputs and out-
puts. The exRec with the largest number of malignant
pairs, i.e., the number of pairs of faults which generate

two or more errors in the data, will determine the threshold
value. A quick inspection reveals that the largest exRec is
the one corresponding to the CNOT gate. Following Ref. [3],
only at level k ¼ 1 must one consider all elements: prepa-
ration and gates (including waiting gates). At level k > 1,
by using contraction of exRecs, preparation locations can
be omitted. This means that one has to solve the recursion
relationships for the error pðjÞ at level j:

pð1Þ ( A0
ðk¼1Þðpð0ÞÞ2; pðkÞ ( A0

ðk>1Þðpðk#1ÞÞ2 ðk> 1Þ;

where A0
ðkÞ ¼

AðkÞ
2 f1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4B=ðAðkÞÞ2*

q
g, B denotes all

possible three-site errors, and AðkÞ denotes the number of
malignant pairs in the largest exRec of that level. This
process can be repeated for four-site errors, etc., to get an
even tighter bound [3]. Executing this algorithm with our
largest exRec, the CNOT, we obtain a threshold value, for
preparation and gates, pðp;gÞthresh ¼ 3:76& 10#5. This
value is not a bound for measurement error rates since
they are not needed during the QEC process and are
required only at the highest level of concatenation. So it

follows that pðkþ1Þ
ðmÞ ( 3ðpðkÞ

ðmÞÞ2 þOðpðkÞÞ. If preparation

and gate error rates are below threshold, then for k large
enough pðkÞ is vanishingly small and the terms OðpðkÞÞ can
be neglected. Then the threshold condition for X and Z
measurements is pðmÞthresh ¼ 1=3.
Encoded non-Clifford operations.—The missing

component to achieve universality is the fault-tolerant
execution of a non-Clifford gate. Using the circuit in
Fig. 2(b), we translate the problem into preparing the
jHLi ancilla. To create an ancilla at the highest level we
will use an encoder circuit. To encode an arbitrary state we
use the following algorithm: (i) We start with the level-0
state j!i we want to encode and 8 j0i states, and then
(ii) we use CNOT gates, including waiting times such that
never in one step does one qubit interact with more than

one qubit, to create the state j ~!i3&3 ¼ aj~0i3&3 þ bj~1i3&3.
Finally, (iii) we execute aMðZÞ gate in every row, to create
the state j!Li ¼ aj0Liþ bj1Li. We can recursively use the
same algorithm to create the state at any level of concat-
enation k. Repeating this process recursively yields an
error rate for the encoding at the highest level of concat-

enation k ¼ L: pðLÞ
anc ( 10pð0Þ þ 108
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ðancÞ cannot be made arbitrarily small; however, provided
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ðgÞ ( pthresh, it can be made small enough to give pðLÞ

ðancÞ (
sin2"=8, and then one can use magic state distillation to
achieve FTUQC [13].
Additionally, we promised that preparation errors can in

fact be much higher than gate error rates. The argument
proceeds by using a variant of the algorithmic cooling
algorithm introduced in Ref. [18]. For a group of three
qubits (a, b, and c) with identical probabilities pðpÞ ¼
"ð0Þ < 1=2, to be in the erroneous state j1i, we apply
TOFFOLI½ðc;bÞ;a*CNOTða;cÞCNOTða;bÞ. The reduced state of qu-

FIG. 2. These circuits need to be implemented only at the
highest level of concatenation, and thus all operations depicted
are encoded operations. (a) Circuit used to execute an encoded
Z1=2 Clifford gate on an arbitrary input j!Li [17]. (b) Circuit
implementing the non-Clifford operation Z1=4 given the encoded
resource magic state jHLi.
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Non-Clifford gate

• Teleport non-Clifford gate using logical magic state

• Errors of the gate dominated by magic state preparation which can be made as 
small as encoded gate errors using the distillation protocol                

5

|φL� • Z
1/2
L

XL ∝ Z
1/4 |φL�

|HL� �������� �� ���� ��ZL •

FIG. 6: Circuit implementing a Z1/4 operation on an arbitrary state
|φL�, given the encoded resource magic state |H�. This circuit must
only be implemented at the highest level of concatenation, and thus
all operations depicted are encoded operations.

of a state at some level k of concatenation is given by

p(k)
anc ≤ (4+ f (S))p(k) +D

k−1

∑
j=0

�
p( j) +up( j)

�
+2p+2pm

= C +2pm, (9)

where u = 63, and D = 8 is given by the specific decoder
circuit D . Here f (S) counts the number of level-k wait-
ing operations needed while the ancillas are being measured.
Each level-k EC gadget takes 8 level-k−1 gate times so each
level-k waiting operation takes time tg×∑k−1

j=0 8 j+1 and hence
f (S) � S/8k. If S < 8k one can still consider one level-k wait-
ing gate and bear in mind that the result of a measurement,
being classical information, can be assumed to be stored per-
fectly within our computation time scale. This is a modified
expression to the one in Ref. [7] because we have considered
that (i) single measurement errors won’t generate an error in
data, in fact they are not required to decode, thus D = 16−8,
and (ii) we have accounted for the contribution of single level
k−2 errors appearing in every k−1 level CNOT, thus includ-
ing the term proportional to u. We see that the measurement
physical error rate, pm, only appears in one term with a fairly
small coefficient. So if we assume that error rates for prepa-
ration and gates are below threshold then for large enough
k = L, p(k) is vanishingly small and (D + u)∑k−1

j=0(p( j))+ 2p
is bounded. Although a formal bound can be computed, we
are interested in a qualitative analysis with a fixed and real-
istic degree of concatenation. Lets say we have a physical
system where p(0) < pthresh, then as we use more levels of
concatenation, two things will happen: (i) p(L) will rapidly
decrease and (ii) the contribution of C in (9) will reach its
bound. For example, for p(0) = 1× 10−5 and f (S) = 10, we
have p(4) ∼ 10−12 and C = 1.08× 10−3 reaching its bound,
i.e. a larger L only adds terms smaller than 10−6.

We can now use an encoded circuit composed of Clifford
operations only to perform magic state distillation (MSD) [4].
Assuming perfect Clifford operations at the highest level, i.e.
p(L)→ 0, MSD works if panc ≤ sin2 π/8 [10]. In our example
p(4) ∼ 10−12 → 0, which in turn implies

pm ≤
sin2 π/8−1.08×10−3

2
= 7.26%. (10)

Given the magic state, all operations to perform the distillation
and non-Clifford gate are encoded Clifford operations of the

highest level and this implies that a universal a universal fault-
tolerant quantum computer can be achieved if one has error
rates for preparation and gate execution below 2.89×10−5

and measurement error rates as high as 7%.
We emphasize that the threshold value for gates computed

here is by no means rigorous as we wanted to keep calcu-
lations simple. We have overcounted malignant pair of lo-
cations, and certainly the design of our circuit may not be
the optimal one in terms of error locations, thus in principle
the threshold can be improved. On the other hand, we have
considered a large library of physical gates including three
qubit interactions, instead of decomposing them into one and
two qubit gates which would lead to a worse threshold value.
However the fact remains that with the removal of measure-
ments from EC through the methods developed here, the level
of permissible measurement noise for FTUQC, once you are
below the gate threshold, is� 7%. The key observation is that
the largest contribution to C in Eq. 9 are the terms proportional
to p(0), so if our pthresh is smaller, then “being below thresh-
old” actually implies that the p(0) is also small. For example
if one had EC gadgets with 50 times more locations, for in-
stance to acomodate for leakage error correction gadgets and
nearest neighbor only interactions, although p(p,g)thresh would
be lower one still achieves pm � 7%. The key element of our
scheme is the replacement of measurements & feedback in the
QEC gadgets with coherent feedback, which overcomes the
problem that measurements are potentially noisier and slower
than gates in many physical systems.

Finally, we promised that preparation errors can in fact be
much higher than gate error rates. The argument proceeds
by using a variant of the algorithmic cooling algorithm intro-
duced in Ref. [20]. For a group of three qubits (a,b,c) with
identical probabilty pp = ε(0) < 1/2, to be in the erroneous
state |1�, we apply CSWAP(b,(a,c))CNOT (a,b), where b is
the control for the controlled swap operation which can be
built with three TOFFOLI gates. The reduced state of qubit a
is colder, i.e. has lower error (ε(1) < ε(0)). Concatenating the
process, by using 9 qubits to reduce to three colder qubits, and
using those three to achieve 1 colder qubit, etc., after j rounds
using a total of 3 j qubits, the final error of the one output qubit
satisfies the recursion relation ε( j) = (ε( j−1))2(3− 2ε( j−1)).
Including gate errors, the total error of this preparation pro-
cess is p( j)

p = ε( j) + 5( j + 1)3 j p(0)
g . In practice we need very

few rounds of algorithmic cooling; e.g. with physical gate er-
ror rates of pg = 1.4×10−6, just two rounds of cooling allow
physical preparation errors of pp = 1% to reach the fault tol-
erant threshold. For even smaller gate errors pg = 4.2×10−7,
after three rounds of cooling one can allow preparation errors
of pp ∼ 7%, the measurement threshold, beyond which no im-
provement is needed since measurement is preparation.

To summarise our results, we analysed a generic system
where gates are more accurately implementable than measure-
ments and preparation, i.e. pg � pm,p, and designed fault-
tolerant tools with this in mind. We found that fault-tolerant
Clifford operations could be achieved if pg,p < 2.89× 10−5,
while pm < 33%. To achieve universal fault tolerant quan-
tum computing we needed to use an injection circuit combined
with MSD, so we assumed that we were below the threshold
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Some issues

• Summary:  

• We assumed ability to perform 3 body gates (Toffoli)

- If we only allow two body gates then replace Toffoli with

- gate threshold reduces to

• We assumed arbitrary connectivity of qubits.  With nearest neighbor 
connectivity only say in 2D would expect a gate threshold reduction by ~3.

• Thresholds could be improved by optimization 

4

EC • EC

EC �������� EC
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M3 • M4
(b)bTOFFOLI(k) exRec

ECX (k) W •

ECX (k) •

ECX (k) �X� �X� N (X)(k−1) M (X)(k−1)
(c)V N i(k) contracted exREC

FIG. 2: The largest exRecs to be considered. An EC gate corresponds to a BS QEC routine while a M gate corresponds to a QR QEC
routine. The circuit (2(c)) is executed in every row of the 3×3 array. Because in the N exRec we are discarding the top-lines we do not
require output M gadgets appended to them. Moreover, at level k = 1 there is no need for the waiting (W) gate and both CNOTs can be
executed simultaneously.

To find the threshold we must now solve the system of equations

p
(1)
CNOT

≤ A
�
CNOT (k=1)(p

(0))2; (8)

p
(k)
CNOT

≤ A
�
CNOT (k>1)(p

(k−1)
CNOT

)2, for k > 1, (9)

which in turn gives that, p(p,g)thresh = 1�
A�

CNOT(k=1)A�
CNOT(k>1)

= 3.76×10
−5. Because no measurement exRec of lower levels

had to be used in our calculations, this threshold only applies to gate and preparation. To find what is the Clifford measure-
ment error rate threshold , we note that at the highest level of concatenation

p
(k+1)
(m) ≤ AEC(k)(p

(k))2 +2u(k) p
(k)

p
(k)
(m) +3(p

(k)
(m))

2. (10)

So if preparation and gate error rates are below threshold, then for k large enough p
(k) is vanishingly small and the first two

terms can be neglected. Then the threshold condition for X and Z measurements is p(m)thresh = 1/3.

Threshold calculation with two-qubit interactions only.- In our library of gates we assumed the possibility of executing
3-qubit gates in the form of a TOFFOLI gate. Threshold computations using this gate are standard, see e.g.[1]. Although for
some architectures it is reasonable to include three qubit gates in the gate library [4], but for others two qubit interactions
are mor e natural. Here we show how to compute the threshold when decomposing TOFFOLI gates into one and two
qubit gates. The main observation is that this decomposition only affects the level-1 of the concatenation level, where we
actually replace the TOFFOLI as shown in Fig. (3) Lets recall the level-1 bTOFFOLI for the BS code is composed by 3

|i� • • • · · ·
| j� • �������� • �������� · · ·

|k� X1/2 X1/2 X−1/2 |k + i× j�

FIG. 3: Decomposition of a physical TOFFOLI gate into two qubit interactions. Note that it requires only three time-steps as the first two
CX

1/2s can be executed simultaneously. The last CNOT gate is not necessary as we will typically discard the controls of such TOFFOLI
and thus they do not count towards our threshold estimation.

physical TOFFOLI targeting one row, and controlled by three classical three bit strings, and 6 waiting gates. Since a physical
TOFFOLI can be executed in three time steps and is composed of five gates, then the encoded bTOFFOLI gate is composed
of 3× 6 + 3× 5 = 33 physical gates. Note that this decomposition mainly affects level-1 of concatenation, as we are only
decomposing the physical gate and not emulating such decomposition at all levels of concatenation. If we input this in our
analysis, an analogue hierarchy of exRecs is maintained i.e. pbTOFF(k) ≤ 1

2 pCNOT (k) and p(V N )i(k) ≤
2
3 pCNOT (k), which in

turn yields a threshold of p(p,g)thresh = 2.68×10−5 now limited to two-qubit gates only.
Error analysis for the encoder circuit.- The error analysis for the encoder circuit is as follows: to encode a level k

state provided a level k− 1 state, we have that step (i) uses 8 CNOTS, 20 waiting gates, and 8 |0� preparations failing with
probability p

(k−1) and step (ii) can introduce unwanted phases with a single error (note that this is not a problem in Clifford
ancilla preparations e.g. |0� states.) thus we count all locations in the M gates. A M (1) contributes with 27 level-0 locations,
while a M (k), for k > 1, contribute with 24 level-(k-1) locations. So we have

p
(L)
anc ≤ 10p

(0) +108
L−1

∑
j=0

p
( j), (11)
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It is not so well known that measurement-free quantum error correction protocols can be designed to

achieve fault-tolerant quantum computing. Despite their potential advantages in terms of the relaxation of

accuracy, speed, and addressing requirements, they have usually been overlooked since they are expected

to yield a very bad threshold. We show that this is not the case. We design fault-tolerant circuits for the

9-qubit Bacon-Shor code and find an error threshold for unitary gates and preparation of pðp;gÞthresh ¼
3:76$ 10%5 (30% of the best known result for the same code using measurement) while admitting up to

1=3 error rates for measurements and allocating no constraints on measurement speed. We further show

that demanding gate error rates sufficiently below the threshold pushes the preparation threshold up to

pðpÞthresh ¼ 1=3.

DOI: 10.1103/PhysRevLett.105.100501 PACS numbers: 03.67.Pp, 03.67.Lx

An ideal quantum computer is a theoretical object ca-
pable of highly efficient computation. A major difficulty
with the realization of such a powerful theoretical object is
that physical implementations of any quantum operation
will be noisy. However, with the use of quantum error
correction (QEC) codes, with the use of fault-tolerantly
designed circuits, and provided that error rates are below
some threshold value, one is still able to efficiently simu-
late a quantum computation with an arbitrarily high accu-
racy [1–3]. Experimental state of the art results show that
the error rates and execution times required for operations
in order to achieve the fault-tolerant regime are not cur-
rently available. The results in this Letter will alleviate part
of this constraint by pushing required error rates a step
closer to current technology.

In many physical systems, measurements pose a poten-
tial bottleneck for scalable fault-tolerant quantum compu-
tation because they are slower and/or noisier than gates or
preparation [4,5]. However, they are central in the readout
stage and are widely used in QEC routines as a way of
extracting error syndrome information in order to correct
the quantum data. Slow measurements have been shown to
be a surmountable issue by using error correction where
measured error syndromes can be classically postprocessed
at the end of a round of gates to execute a compensating
Pauli frame rotation [6], with the caveat that there can be a
significant time lag during classical processing [7].
Regarding noise, measurement error rates cannot usually
be improved by noise suppression techniques, i.e., dynami-
cal decoupling, whereas gates can be [8,9]. Furthermore,
measurement results must be distinguishable in every time
step; i.e., one must be able to discriminate between results
from different measurements repeatedly over the compu-
tation, which leads to further constraints on the physical
processes executing the measurements, e.g., measurements
relying on photon scattering as in ion traps [10].

In this Letter, we overcome these problems by eliminat-
ing most measurements during fault-tolerant computation.

It is well known [1,11] that this is possible for Calderbank-
Shor-Steane (CSS) codes [12]; however, ‘‘The penalty paid
in the stringency of the threshold has never been quantified,
but it is expected that replacing measurement by coherent
operations decreases the noise threshold by a large
amount’’ [6]. We show that, contrary to these conjectures,
coherent fault-tolerant QEC suffers only slightly in regards
to the threshold and brings substantial rewards.
We begin by setting up our scenario and introducing

measurement-free error correction (EC) routines for the
Bacon-Shor code. We then show how to execute fault-
tolerant Clifford operations and derive a threshold error
rate which is stringent for preparation and gates but as high
as 1=3 for measurement. Universality follows by executing
fault-tolerant non-Clifford gates enabled by encoded
magic states, jHLi ¼ ðj0Liþ j1LiÞ=

ffiffiffi
2

p
, which can be pre-

pared by a distillation protocol [7,13] using exclusively
fault-tolerant Clifford operations. Moreover, we show how
to relax the threshold value for preparation, by using a
variant of algorithmic cooling and demanding a gate error
rate pðgÞ sufficiently below the threshold. Thus fault-
tolerant universal quantum computing (FTUQC) can be
achieved with measurement and preparation error rates
pðpÞ and pðmÞ, respectively, which are already within reach
of current technology.
We demonstrate our scheme for the 9-qubit Bacon-Shor

(BS) subsystem code [14], but our tools can be adapted to
other CSS codes (see [15]). The BS code is defined by the
stabilizer set on a two-dimensional array

8
<
:
X X I
X X I
X X I

;
I X X
I X X
I X X

;
Z Z Z
Z Z Z
I I I

;
I I I
Z Z Z
Z Z Z

9
=
;:

For this code, logical Pauli operators are given by XL ¼Q3
i¼1 Xi;1;ZL ¼ Q3

i¼1 Z1;i modulo stabilizer operations;
i.e., XL (ZL) acts on a column (row) of the array. This
subsystem code is invariant under pairs of X (Z) operators
along any given row (column) because they act only on
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FT computing with boundary control
• Use global pulses to control the computer

- Measurements done only at one boundary

3D 2D

12

Figure 4. Schematic of the 2D architecture. All nearest-neighbor interactions are
required, but only next-to-nearest-neighbor interactions between odd qubits, i.e.
the equivalent of nearest-neighbor interactions between info-qubits, are required.
This ‘cross-free’ structure of the interactions would be beneficial, for instance,
in solid-state implementations since wires would not need to cross. Each line
can also be viewed as a 1D of two types of qubits (ABAB addressability), where
only AA, BB and AB nearest-neighbor interactions are required. Recall that in
the logical direction, we require ABAB addressability to ensure fault tolerance.

interactions. We essentially need to show that a SWAP gate between two qubits containing
data/information can be executed in a FT way, i.e. such that one gate error does not generate
more than one error in the data qubits.

To achieve an FT swap gate, we introduce placeholder qubits, that is, qubits that we require
specifically to physically move information around, but which hold no computationally valuable
information. To differentiate them from placeholder qubits, we shall label the qubits involved
in the computation, i.e. data plus ancilla qubits, by information-holding qubits, i.e. info-qubits.
Consider a 1D line of info-qubits, for example encoding a logical qubit, denoted by ρi , with
interspersed placeholder ancilla qubits, denoted by η j , in between every nearest-neighbor pair
of info-qubits (e.g. any horizontal line of figure 4). Using nearest-neighbor and next-to-nearest-
neighbor interactions, we can now SWAP two info-qubits containing relevant information (ρ
and ρ̄, respectively), in such a way that a single failure in a SWAP gate does not generate
two errors in the info-qubits, through the following routine, where the subscripts in ρ and

New Journal of Physics 13 (2011) 013011 (http://www.njp.org/)
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Figure 1. Schematic of the addressability requirements and qubit distribution of
our semi-global architecture. Vertical global pulses are capable of executing the
single-qubit (green) and two-qubit gates (red) described in the text. Computation
is achieved through the vertical nearest-neighbor-independent T̃ pulses, which
can be decomposed into two subroutines (black and brown T̃ pulses), in virtue
of the ABAB addressability, so as to ensure fault tolerance. The end-planes
(darker blue) are fully addressable independently of the bulk of the computer,
and must have extra space to accommodate an |HL� state encoded at the highest
level of concatenation in order to execute the non-Clifford encoded gates. All
planes contain enough qubits to hold an encoded qubit, the ancillas required
for its unitary quantum error correction (UQEC). We also require that every
plane has physical qubits that can be reset (simultaneously in all planes) to use
a resource for algorithmic cooling (simultaneous in all planes); note that the
resetting operation assumes no single plane addressability.

qubits in the array. We label an indexed array of 3D locations by the coordinates (x, y, z),
where each coordinate s ∈ [1, Ns], for s = {x, y, z}, and we label the addressable lines in
the 3D array by (x, y). The action of a single-qubit gate addressing the line (x, y) is given
by U(x,y) =

�
z U(x,y,z), whereas two-qubit gates between addresses (x, y) and (x �, y�) are

given by V((x,y),(x �,y�)) =
�

z V(x,y,z),(x �,y�,z), with the obvious generalization for multi-qubit gates.
Approaching measurements this way is not practical as it does not allow one to discriminate
individual qubit measurement results along z. We shall assume that all measurements are
carried out at the boundaries. In fact, we allow the possibility of executing any operation on
the z-boundaries, i.e. O(x,y,1) and O(x,y,N z) for any (x, y). The addressing limits described above
impose a constraint on the type of gates we can execute in the z-direction: for example, we
cannot directly execute a gate of the form V(x,y,z),(x,y,z�) (figure 1). We note that we allow long-
range interactions within every z-plane, but that one can restrict to nearest-neighbor gates with
a slight reduction of the FT threshold due to the introduction of intermediate SWAP gates.
We require the ability to execute nearest-neighbor CZ gates in the z-direction along (x, y)
columns. We will show that this limited addressability, where we can only address columns

New Journal of Physics 13 (2011) 013011 (http://www.njp.org/)
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• Global pulses move info

• Only  O(N) overhead in circuit complexity
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Figure 1: Simplification of the qudit SWAP gate when one of the
inputs is the |0� state. (A) Full SWAP from (1d), (B) shaded gates
are redundant for input |0�2, (C) inserting F̂ F̂−1 on either side of
the target on CSUM gates, (D) simplification using (1c).

F̂ gates, where |+� = F̂
+1 |0�. Through the repeated applica-

tions of SF , with the global qudit gates F ≡
�N

j=1 F̂(j), and
S ≡

�N−1
j=1 Ŝ(j,j+1), one can transport the unknown quantum

state from one end of the qudit chain to the other [21]. As it
stands, it would seem from Fig. 2(A) that perfect mirror inver-
sion requires the particular initial state |Ψ�⊗|0�⊗|+� · · ·⊗|0�.
We now show that this is not the case.

It was shown for the qubit case that the transport does
not depend on the input states [4]. The proof relies on
showing that (H S)N+1

X̂
l
(a) = X̂

l
(N+1−a)(H S)N+1 and

(H S)N+1
Ẑ

l
(a) = Ẑ

l
(N+1−a)(H S)N+1 which implies that

any N−qubit density matrix is spatially inverted after the ac-
tion of (H S)N+1. For qudits, it suffices to show the analo-
gous relations, i.e.

F
±2(F−1

S)N+1
X̂

l
(a) = X̂

l
(N+1−a)F

±2(F−1
S)N+1

,(2a)

F
±2(F−1

S)N+1
Ẑ

l
(a) = Ẑ

l
(N+1−a)F

±2(F−1
S)N+1

.(2b)

We now develop the basic algebraic relations used to prove
(2). These relations will be very important in a generalization
from qudits to continuous variables, as showing that they also
hold for the CV case immediately verifies the validity of the
mirror circuit in that case. To simplify the notation, the over-
bar denoting the global pulse is dropped unless stated other-
wise by a subscript i.e. F → F̂ , but F̂(a) → F̂(a). Direct
calculation shows

F̂
±2
(a) Ẑ

l
(a)F̂

±2
(a) = Ẑ

−l
(a) , (3)

and F̂(a)X̂
l
(a) = Ẑ

l
(a)F̂(a). The operator (1a) can be written

as Ŝ(m,n) =
�

ij ζ−ij
Ẑ

i
(m) ⊗ Ẑ

j
(n), to obtain

Ŝ(a,a+1)X̂
l
(a) = X̂

l
(a)Ẑ

l
(a+1)Ŝ(a,a+1) , (4a)

Ŝ(a,a+1)X̂
l
(a+1) = X̂

l
(a+1)Ẑ

l
(a)Ŝ(a,a+1) , (4b)

Ŝ(a,a+1)Ẑ
l
(a) = Ẑ

l
(a)Ŝ(a,a+1) , (4c)

(F̂−1
Ŝ)X̂ l

(a) = X̂
l
(a−1)Ẑ

−l
(a)X̂

l
(a+1)(F̂

−1
Ŝ) , (4d)

(F̂−1
Ŝ)Ẑl

(a) = X̂
l
(a)(F̂

−1
Ŝ) . (4e)

To derive Eqs. (2) a graphical method [4] is used [Fig.
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Figure 2: (A) Perfect mirror inversion circuit for qudits. Although
particular input states are shown, the mirror action is independent of
the input. (B) Evolution of the Ẑl (and X̂l) under repeated actions of
F̂−1S. The horizontal axis gives the number applications of F̂−1S,
while the vertical axis is the qubit position. The Ẑl (�) and X̂l (�)
operators evolve according to (4), (black shape indicating a negative
power of the correponding operator). After N + 1 repetitions the Ẑl

operator has moved to its mirror spatial position along the chain but
has suffered l → −l. Negative exponent is corrected by the final
F̂−2 operation.

2(B)] to obtain (F̂−1
Ŝ)N+1

X̂
l
(a) = X̂

−l
(N+1−a)(F̂

−1
Ŝ)N+1

and (F̂−1
Ŝ)N+1

Ẑ
l
(a) = Ẑ

−l
(N+1−a)(F̂

−1
Ŝ)N+1. It follows

[via (3)] that extra final F̂
±2 corrects the exponent l → −l.

Fig. 2(B) shows the evolution of an initial Ẑ
l operator after

the consecutive action of F̂
−1

S. It is extended to N + 2 so
the evolution of both X̂

l and Ẑ
l can be fully appreciated. It is

important to note that the property Ẑ
d = Î = X̂

d was never
used, thus allowing us to use the same method for the CV case
which lacks this cyclic property.

Continuous variable mirror transport:- For continuous
variables [10] the same argument is used. The CV analogues
of the generalised Pauli operators are X̂(q) ≡ ζ−qp̂, Ẑ(p) ≡
ζpx̂ where ζ = e

i/�, are non-commutative, X̂(q)Ẑ(p) =
ζ−qp

Ẑ(p)X̂(q), and have the following action on the compu-
tational basis (position eigenstates x̂ |q� = q |q�): X̂(q) |s� =
|s + q�, Ẑ(p) |s� = ηsp |s�. By combining X̂(q) and Ẑ(p),
the displacement operator D̂(α) = exp(αâ

† − α∗â) can be
formed. Given that any valid infinite dimensional density op-
erator can be decomposed into a sum over coherent states via
the P−function [16], ρ̂ =

�
d
2αP (α) |α� �α|, and that |α� =

D̂(α) |0�, the operators Ξ̂(q, p) = X̂(q)Ẑ(p); q, p ∈ R2 form
a basis for H∞. This shows that CV-mirror transport protocol
can be used to mirror any initial state of the CV-chain.

Following the literature on CV-gates [10], basic gates are

Global Clifford operations to
swap a state on a chain

H e i s e n b e r g p i c t u r e .  
Mirroring of a register 
independent of input. =X=Z

Can address qubit a at the 
boundary at time step N-a+1

F=Hadamard 
(for qubits)

=CPHASE
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Performance

• Semi-global approach effectively reduces the number of control modes by a 
factor proportional to N, number of logical qubits

- True even compared to circuits which allow for measurement and hence have 
higher threshold

• E.g. Shor’s algorithm

Bit size of integer to 
factor # logical qubits

Improvement over 
addressable circuit 

without measurement

Improvement over 
addressable circuit 
with measurement

768 1540 86 84

2048 4100 2048 225

4096 8196 4096 451
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Summary & Outlook

• Quantum computers can be controlled/addressed on the boundary in a fault 
tolerant way

• Measurement free error correction with threshold only factor ~3 worse than 
similar model with measurement

• To do:  Show how gate error rates could be improved with dynamical 
decoupling schemes, also include gate errors

• Can measurement free QECC be useful for adiabatic QC?

• A fault tolerant 1D QCA?

- global control protocol can be modified to do all operations homogeneously 
without boundary control (need to schedule magic state injection for Pi/8 and 
Z1/2 gates at each site) 

- has the right flavour except the QCA cell dimension grows as log(N)
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