Three quantum learning algorithms

Ashley Montanaro

Talk based on joint work with Andris Ambainis and ongoing joint work with Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew.

18 January 2013

What is learning?

In this talk

Learning a set $S \equiv$ identifying an arbitrary, unknown object picked from *S*.

This talk

▲ A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again.

— Alexander Pope

"

This talk

▲ A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again.

"

- Alexander Pope

On this principle, I'll talk about three optimal quantum algorithms for learning an unknown...

- ... stabilizer state;
- ... low-degree multilinear polynomial;
- ... bit-string given access to "wildcard" queries.

Consider the basic task of quantum state estimation.

 Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.

Consider the basic task of quantum state estimation.

- Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.
- Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.

Consider the basic task of quantum state estimation.

- Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.
- Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.
- Can we do better?

Consider the basic task of quantum state estimation.

To achieve constant fidelity between our guess and |ψ⟩, we need 2^{Ω(n)} copies of |ψ⟩.

Consider the basic task of quantum state estimation.

- To achieve constant fidelity between our guess and |ψ⟩, we need 2^{Ω(n)} copies of |ψ⟩.
- In order to determine |ψ⟩ efficiently (using poly(*n*) copies) we must restrict to classes of states which have efficient descriptions, or change the problem.

Some examples where this has been done:

- [Cramer et al '10] give an efficient algorithm for learning matrix product states.
- [Aaronson '06] introduces "pretty good tomography": relax to attempting to predict the outcomes of "most" measurements on the state.
- [Flammia and Liu '11] and [da Silva et al '11] give efficient algorithms for certifying the production of certain states.

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- $|\psi\rangle$ is a stabilizer state of *n* qubits if there exists a subgroup *G* of 2^{*n*} pairwise commuting Pauli matrices (with ±1 phases) such that $M|\psi\rangle = |\psi\rangle$ for all $M \in G$.
- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, ...

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- |ψ⟩ is a stabilizer state of *n* qubits if there exists a subgroup *G* of 2ⁿ pairwise commuting Pauli matrices (with ±1 phases) such that *M*|ψ⟩ = |ψ⟩ for all *M* ∈ *G*.
- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, ...

A stabilizer state of *n* qubits is completely specified by a generating set for its stabilizer (*n* Pauli matrices on *n* qubits). There are $2^{\Theta(n^2)}$ stabilizer states of *n* qubits.

Theorem

There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to O(n) copies of $|\psi\rangle$. The algorithm runs in time $O(n^3)$.

Theorem

There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to O(n) copies of $|\psi\rangle$. The algorithm runs in time $O(n^3)$.

Notes on this result:

- By Holevo's theorem, this is optimal in terms of the scaling of the number of copies of |ψ⟩ used.
- Any algorithm for learning stabilizer states requires $\Omega(n^2)$ time just to write the output.

The algorithm

The algorithm is based on the following subroutine.

Bell sampling

- Create two copies of $|\psi\rangle$.
- **2** Measure each pair of qubits of $|\psi\rangle^{\otimes 2}$ in the Bell basis.

• For
$$z, x \in \{0, 1\}$$
, write $\sigma_{zx} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^z \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^x$.

• For $s \in \{0, 1\}^{2n}$, write

$$\sigma_s := \sigma_{s_1 s_2} \otimes \cdots \otimes \sigma_{s_{2n-1} s_{2n}}.$$

Fact

Let $|\psi\rangle$ be a state of *n* qubits. Performing Bell sampling on $|\psi\rangle^{\otimes 2}$ returns outcome *s* with probability

 $\frac{|\langle \psi | \sigma_{\scriptscriptstyle S} | \psi^* \rangle|^2}{2^n}$

 $\bullet~$ Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• So
$$(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$$
 for some $S \subseteq [n]$.

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• So
$$(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$$
 for some $S \subseteq [n]$.

• Hence

$$|\psi^*\rangle = \sigma_{10}^{\otimes S} |\psi\rangle.$$

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

• Let *G* stabilize $|\psi\rangle$ and let *T* denote the set of strings $t \in \{0, 1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then *T* is an *n*-dimensional linear subspace of \mathbb{F}_2^{2n} .

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

- Let *G* stabilize $|\psi\rangle$ and let *T* denote the set of strings $t \in \{0, 1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then *T* is an *n*-dimensional linear subspace of \mathbb{F}_2^{2n} .
- Bell sampling gives an outcome *r* which is uniformly distributed on the set {*t* ⊕ *s* : *t* ∈ *T*} for some *s* ∈ {0, 1}²ⁿ.

• For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.

- For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.
 - In order to find a basis for *T*, we can therefore produce k + 1 Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of *T* given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.
 - If the dimension of the subspace of 𝔅²ⁿ₂ spanned by these vectors is *n*, any basis of this subspace is a basis for *T*.

- For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.
 - In order to find a basis for *T*, we can therefore produce k + 1 Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of *T* given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.
 - If the dimension of the subspace of 𝔽²ⁿ₂ spanned by these vectors is *n*, any basis of this subspace is a basis for *T*.
- Although *T* does not contain information about phases, determining *T* suffices to uniquely determine $|\psi\rangle$.
 - Once we have found a basis for *T*, we can measure $|\psi\rangle$ in the eigenbasis of each corresponding Pauli matrix *M* to decide whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:
 - Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
 - **2** Add $r \oplus r_0$ to *S*.

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:
 - Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
 - **2** Add $r \oplus r_0$ to *S*.
- Otermine a basis for S; call this basis B.

The algorithm

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.

Solution Repeat the following 2*n* times:

- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
- **2** Add $r \oplus r_0$ to *S*.
- Otermine a basis for S; call this basis B.
- For each element of *B*, measure a copy of |ψ⟩ in the eigenbasis of the corresponding Pauli matrix *M* to determine whether *M*|ψ⟩ = |ψ⟩ or *M*|ψ⟩ = -|ψ⟩.

Summary of learning stabilizer states

The algorithm uses O(n) copies of |ψ⟩. Time complexity is dominated by finding a basis for S (O(n³) time or better).

Summary of learning stabilizer states

• The algorithm uses O(n) copies of $|\psi\rangle$. Time complexity is dominated by finding a basis for $S(O(n^3)$ time or better).

 The algorithm fails (i.e. does not identify |ψ⟩) if each of the 2n samples r ⊕ r₀ lies in a subspace of T of dimension at most n − 1. This occurs with probability at most 2⁻ⁿ.

Summary of learning stabilizer states

The algorithm uses O(n) copies of |ψ⟩. Time complexity is dominated by finding a basis for S (O(n³) time or better).

 The algorithm fails (i.e. does not identify |ψ⟩) if each of the 2*n* samples *r* ⊕ *r*₀ lies in a subspace of *T* of dimension at most *n* − 1. This occurs with probability at most 2^{−n}.

We also have an alternative algorithm which uses Θ(n²) copies of |ψ⟩ but only makes single-copy Pauli measurements.

Consider the following purely classical problem.

$$\xrightarrow{x} f \xrightarrow{f(x)} f$$

We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.

Consider the following purely classical problem.

$$\xrightarrow{x} f \xrightarrow{f(x)} f$$

- We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.
- If f is arbitrary, we need q^n classical queries (uses of f).

Consider the following purely classical problem.

$$\xrightarrow{x} f \xrightarrow{f(x)}$$

- We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.
- If f is arbitrary, we need q^n classical queries (uses of f).
- If *f* is picked from a known set *F*, we need at least $\log_2 |\mathcal{F}|$ queries.

Consider the following purely classical problem.

$$\xrightarrow{x} f \xrightarrow{f(x)} f$$

- We are given access to a function $f : \mathbb{F}_q^n \to \mathbb{F}_q$. We would like to identify f.
- If f is arbitrary, we need q^n classical queries (uses of f).
- If *f* is picked from a known set *F*, we need at least $\log_2 |\mathcal{F}|$ queries.
- We say that \mathcal{F} can be learned using *t* queries if any function $f \in \mathcal{F}$ can be identified with *t* uses of *f* (perhaps allowing some probability of error).

Learning classical oracles on a quantum computer

• On a quantum computer, we have the ability to query *f* in superposition, i.e. to perform the map

 $|x\rangle|z\rangle\mapsto|x\rangle|z+f(x)\rangle.$

Learning classical oracles on a quantum computer

• On a quantum computer, we have the ability to query *f* in superposition, i.e. to perform the map

 $|x\rangle|z\rangle\mapsto|x\rangle|z+f(x)\rangle.$

• One of the oldest results in quantum computing: the Bernstein-Vazirani algorithm [Bernstein and Vazirani '97].

Theorem (Bernstein and Vazirani)

The class of linear functions $f : \mathbb{F}_2^n \to \mathbb{F}_2$ can be learned with certainty using 1 quantum query.

f is linear if f(x + y) = f(x) + f(y); equivalently, $f(x) = \ell \cdot x$ for some $\ell \in \mathbb{F}_2^n$.

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

• Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

• In the important special case q = 2 (boolean functions), every polynomial is multilinear.

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

- In the important special case *q* = 2 (boolean functions), every polynomial is multilinear.
- The set of degree *d* polynomials over 𝔽₂ are known as the binary Reed-Muller code of order *d*.

Fact

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.

Fact

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.

- Upper bound: It suffices to query f(x) for all strings $x \in \mathbb{F}_q^n$ that contain only 0 and 1, and such that $|x| \leq d$.
- Lower bound: there are $q^{\Theta(n^d)}$ distinct multilinear degree d polynomials of n variables over \mathbb{F}_q ; each classical query to f only provides $\log_2 q$ bits of information.

Theorem

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Theorem

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Notes:

- The lower bound follows from Holevo's theorem.
- The Bernstein-Vazirani algorithm is the case q = 2, d = 1.
- Rötteler previously gave a bounded-error quantum algorithm for the case q = 2, d = 2 [Rötteler '09].
- A quantum algorithm for estimating a quadratic form over the reals had previously been given by Jordan [Jordan '08].

We use the following lemma [de Beaudrap et al '02, van Dam et al '02].

Lemma 1

Let $f : \mathbb{F}_q^n \to \mathbb{F}_q$ be linear, and let $g : \mathbb{F}_q^n \to \mathbb{F}_q$ be the function $g(x) = f(x) + \beta$ for some constant $\beta \in \mathbb{F}_q$. Then *f* can be determined exactly using one quantum query to *g*.

We use the following lemma [de Beaudrap et al '02, van Dam et al '02].

Lemma 1

Let $f : \mathbb{F}_q^n \to \mathbb{F}_q$ be linear, and let $g : \mathbb{F}_q^n \to \mathbb{F}_q$ be the function $g(x) = f(x) + \beta$ for some constant $\beta \in \mathbb{F}_q$. Then *f* can be determined exactly using one quantum query to *g*.

• **Proof**: query *f* in superposition and use the QFT over \mathbb{F}_q^n .

For $S \subseteq [n]$, |S| = k, define

$$f_{S}(x) = \sum_{\beta_{1},...,\beta_{k} \in \{0,1\}} (-1)^{k - \sum_{i=1}^{k} \beta_{i}} f\left(x + \sum_{j=1}^{k} \beta_{j} e_{S_{j}}\right).$$

Here e_i is the *i*'th element in the standard basis for \mathbb{F}_q^n ; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q .

For $S \subseteq [n]$, |S| = k, define

$$f_{S}(x) = \sum_{\beta_{1},...,\beta_{k} \in \{0,1\}} (-1)^{k - \sum_{i=1}^{k} \beta_{i}} f\left(x + \sum_{j=1}^{k} \beta_{j} e_{S_{j}}\right).$$

Here e_i is the *i*'th element in the standard basis for \mathbb{F}_q^n ; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q .

• For example, if $S = \{1, 2\}$:

 $f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$

For $S \subseteq [n]$, |S| = k, define

$$f_{S}(x) = \sum_{\beta_{1},...,\beta_{k} \in \{0,1\}} (-1)^{k - \sum_{i=1}^{k} \beta_{i}} f\left(x + \sum_{j=1}^{k} \beta_{j} e_{S_{j}}\right).$$

Here e_i is the *i*'th element in the standard basis for \mathbb{F}_q^n ; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q .

• For example, if $S = \{1, 2\}$:

 $f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$

• A query to f_S can be simulated using 2^k queries to f.

For $S \subseteq [n]$, |S| = k, define

$$f_{\mathcal{S}}(x) = \sum_{\beta_1, \dots, \beta_k \in \{0,1\}} (-1)^{k - \sum_{i=1}^k \beta_i} f\left(x + \sum_{j=1}^k \beta_j e_{S_j}\right).$$

Here e_i is the *i*'th element in the standard basis for \mathbb{F}_q^n ; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q .

• For example, if $S = \{1, 2\}$:

 $f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$

- A query to f_S can be simulated using 2^k queries to f.
- Define the discrete derivative of f in direction $i \in [n]$ as

$$(\Delta_i f)(x) := f(x+e_i) - f(x).$$

• Then
$$f_S(x) = (\Delta_{S_1} \Delta_{S_2} \dots \Delta_{S_k} f)(x).$$

We will be interested in querying f_S for sets S of size d - 1. In this case, we have the following characterisation for multilinear polynomials f.

Lemma 2

Let $f : \mathbb{F}_q^n \to \mathbb{F}_q$ be a multilinear polynomial of degree d with expansion

$$f(x) = \sum_{T \subseteq [n], |T| \leqslant d} \alpha_T \prod_{i \in T} x_i.$$

Then, for any *S* such that |S| = d - 1,

$$f_S(x) = \alpha_S + \sum_{k \notin S} \alpha_{S \cup \{k\}} x_k.$$

We will be interested in querying f_S for sets S of size d - 1. In this case, we have the following characterisation for multilinear polynomials f.

Lemma 2

Let $f : \mathbb{F}_q^n \to \mathbb{F}_q$ be a multilinear polynomial of degree d with expansion

$$f(x) = \sum_{T \subseteq [n], |T| \leqslant d} \alpha_T \prod_{i \in T} x_i.$$

Then, for any *S* such that |S| = d - 1,

$$f_S(x) = \alpha_S + \sum_{k \notin S} \alpha_{S \cup \{k\}} x_k.$$

Proof: follows easily from expressing f in terms of discrete derivatives.

The algorithm

foreach $S \subseteq [n]$ *such that* |S| = d - 1 **do** | Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \notin S$; **end** Output the function $f_d(x) = \sum_{S \subseteq [n] |S| = d} \alpha_S \prod_{i \in S} x_i$;

The algorithm

foreach $S \subseteq [n]$ *such that* |S| = d - 1 **do** | Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \notin S$; **end** Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;

Proof of correctness:

- By Lemma 2, for any *S* such that |*S*| = *d* − 1, knowledge of the degree 1 component of *f_S* is sufficient to determine *α*_{S∪{k}} for all *k* ∉ *S*.
- So knowing the degree 1 part of f_S for all $S \subseteq [n]$ such that |S| = d 1 is sufficient to completely determine all degree d coefficients of f.

The algorithm

foreach $S \subseteq [n]$ *such that* |S| = d - 1 **do** | Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \notin S$; **end** Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;

Proof of correctness:

By Lemma 1, for any *S* with |*S*| = *d* − 1, the degree 1 component of *f_S* can be determined with one quantum query to *f_S*.

The algorithm

foreach $S \subseteq [n]$ *such that* |S| = d - 1 **do** | Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \notin S$; **end** Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;

Proof of correctness:

- By Lemma 1, for any *S* with |S| = d 1, the degree 1 component of f_S can be determined with one quantum query to f_S .
- So the algorithm completely determines the degree d component of f using $\binom{n}{d-1}$ queries to f_S , each of which uses 2^{d-1} queries to f.

Once the degree *d* component of *f* has been learned, *f* can be reduced to a degree *d* − 1 polynomial by crossing out the degree *d* part whenever the oracle for *f* is called.

- Once the degree *d* component of *f* has been learned, *f* can be reduced to a degree *d* − 1 polynomial by crossing out the degree *d* part whenever the oracle for *f* is called.
- Whenever the oracle is called on *x*, we subtract *f*_{*d*}(*x*) from the result (where *f*_{*d*} is the degree *d* part of *f*), at no extra query cost.

- Once the degree *d* component of *f* has been learned, *f* can be reduced to a degree *d* − 1 polynomial by crossing out the degree *d* part whenever the oracle for *f* is called.
- Whenever the oracle is called on *x*, we subtract *f*_d(*x*) from the result (where *f*_d is the degree *d* part of *f*), at no extra query cost.
- Inductively, *f* can be determined completely using

$$2^{d-1}\binom{n}{d-1} + 2^{d-2}\binom{n}{d-2} + \dots + 2n+1+1$$

queries; the last query is to determine the constant term α_{\emptyset} , which can be achieved by classically querying $f(0^n)$.

- Once the degree *d* component of *f* has been learned, *f* can be reduced to a degree *d* − 1 polynomial by crossing out the degree *d* part whenever the oracle for *f* is called.
- Whenever the oracle is called on *x*, we subtract *f*_d(*x*) from the result (where *f*_d is the degree *d* part of *f*), at no extra query cost.
- Inductively, *f* can be determined completely using

$$2^{d-1}\binom{n}{d-1} + 2^{d-2}\binom{n}{d-2} + \dots + 2n+1+1$$

queries; the last query is to determine the constant term α_{\emptyset} , which can be achieved by classically querying $f(0^n)$.

• The number of queries used is therefore *O*(*n*^{*d*-1}) for constant *d*.

• We are given access to an unknown *n*-bit string *x*.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query returns 1 if $x_i = s_i$ for all *i* such that $s_i \neq *$, and returns 0 otherwise.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query returns 1 if $x_i = s_i$ for all *i* such that $s_i \neq *$, and returns 0 otherwise.
- A generalisation of the simple model where we are allowed to query individual bits of *x*.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query returns 1 if $x_i = s_i$ for all *i* such that $s_i \neq *$, and returns 0 otherwise.
- A generalisation of the simple model where we are allowed to query individual bits of *x*.

Classically, we need n queries to determine x (each query gives one bit of information).

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query returns 1 if $x_i = s_i$ for all *i* such that $s_i \neq *$, and returns 0 otherwise.
- A generalisation of the simple model where we are allowed to query individual bits of *x*.

Classically, we need n queries to determine x (each query gives one bit of information).

Theorem

Search with wildcards can be solved with $O(\sqrt{n})$ quantum queries on average.

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\Psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

This is surprising because the equivalent classical statement is not true!

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\Psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

This is surprising because the equivalent classical statement is not true!

Why does this let us solve SWW?

The measurement lemma \Rightarrow solving SWW

• Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle$. For k' > k, this can be mapped to

$$\sum_{S':S'\subseteq [n], |S'|=k'} |S'\rangle \left(\sum_{S:S\subseteq S', |S|=k} |S\rangle |x_S\rangle\right) = \sum_{S:S\subseteq [n], |S|=k'} |S\rangle |\psi_{x_S}^k\rangle,$$

so if we can map $|\psi_{x_S}^k\rangle \mapsto |x_S\rangle$, we've made $|\psi_x^{k'}\rangle$.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle$. For k' > k, this can be mapped to

$$\sum_{S':S'\subseteq [n], |S'|=k'} |S'\rangle \left(\sum_{S:S\subseteq S', |S|=k} |S\rangle |x_S\rangle\right) = \sum_{S:S\subseteq [n], |S|=k'} |S\rangle |\psi_{x_S}^k\rangle,$$

so if we can map $|\psi_{x_S}^k\rangle \mapsto |x_S\rangle$, we've made $|\psi_x^{k'}\rangle$.

• By the lemma, we can do this when $k = k' - O(\sqrt{k'})$.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle$. For k' > k, this can be mapped to

$$\sum_{S':S'\subseteq [n], |S'|=k'} |S'\rangle \left(\sum_{S:S\subseteq S', |S|=k} |S\rangle |x_S\rangle\right) = \sum_{S:S\subseteq [n], |S|=k'} |S\rangle |\psi_{x_S}^k\rangle,$$

so if we can map $|\psi_{x_S}^k\rangle \mapsto |x_S\rangle$, we've made $|\psi_x^{k'}\rangle$.

- By the lemma, we can do this when $k = k' O(\sqrt{k'})$.
- After each measurement, an expected *O*(1) bits are incorrect.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle$. For k' > k, this can be mapped to

$$\sum_{S':S'\subseteq [n], |S'|=k'} |S'\rangle \left(\sum_{S:S\subseteq S', |S|=k} |S\rangle |x_S\rangle\right) = \sum_{S:S\subseteq [n], |S|=k'} |S\rangle |\psi_{x_S}^k\rangle,$$

so if we can map $|\psi_{x_S}^k\rangle \mapsto |x_S\rangle$, we've made $|\psi_x^{k'}\rangle$.

- By the lemma, we can do this when $k = k' O(\sqrt{k'})$.
- After each measurement, an expected *O*(1) bits are incorrect.
- How to fix these?

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

• We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- At most $k \ll n$ items x_i are special and have $x_i = 1$.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- At most $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- At most $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.
- We want to output the identities of all of the special items using the minimal number of queries.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- At most $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.
- We want to output the identities of all of the special items using the minimal number of queries.

In particular, we would like to minimise the dependence on *n*.

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.
- If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.
- If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.
- Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, ...

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.
- If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.
- Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, ...
- See the book "Combinatorial Group Testing and Its Applications" [Du and Hwang '00] for more.

The k = 1 case

If k = 1, CGT can be solved exactly using one quantum query.

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

• To learn x, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam '98]).

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

- To learn *x*, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam '98]).
- In the CGT problem, we have access to an oracle which computes $f(s) = \bigvee_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$. But if $|x| \leq 1$, then for any s, $\bigvee_i x_i s_i = x \cdot s$.

The k = 1 case

If k = 1, CGT can be solved exactly using one quantum query.

The k = 1 case

If k = 1, CGT can be solved exactly using one quantum query.

• Create the state
$$\frac{1}{\sqrt{2^{n+1}}} \sum_{s \in \{0,1\}^n} |s\rangle (|0\rangle - |1\rangle).$$

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

• Create the state
$$\frac{1}{\sqrt{2^{n+1}}} \sum_{s \in \{0,1\}^n} |s\rangle (|0\rangle - |1\rangle).$$

Apply the oracle to create the state

$$\begin{split} & \frac{1}{\sqrt{2^{n+1}}}\sum_{s\in\{0,1\}^n}(-1)^{\bigvee_i s_i x_i}|s\rangle(|0\rangle-|1\rangle) \\ &= & \frac{1}{\sqrt{2^{n+1}}}\sum_{s\in\{0,1\}^n}(-1)^{s\cdot x}|s\rangle(|0\rangle-|1\rangle). \end{split}$$

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

• Create the state
$$\frac{1}{\sqrt{2^{n+1}}} \sum_{s \in \{0,1\}^n} |s\rangle (|0\rangle - |1\rangle).$$

Apply the oracle to create the state

$$\begin{split} & \frac{1}{\sqrt{2^{n+1}}}\sum_{s\in\{0,1\}^n}(-1)^{\bigvee_i s_i x_i}|s\rangle(|0\rangle-|1\rangle) \\ &= & \frac{1}{\sqrt{2^{n+1}}}\sum_{s\in\{0,1\}^n}(-1)^{s\cdot x}|s\rangle(|0\rangle-|1\rangle). \end{split}$$

Apply Hadamard gates to each qubit of the first register and measure to obtain *x*.

Theorem

Theorem

CGT can be solved using O(k) quantum queries on average.

• Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index *i* we received really is a 1 by making one more query to index *i*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i} .
- Following each successful query, we reduce *k* by 1 and exclude the bit that we just learned from future queries.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i} .
- Following each successful query, we reduce *k* by 1 and exclude the bit that we just learned from future queries.
- In order to learn *x* completely, the expected overall number of queries used is *O*(*k*).

• When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).
- A wildcard query corresponding to $S \subseteq [n]$ and $\tilde{x}_S \oplus y$, $y \in \{0, 1\}^{|S|}$, returns 1 iff all bits of \tilde{x}_S are correct.

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).
- A wildcard query corresponding to $S \subseteq [n]$ and $\tilde{x}_S \oplus y$, $y \in \{0, 1\}^{|S|}$, returns 1 iff all bits of \tilde{x}_S are correct.
- So we can use the algorithm for CGT to find, and correct, all incorrect bits in *O*(1) queries.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy'}^2$ where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

• We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.
- *G_{xy}* depends only on *x* ⊕ *y*, so *G* is diagonalised by the Fourier transform over Zⁿ₂ and D_k does not depend on *x*.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \Psi_x^k | \Psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.
- *G_{xy}* depends only on *x* ⊕ *y*, so *G* is diagonalised by the Fourier transform over Zⁿ₂ and D_k does not depend on *x*.
- *D_k* can be upper bounded using Fourier duality and some combinatorics.

Summary

We can learn...

- ... *n*-qubit stabilizer states with O(n) copies;
- ... degree *d n*-variate multilinear polynomials with $O(n^{d-1})$ queries;
- ... *n*-bit strings with $O(\sqrt{n})$ wildcard queries.

Summary

We can learn...

- ... *n*-qubit stabilizer states with O(n) copies;
- ... degree *d n*-variate multilinear polynomials with $O(n^{d-1})$ queries;
- ... *n*-bit strings with $O(\sqrt{n})$ wildcard queries.

Open problems:

- Determine the quantum query complexity of CGT.
- Other applications of SWW! A possible example: testing juntas.

Thanks!

Some further reading:

- The algorithm for learning multilinear polynomials: arXiv:1105.3310
- The algorithm for search with wildcards: **arXiv:1210.1148** (joint work with Andris Ambainis)
- The algorithm for learning stabilizer states: arXiv:13??.???? (joint work with Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew)