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Self-correcting memory

Self-correcting memory = physical system
which encode (quantum) information
• reliably
• for a macroscopic period of time
• letting the memory interact with its environment (thermal noise)
• without active error correction

Encoding

DecodingNoise
|ψf �|ψi� |ψ�

i�

Code = degenerate groundspace of a local Hamiltonian 
            of spin particles on a (2D) lattice.
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Self-correcting classical memories
2D ferromagnetic Ising  model

HIsing2D = −
�

�i,j�

σ
i
z ⊗ σ

j
z 0 1

• thermally stable: for T<TCurie, no macroscopic error droplets 
• contrasts with 1D case : point-like excitations which diffuse freely

Not stable under perturbation! 
➡ (small) magnetic field breaks degeneracy
➡ true for any system with local order parameter

Quantum systems
➡ with no local order parameter ?
➡ stable spectrum ?

Topologically ordered system !

E0

E1

O(1)
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(Archetypical) example : Kitaev’s toric code (1997)

Periodic boundary 
conditions

Spin-1/2 on the edges

All operators commute pairwise.

A Kitaev.  Ann. Phys. 303(1), 2–30 (2003)

X
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X X

X

Star operator

As =
�

i∈N (s)

σi
x

Z
Z Z

Z

Z
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Z

Plaquette operator

Bp =
�

i∈p

σi
z

H = −
�

s

As −
�

p

Bp

Kitaev’s toric code is spectrally stable.
Is it thermally stable ?
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Unstability of Kitaev’s toric code

No energy for anyon 
propagation.

Groundstates

∀s As|ψ� = +|ψ�
∀p Bp|ψ� = +|ψ�

Z
X

X
X X

X

X
XX-1 -1

O(1)

∝ L

Energy meter

Z Z Z Z Z Z
Logical operator : string of Z X

X
XXZ -1

X

X
XX

Thermal fluctuations can accumulate and corrupt the information. 

Excitations
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Broad class of 2D codes: LCPCs

N finite dimensional spins located on the vertices of a 2D lattice (V, E). 

H = −
�

X⊂V

PX
• bounded strentgh

• terms commute

• local

• frustration-free

We are interested in the groundspace of H and scaling of the energy gap.
Without loss of generality, PX = projector

�PX� ≤ 1

[PX , PY ] = 0

diam(X) ≥ w ⇒ PX = 0

∀X PX |ψ� = +|ψ�

P =
�

X

PX

Local commuting projector codes (LCPCs)

PX |ψ� = +|ψ�
[PX , PY ] = 0

(PX)2 = PX

Code projector

Stabilizer

Pk → Sk =
�

ik

σ[i]
ik
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Spectrum stability: local topological order

Local topological quantum order (LTQO)

• local indistinguishability: local operators cannot discriminate groundstates.
• local consistency: local groundstate is compatible with global groundspace.

Spectrum of LCPC Hamiltonian is stable if the Hamiltonian has local 
topological quantum order (LTQO).

Bravyi, Hastings, Michalakis (2010)

A ρA = TrĀP

ρlocA = TrĀPA
have same kernel.

LC

∀OA ∃cA POAP = cAPLI forbids local order parameter

PA =
�

X∩A �=∅

PXLocal projector on the code
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Formal definition of self-correction
Thermalization requires detailed knowledge of system dynamics.

Logical operator : operator that maps groundstate to gs.

Sequence of local moves (CPTP maps) that implements logical op?

Maximum energy of intermediate states : energy barrier?
E

t|ψi�

O(1)

∝ L

Energy meter

|ψf � �= |ψi�

Encoding

DecodingNoise
|ψf �|ψi� |ψ�

i�

∆(E ,ψi)

Simplified model for thermalization
• penalize high energy states (Boltzmann factor)
• local moves in noise model

∝ e−E/kBT

[K,P ] = 0
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Key features
• logical operator is supported on a string of particles
• logical operator is a tensor product of single-body unitaries
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Known results: stabilizer codes & LCPCs
Instability in Kitaev’s toric code 

General result for stabilizer codes
➡ cleaning lemma (Bravyi & Terhal ’09)

Generalization to LCPCs
➡ disentangling lemma 
Bravyi, Poulin & Terhal ’10
➡ Haah & Preskill ’12

How to apply it 
• through a sequence of local moves? 
• without creating too much energy?

LCPCs : logical operator is supported on a strip, but not a tensor product.
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Main result

Main result (arXiv:1209.5750)
For any 2D local topologically ordered LCP code, 
we exhibit a physically realistic error model 
corrupting the information.

Tradeoff between spectral and thermal stability.

Local topological order Spectral stability

BHM ’10

Thermal unstability

this work
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Sketch of the proof (1): coarse-graining

Coarse-graining

• Sites on the strip
• Local constraints
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Sketch of the proof (II): fortuitous model

Fortuitous model
• depolarize every site on the strip N
• project back onto the code

Unphysical model: too much energy and projection very unlikely. 

Clearly wipes out the information supported on the strip.

Idea : interleave the depolarization step and projection at each site.
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Sketch of the proof (III): iterative randomization model

Iterative randomization model

For every site k (iteration),
• apply random trial unitary
• measure Pk-1,k

Immediate properties
• at any step, the energy is constant above the gs energy
• no need to backtrack

O(1)

∝ L

To show
• no dead-end and expected number of trials at each iteration is constant
• effect of iterative randomization model = effect of fortuitous model
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Sketch of the proof (IV): no dead-end

Iterative randomization model

For every site k,
• apply random trial unitary
• measure Pk-1,k

Dead-end = impossible to find eligible unitary at a given iteration.
State of the strip, yet consistent with previous constraints, can’t be extended.

Dead-end: start preparing all 2 state... 

Violates local consistency: look at any site k far from defect

P = |0 . . . 0��0 . . . 0|+ |1 . . . 1��1 . . . 1|

ρk ≡ TrkP = |0��0|+ |1��1|
ρlock ≡ TrkPk−1,kPk,k+1 = |0��0|+ |1��1|+ |2��2|

different kernels

Simple example: chain of qutrits

P ∗
i,i+1 = |00��00|+ |11��11|

Pi,i+1 = |00��00|+ |11��11|+ |22��22|
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Sketch of the proof (IV): no dead-end

Iterative randomization model

For every site k,
• apply random trial unitary
• measure Pk-1,k

Proposition  Local topological order implies that, 
at any iteration k, there exists an eligible unitary.

Proof (contrapositive).

Dead end at step k ∀Uk Pk−1,kUk|ψ� = 0

Average over Haar measure Pk−1,k (Trk [ψ]⊗ Ik/D) = 0

Trace out region at the right of site k Trk [Pk−1,k] TrRk [ψ] = 0

Exists state in image of Pi-1,i for i<k and in kernel of TrkPk-1,k

Violation of local consistency for site k-2.
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Sketch of the proof (IV): expected number of trials

Iterative randomization model

For every site k,
• apply random trial unitary
• measure Pk-1,k

Proposition  Local topological order implies that, 
the expected # of trials at iteration k is a constant.

Proof.

Biasing map

Succes after m failed trials Pk−1,kDk (Qk−1,kDk)
m = Pk−1,k

�
Em
k−1 ⊗Dk

�

Expected # of trials Ak(ψ) =
∞�

m=1

(m+ 1)Tr
�
Pk−1,k

�
Em
k−1 ⊗Dk

�
[ψ]

�

Introduce maps
• successful measurement of Pk-1,k

• failed measurement of Pk-1,k

• depolarizing of site k

Pk−1,k
Qk−1,k

Dk

= Tr
�
Pk−1,k

�
(Ik−1 − Ek−1)

−2 ⊗Dk

�
[ψ]

�
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Sketch of the proof (V): equivalence between models

Iterative randomization model

For every site k,
• apply random trial unitary
• measure Pk-1,k

Proposition  Both models have same average effect.

Proof.    

• depolarize every site on the strip N
• apply arbitrary transformation
• project back onto the code

Fortuitous model

Average effect of iteration k Kk−1,k =
�∞

m=0
Pk−1,k

�
Em
k−1 ⊗Dk

�

= Pk−1,k

�
(I − Ek−1)

−1 ⊗Dk

�

Average effect of iterative randomization model.    

Average total effect K =
�L

k=2
Pk−1,k

�
(I − Ek−1)

−1 ⊗Dk

�
D1

Reorder terms K =
L�

k=2

Pk−1,k

L+1�

k=2

(I − Ek−1)
−1

L�

k=1

Dk

depolarizebiasprojection onto the code
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Discussion
• Towards a better definition of self-correction
• Topologically ordered 2D Hamiltonian -> Anyons? 
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Towards a better definition of self-correction
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1) Entropy plays a critical role...

ex: 2D ferromagnetic Ising model

Non-zero temperature: minimization of free energy E-TS

1I) Distinction between self-correction and active QEC?

= self-correcting 
memory?

+

Energy barrier: O(L)
Available energy, assuming constant density of defects: O(L2)
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Topologically-ordered 2D Hamiltonian implies anyons?
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2D Local commuting projectors code + TQO

H = −
�

X⊂V

PX

Anyons model

?

L. Cincio and G. Vidal. arXiv:1208.2623 .
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Conclusion
Main result (arXiv:1209.5750)
For any 2D local topologically ordered LCP code, we exhibit an 
physically realistic error model which corrupts the information.

Hope for self-correcting quantum memories

2D Entropy-protected memory
Non-zero temperature: minimization of free energy E-TS
Entropy barrier: few local noise sequences corrupting info.

3D Codes with scalable energy barrier
➡ Haah’s cubic code 
➡ Welded codes

Bravyi & Haah, PRL, 107 (2011)Haah, PRA, 83 (2011)

K. Michnicki,  arXiv:1208.3496.
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Conclusion
Main result (arXiv:1209.5750)
For any 2D local topologically ordered LCP code, we exhibit an 
physically realistic error model which corrupts the information.

Thank you for your attention.


