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In this talk

MBQC Bell Inequalities
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| try to convince you that Bell inequalities

d

nd measurement-based quantum

computation are related...

N ways which are “trivial but interesting'.



Talk outline

o A (MBQC-inspired) very simple derivation /
characterisation of CHSH-type Bell inequalities and
loopholes.

® Understand post-selection loopholes.

® Develop methods of post-selection without
loopholes.

® Applications:

® Bell inequalities for Measurement-based Quantum
Computing.

® |mplications for the range of CHSH quantum
correlations.



Bell inequalities



Bell inequalities

® Bell iInequalities (Bls) express bounds on the statistics of
spatially separated measurements in local hidden variable

(LHV) theories.
random random
setting setting
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Bell inequalities

random A choice of different measurements
seting chosen “at random”.

|

A number of different outcomes



Bell inequalities

® [hey repeat their experiment many times, and compute
statistics.

® |n a local hidden variable (LHV) universe, their statistics are
constrained by Bell inequalities.

® |n a quantum universe, the Bls can be violated.
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CHSH inequality

In this talk, we will only consider the simplest type of Bell
experiment (Clauser-Horne-Shimony-Holt).
Fach measurement has 2 settings and 2 outcomes.

| |
A




Boxes

We will illustrate measurements as ‘boxes’’.

lsj € {0,1}

In the 2 setting, 2 outcome case
we can use bit values 0/1 to

label settings and outcomes.

lmj c{0,1}



L ocal realism

® Realism: Measurement outcome
depends deterministically on setting
and hidden variables A.

® You can think of A as a long list of
l values, or as a stochastic variable l

(shared randomness).
)\ ® | ocality: Outcome does not depend )\
l on the settings of the other l
measurement.

® No other restrictions are made on the “boxes’, we want
the “worst case scenario’.



CHSH inequality

s1 € {0,1} sz €{0,1}

l l

! ! |

mq < {0, 1} Mo € {O, 1}

A

® |n the classical CHSH inequality, we study the statistics of the
parity of the measurement outcomes via the quantity:

Ey, s, = p(m1 @ ma = 0|s1,52) — p(m1 @ ma = 1]s1, 52)

Depgnds on Sdame opp05|te
measurement settings



CHSH inequality

® [he range of correlations depends on underlying theory:

LHYV (classical) - The CHSH inequality
Eoo+LEo1+E10—FE11 <2

Quantum
Eoo+ Eg1+ E1g—FE11 <2V2

General non-signalling theory (PR Box)
Eoo+Eo1+FE10—FE11 =14

B.S. Tsirelson, Lett. Math. Phys. (1980). S. Popescu and D. Rohrlich, Found. Phys. (1994)



CHSH inequality

® [he range of correlations depends on underlying theory:

LHV (classical) - The CHSH inequality

Eoox Eo1|+ |E1oF 11| <2
Quantum
Eoo+ Eo1| +|FioF Eia| <2v2

General non-signalling theory (PR Box)

< 4
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B.S. Tsirelson, Lett. Math. Phys. (1980). S. Popescu and D. Rohrlich, Found. Phys. (1994)



GHZ paradox

) = |001) + |110)

(uniguely) satisfies:

XX QX[Y) =)

XY Y|[y) =)

Y X Y|) = |9)
which also imply:

Y ®Y @ X[y) =)

Correlations
N outcomes of
local
mMmeasurements

GHZ “Paradox’: No real number assignment of X and Y

can satisfy all these equations.

N. D. Mermin (1990), building on Greenberger, et al. (1989)



GHZ paradox

® |n the binary box notation these correlations can be
expressed In a very clean way.

S1 S9 S1 D S92

mi1 D Mo D M3 = S189

® [his looks a bit like a computation.



Geometric approach to
Bell inequalities



Geometric interpretation of Bls

® Rather than describing the correlation in terms of £ it is
convenient to switch to the equivalent picture of conditional
probabilities.

Es, s, = p(m1 @ ma = 0|s1,s2) — p(m1 & ma = 1]sq, s2)

=1 —2p(my & mg = 1]s1, S2)

\

Probability that outputs have odd parity
condrtional on input settings s




Geometric interpretation of Bls

® [hese conditional probabillities can be combined to form a real
vector.

p(Sla 82) — P(m1 D mo = 1\817 82)
11,1

3 conditional
) probability
) space
)

0,0,0,0

® [ach possible set of conditional probabllities Is represented a
point in a unit hypercube.



LAV Polytope

® |n a local hidden variable model, we assume:;

® (Outputs depend deterministically on the settings
and the shared hidden variable A.

® Thus for a given value of A Convex hull

p(s) = f(A,s)
® Treating A stochastically,

p(s) = > p(N)F(\s)
A
\

Convex combination




LAV Polytope

® [his means that all LHV correlations inhabit the

convex hull of the fixed-A correlations.
Facet

= Bell inequality
® Such a shape is ; e

called a polytope. —

® [t represents all
Bell inequalities
for that setup.

Vertex
Deterministic
correlation

Convex Hull



LHV vs Quantum Regions

Quantum corre
span

ations violate Bell inequalities, but do not

the whole of correlation space.

Quantum
region —~—

NN T~ PR Box

MAybe talk about
derivation of quantum
region - a hot topic

N LHV region:
“Bell polytope”™

Marcel Froissart: Nouvo Cimento (1981), B.S. Tsirelson, |. Sov. Math. (1987)



LHV vs Quantum Regions

Current hot topic: Why Is the gquantum region the shape It IS/

® No-signalling? (Popescu-
Rohrlich)

® |nformation causality.

® Communication complexity.

® Uncertainty principle?

Varying degrees of success,
although mostly only the bi-
partite setting Is Investigated.




Geometric interpretation of Bls

® [he LHV polytope for the CHSH experiment was first
derived by Froissart in 1981,

® [he polytope a hyper-octahedron. The facets represent the
CHSH inequalities (and normalisation conditions).




Many-party Bell
inequalities



Many-party Bell-inequalities
® \Werner and Wolf (2001) generalised the CHSH setting to n-

parties.

® [hey keep 2-settings, 2-outputs per measurement and
consider conditional probs for the parity of all outputs.

L |
ol b

® [hey showed that the full n-party Bell polytope - for any n,
s a hyper-octahedron in 2*n dimensions.



A simple characterisation of
LAV correlations



Changing the lens

M (D, 4z
M = 69 m;
J
® A conditional probability S
® s a map from a bit string l

® 10 a probability distribution p(M — 1‘3)



Changing the lens

M (D, 4z
M = 69 m;
J
® A stochastic Boolean map S
® s a map from a bit string l

® 10 a probability distribution p(M — 1‘3)



Changing the lens

|nput > S S9 Sn
l l l
l l l
M (D, 4z
Output > M =m;

® \\e can think of this as a
computation.

® [he structure is (a bit)) reminiscent of
measurement-based quantum computation.



LHV region

® Standard approach to deriving Bell inequality
region:

® \What conditional probabilities can we achieve
under LHV?

® | his approach:

® \What stochastic maps (computations) can we
achieve under LHV?



LAV Polytope

® \We said, in the LHV model, outcomes depend
deterministically on s and A,

p(s) = f(A,s)
and these probabllities form the vertices of the polytope.
® [f these outcomes are deterministic, given A and s,
p(s) = f(A,s) € {0,1}
® e. f(As)is a Boolean function.

® [0 characterise the polytope, we only need to
characterise these functions.



Boolean functions

® A Boolean function maps n bits to | bit

® Any Boolean function can be expressed as a
polynomial.

® [he linear Boolean functions are degree |;
n

f(8) = P ajs; ® ao

j=1

® |n other words they are just bit-wise sums,
(parity, XOR).



What do we find?

® For the CHSH experiment, the functions are easy
to characterise.

® |n this case, the LHV region is simply:

® the convex hull of all linear functions on s.

M(5) =EPb;s; @ a
J

® [his statement defines a 4™n facet polytope.

(A mathematically equivalent polytope was
derived by Werner and Wolf.)




Why this shouldn’t be surprising

® [tis well known in QIP that CHSH inequality, GHZ
haradox, Popescu Rohrlich non-local box

® can all be cast as a computational XOR game
where the goal I1s to non-locally compute the
AND-function on input settings.

S1 So
| | Goal:

% I ] % miy © Mo = S152
ma mo

See e.g. Cleve, Hoyer, Toner and Watrous (2004),
Anders and Browne (2009)



WVhat this explains

® [tis well known in QIP that CHSH inequality, GHZ
haradox, Popescu Rohrlich non-local box

® can all be cast as a computational XOR game
where the goal I1s to non-locally compute the
AND-function on input settings.

S1 S9
| | Goal:

ﬁ/ I I % mi @ mo = 8159
mi Mo

See e.g. Cleve, Hoyer, Toner and Watrous (2004),
Anders and Browne (2009)



VVhat else this explains

® GHZ paradox can be generalised. Every non-linear
function, generates a family of GHZ-like paradoxes.

S1 S9 S1 + So

M1 @D Mo D Mg = S152

Anders and Browne (2009), Raussendort (2010),
Hoban, et al (2010)



Simple derivation of the LHV region

Proof sketch

® \We need to identify deterministic maps and then take the
convex hull (i.e. allow LHVs to be randomly correlated.)

® First let us consider a single box. S

® Due to locality and l
independence of measurements,

m; can only depend on sj and _
the local hidden variables. l

1

® [he most general deterministic relationships between output
and Input can be written:

m; = a; + bjmj a; € {O, 1} bj c {O, 1}
® |e.there are only 4 |-bit to |-bit functions - all linear.

® g and b; depend only on the LHV A



Simple derivation of the LHV region

® Now, we consider the output of many such boxes, and
consider their parity, whose statistics we are studying.

f f Sln
Lok i

M = am]’ — EDCL]' @@bjsj
J J :
All linear

M(s) = 69 bjs; D a ‘/functions on s
J




What do we do with this!?

Werner-Wolf-
Zuchowski-Brukner (2000) | Us (2010)
Hyper-octahedron — 4 ™~ Linear functions

® Standard approach:

® Compute facets of the polytope (47 n tight Bell inequalities - e.g.
experimental non-locality tests).
Straightforward, but inefficient

® Alternative approach:

® Remain In a vertex picture and use the simple characterisation to
prove some general results without the need for computing facets.

® Particularly good for studying loopholes and post-selection.



Loopholes in
Bell inequality Experiments



Loopholes in Bell Inequality experiments

® [he beauty of Bell inequalities Is that they are
experimentally testable.

® However, Bell's assumptions are strict.
® Space-like separated measurements
® Perfect detection efficiency
® Measurement settings chosen at random (free-will).

® |f these do not hold, then an apparent Bl violation
may be explainable via a LHV theory.

® |n other word - there may be loopholes.



Loopholes in Bell Inequality experiments

Loopholes make the LHV region larger.

Allowed LHV
Allowed lLI—I\/ correlations
correlations under actual
under Bell’s

experimental

assumptions conditions




Loopholes

Convex sum
contains

a non-linear
function!

® Since LHYV region corresponds

loopholes can only arise whe

compute non-linear functions.

N

to linear functions,

there 1s a mechanism to



Loopholes

® Eg Locality Loophole

S1 S2

| |
i l

® |f one measurement site ‘learns’” the value of
any other input It has the capabillity to
output a non-linear function.




Loopholes

® E.g Detector Loophole

S1 52

l l
“Click” ] N “Fail”

® Garg, Mermin (1987): LHV models can fake

inefficient detectors of efficiency N while
violating Bell inequalities up to the bound:

4
Loo+ Eo1+Ei10—Lig < — —2

Y




Loopholes

® E.g Detector Loophole

S1 52

l l
“Click” ] N “Fail”

® Due to the need to post-select the data where both detectors fire.

® Post-selection can renormalise the statistics - "boosting’ certain
condrtional probabllities relative to each other.

® Here we can give an explicit and simple model of how post-
selection can introduce a non-linearity.



Post-selection loopholes: A toy example

Consider the following LHV correlation. Bit ¢ 1s a random variable
shared by the boxes.

S1 S2

1 l

C C

l l
mi; =8 Pcd1 Mg = CS2

Non-linear! Loophole!

—

This implies ¢ = s1 and hence ma = s152

Now we post-select onm; =1



Example: A post-selection loophole

® \What is the source of non-linearity?

S1 S2
C C
C = Sq mo = CS2

® Post-selection allows the hidden variable ¢ to “learn’ the
value of sj.

® [tis only the lack of knowledge of other inputs which
restricted us to linear functions before.

® Post-selection can correlate inputs s with LHVs and the
LHVs (shared by all parties) act as a broadcast channel.



The detector loophole

® [he detector loophole can be understood via a similar model.
® Ve model an imperfect detector as a box with 2 outputs.

® [he second output d; will now determine whether the
detector fires (1) or not (0).

® [he first output m; represents the output of the detector In
the event that It fires.

S1 S2

l |

output l l click? outputl l click?
ma d1 mo  do




The detector loophole

S1 S9

l l

C C
l l l l
m1 di=cPHs1 D1 Mo = CSo do =1

® \We now post-select on d; = I.
® Assuming c Is unbiased, we get a “click” half of the time.

® [he output of detector 2 (which always clicks) equals ss.



The detector loophole

S1 S9
l l
c T c T
l l l l
mi=r di=cHs;1 Pl Mo = CSo DT do =1

® Adding shared unbiased brt r, we recover the statistics
of the Popescu-Rohrlich non-local box.

® \ia a further shared unbiased bit, we can symmetrise.

® Half the time: Above strategy
alf the time: Mirror-flipped strategy




The detector loophole

® Ve need one final step to "fake™ inefficient quantum detectors.

® |n symmetrised strategy:

p(click) = 3/4
p(click,click) = 1/2

® (Quantum detectors fall independently. 1.e. we need:
p(click,click) = p(click)*2

® Solution: Add correlated fail outcomes.

® (an then fake independent detectors with efficiency 2/3 and
perfectly simulate a non-local box.



The detector loophole

® Garg and Mermin

4
Loo+ Eo1+Ei10— L1 < — —2

Y

® [he model saturates Garg and Mermin’s inequality for n = 2/3.

® By modifying the strategy, we can boost the faked efficiency at
the cost of lower Bell inequality violation.

® [hat model then saturates G & M's inequality for all n.



Avoiding post-selection loopholes

® (an we post-select without creating loopholes!

® Post-selection can enable non-linear maps in only two
ways

® [he post-selection itself induces an explict non-
linear relationship between input brts and output.

® Post-selection correlates input bits and LHVs.

S92

f 1
| i



Post-selection is universal

® \\e post-select In every Bell inequality
experiment!

wn

I ma2 I M2

m
I I 0
I 0 |
I I |
0 0 0
I 0 0

OO0 |—|[—|O

® | et x label the particular conditional probability
we want to calculate. Then we post-select on
data satisfying s = x .




Post-selection is universal

® o Setting x =0l

wn

2 I 2

m m m
I I 0
I o I
| | |
O O O
I 0 0

o|lo|+|+|o

® [o compute p(é} mj = 1|s = 01) we post-
select on data where s = 01,




Post-selection is universal

® \/\/e make this distinction since
® s s an unbiased random string
® X |S hot

® \We can use this observation to post-select
N a non-trivial way without introducing
loopholes.



Loophole-free post-selection

® or example, we can post-select such that
each setting bit s; depends linearly on the bits

of X. x

sj = fj(x) l

linear pre-computation

where fj Is linear in x. 1 ) ]
® This is equivalent linear | } |

pre-computation on x.

® Via our earlier argument, the parity of outputs
inhabrts convex hull of functions linear in x.



Loophole-free post-selection

® [hisisnt really new. In fact, this Is the type of
post-selection you'd do in a GHZ experiment.

® Note a
dimens

T1 T2 T1 D To

| | l
! i i

m1 Mo ms3

SO, such post-selection reduces the
ion of the linear polytope from 27 |s|-brts

to 27 |x].



Loophole-free post-selection

® More Interestingly, we can introduce post-selection

on settings and outputs.

sj = fi(x) @ gj(m)

where f; and gj are linear functions.

® [his looks dangerous.VWe know that measurement

the

® Sur
out

shared LHVs.

brisingly, after such post-selection, t

but bits remains linear. No loopho

ne parr

bits can act as a conduit to map information onto

ty of

e IS INC

uced.



Loophole-free post-selection

® [he Iinturtion of why this post-selection induces
no loopholes is the following:

sj = fi(x) @ gj(m)

® s; Is an unbiased bit. [t thus acts as a “pad”
preventing the measurement bits from

“learning’” any information about x.

® |t doesn't matter whether the sj's are
correlated, only that their marginals are
unbiased.




Loophole-free post-selection

® [his type of post-selection can “simulate’ an
adaptive measurement.

o Eg

S1 = I So = To D M

® Provided that adaptivity Is linear, e.g. settings

depend only linearly on other measurement
outcomes.



Bell tests vs MQBC



Measurement-based quantum computation

Prepare entangled | Measure a sub-set of
resource state qubits
e.g. cluster state
. ]
. ‘ ‘ ‘ ‘ ‘ Process measurement
0000000 results
90 0 0 0 0 @ ’\
y
90 0 0 0 0 0 Choose bases for
, . , , , , , next subset of
measyrements
\

Computational Output

Measurements are adaptive



Bell Tests vs MBQC

® Bell test
random random ® Single-site measurements
setting setting
| | ® Random settings,
% space-like separated
v v ® on an Entangled State

® t0 achieve a Non-classical
Correlation

® and hence refute Local Hidden
Variable (LHV) Theories



Bell Tests vs MBQC

® Measurement-based
Quantum Computing

® Single-site measurements

® Adaptive

® on an Entangled State

® to0 achieve a Non-Classical
Computation



Bell Tests vs MBQC

s0 000
90000
90000
0000
0000
o000 ©

@
._
’_
'_
e

® Adaptive

random random
setting setting

vsﬁjl l%
) v

® Random settings,
space-like separated

VS



Measurement-based quantum computation

In Raussendort and Briegel's cluster state MBQC,
adaptivity Is linear!

Every measurement setting Is a linear function of
previous measurement outcomes.



Bell inequalities for MBQC!?

® [his means that with loophole-free post-

selection, we can simulate the

BQC-type

correlations In a Bell-type exper

® MBOC and Bl violations have a s

mMent.

imilar foundation.




Adaptivity in MBQC
® \We believe that adaptive measurement Is

required in MBQC to achieve universality.

® \//ith simultaneous measurements we can
only achieve circuits of the form:

|O> QN — Clifford — Diagonal — Clifford —

® [his s closely related to Bremner and
Shepherd’s IQP model.

® [ his model Is not universal.



A larger quantum region?

® \We'd thus expect to achieve
correlations with linear adaptivity
impossible without It.

® [his implies that the post-
selection, which left the LHV
reglon Invariant, might increase

the quantum region. \ J
® Can we show this? =)

\

With post-
® Yes, selection?



A larger quantum region

e Consider the function: f(z) = z1x223

T1 L2 T1 D T2

M1 @D Mo D M3 = T1T2

® \We can compute f(x) with two AND gates - using
the GHZ correlation twice using linear adaptivity.



A larger quantum region

CHSH correlation space

f(z) = r12973

Non-post sele.cted\ \ Post selected
quantum region p~—__ quantum region

Using methods adapted from Werner and Wolf we can
show that this lies outside the standard quantum region.



Summary

® |n CHSH experiments, LHV region Is characterised
by the set of linear functions on the input settings.

® Hence, loopholes = source of non-linearity.

® \/Ve can post-select in a non-trivial way without
introducing a loophole.

® Post-selection simulates the adaptivity structure of
Raussendorf and Briegel MBQC.

® \/\/e see a concrete connection between Bell
inequality violation and (quantum) computation.

® | oophole-free post-selection can enlarge the region
of quantum correlations.



Outlook and Open Questions

Better characterisation of linearly adaptive quantum region?

Consider more general correlations (i.e. than just CHSH-
parity)! Other "guantum games’?

Study other detection loopholes (E.g. Eberhard’s analysis).

Our methods generalise to higher dimensions, though the
post-selection result fails. Is there a “'safe’” form of post-
selection in higher d! Consider high-d cluster state
computation?

Are there implications for attempts to axiomatise quantum
correlations (currently good for bi-partite case only). Which
region should one axiomatise!

Use MBQC correspondence for quantum circuit bounds! E.g.
Heuristics for QP vs BOP!?
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