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Topological systems fascinate: 
 
• New physics (material science) 
• New reliable technologies (quantum computation) 

They can support anyons 
 
Anyonic particles are interesting on their own right: 
• Experimental detection (Abelian/Non-Abelian anyons) 
• Kinematics, interactions, transport physics 

 
Main problems:     realisation 

       detection 

Motivation 



Commercial Break: 



Abelian Chern-Simons-Maxwell: 
Gauge theory, U(1)  
Chern-Simons: topological 
Maxwell is non-topo., confining in 2+1 dimensions 
 

Massive Thirring model: 
Relativistic Dirac fermions with mass, interacting 

  
Lattice models: 

“Easy” to implement in the laboratory (atoms in optical 
lattices, engineered materials etc.) 
 

From Haldane (IQHE) + interactions (FQHE) analytically 

Introduction 



Two triangular sublattices: A, B, each loaded with fermionic 
atoms in internal states b, w 
Hamiltonian: 

Extended Haldane’s model 
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FIG. 1: Haldane-type model. (a) Two triangular optical lattices (A and B) are Raman coupled by a laser that makes an atom
switch sublattice (A � B). This allows for both next-nearest neighbor hoppings, ta,b, and a complex nearest neighbor hopping,
tjk, whose phase depends on the momentum imparted by the Raman laser, �p. (b) Phase diagram of the zero-energy ground
states, as a function of the energy imbalance between lattices, �/ta, and the momentum imparted by the laser, �p = (0,�py).
We plot the exact phase boundary in the thermodynamic limit (black solid line), together with a color graded simulation of the
Chern number for a finite lattice with 1000 sites. The diagrams on the right hand side show how the Dirac points are displaced
on the distribution of Bloch vectors Sz(k) induced by the Hamiltonian (blue negative, red positive).

a phase to the hopping

tjk ⇤ t exp(i⌅jk), ⌅jk = �p · (xj + xk)/2. (2)

This corresponds to a momentum boost in the Brillouin
zone, �p, which displaces the energy bands created by
the Raman hopping, t, relative to the other contributions,
ta,b and ⇧. While the total flux over each hexagonal pla-
quette is zero, the bipartite nature of the lattice allows
the phases ⌅jk to have a non-trivial e⇥ect: along the path
1 ⌅ 2 ⌅ 3 ⌅ 1, depicted in Fig. 1a the local e⇥ective
magnetic flux, given by ⌅12 + ⌅23, is non-zero.

The single-particle model with all the previous ingredi-
ents can be well approximated by a family of momentum
space Hamiltonians written as [3]

H(k) ⇤ �E S(k) · �. (3)

Here, E is an energy scale, � = (⇤x,⇤y,⇤z) are the Pauli
matrices and the unit vector S is the pseudospin in the
space of internal states of the atom, |a⌥, |b⌥. All topolog-
ical properties of the model can be obtained from study-
ing the momentum configuration of the vector field S. In
particular, the eigenstates of the lowest energy band are
pure states determined by the Bloch vector S and give
this band a total Chern number

� =
1

4⇥

⌅

B
S ·

�
⌃kxS⇥ ⌃kyS

⇥
d2k. (4)

In our setup, the distribution S(k) = ⌃�⌥ can be ex-
perimentally determined from the time-of-flight images
that appear when the atoms are released from the optical
trap [6]. The idea is to fill the lattice with enough atoms

to cover the lowest energy band. The experiment may
begin with a Mott state in which only the A sublattice
is filled, and adiabatically progress towards larger values
of ta, t and ⇧. Once the approximate ground state is pre-
pared, switching o⇥ the trap in adequate timescales [6]
transforms the atom cloud into the momentum distri-
butions of its density, na,b(k), giving direct access to
Sz(k) = 1

2 [na(k) � nb(k)]. By performing in-flight ro-
tations of the atomic states we can also obtain Sx and
Sy, thus reconstructing the whole vector field and the
associated topological invariant, �.

Note that in practice experiments will have to “pix-
elize” the time of flight images, counting the number of
atoms on each “square” of the e⇥ective Brillouin zone
and estimating the averages of Sx, Sy or Sz. After many
repetitions this method will provide a discrete distribu-
tion of normalized vectors {Sm}L�L

m=1, on a lattice evenly
sampled over momentum space. We suggest grouping
the pixels, partitioning the experimental image into sets
of triangles, T = {SjT ,SkT ,SlT }. The momentum inte-
gral in (4) restricted to the any such triangle is half the
solid angle covered by the spins that sit on its corners.
Therefore, we may construct a “discretized” version of
the Chern number, �D ⇧

⇤
T

1
8�SjT ·SkT ⇥SlT , which for

all purposes will be su⇤ciently close to �, while retaining
its stability and robustness against local perturbations.

Experimentally, the setup could be realized by com-
bining ideas for spin-dependent potentials [19, 20], with
recent techniques for creating dipole traps using micro-
scope objectives [21]. More precisely, we suggest project-
ing two triangular lattice patterns on a two-dimensional
sheet of light that traps the fermionic atoms. An electro-
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Two triangular sublattices: A, B, each loaded with fermionic 
atoms in internal states b, w 
Hamiltonian: 

Two Fermi points 
Two massless Dirac particles 

Gives mass to  
Dirac fermions and maybe more... 

Interactions between  
Dirac fermions 
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Extended Haldane’s model 
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Linearisation of Hamiltonian 
around Fermi points 

Extended Haldane’s model 
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t tw, tb
 “mass” m(k) can be +ve or -ve   
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FIG. 1: Haldane-type model. (a) Two triangular optical lattices (A and B) are Raman coupled by a laser that makes an atom
switch sublattice (A � B). This allows for both next-nearest neighbor hoppings, ta,b, and a complex nearest neighbor hopping,
tjk, whose phase depends on the momentum imparted by the Raman laser, �p. (b) Phase diagram of the zero-energy ground
states, as a function of the energy imbalance between lattices, �/ta, and the momentum imparted by the laser, �p = (0,�py).
We plot the exact phase boundary in the thermodynamic limit (black solid line), together with a color graded simulation of the
Chern number for a finite lattice with 1000 sites. The diagrams on the right hand side show how the Dirac points are displaced
on the distribution of Bloch vectors Sz(k) induced by the Hamiltonian (blue negative, red positive).

a phase to the hopping

tjk ⇤ t exp(i⌅jk), ⌅jk = �p · (xj + xk)/2. (2)

This corresponds to a momentum boost in the Brillouin
zone, �p, which displaces the energy bands created by
the Raman hopping, t, relative to the other contributions,
ta,b and ⇧. While the total flux over each hexagonal pla-
quette is zero, the bipartite nature of the lattice allows
the phases ⌅jk to have a non-trivial e⇥ect: along the path
1 ⌅ 2 ⌅ 3 ⌅ 1, depicted in Fig. 1a the local e⇥ective
magnetic flux, given by ⌅12 + ⌅23, is non-zero.

The single-particle model with all the previous ingredi-
ents can be well approximated by a family of momentum
space Hamiltonians written as [3]

H(k) ⇤ �E S(k) · �. (3)

Here, E is an energy scale, � = (⇤x,⇤y,⇤z) are the Pauli
matrices and the unit vector S is the pseudospin in the
space of internal states of the atom, |a⌥, |b⌥. All topolog-
ical properties of the model can be obtained from study-
ing the momentum configuration of the vector field S. In
particular, the eigenstates of the lowest energy band are
pure states determined by the Bloch vector S and give
this band a total Chern number
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perimentally determined from the time-of-flight images
that appear when the atoms are released from the optical
trap [6]. The idea is to fill the lattice with enough atoms

to cover the lowest energy band. The experiment may
begin with a Mott state in which only the A sublattice
is filled, and adiabatically progress towards larger values
of ta, t and ⇧. Once the approximate ground state is pre-
pared, switching o⇥ the trap in adequate timescales [6]
transforms the atom cloud into the momentum distri-
butions of its density, na,b(k), giving direct access to
Sz(k) = 1

2 [na(k) � nb(k)]. By performing in-flight ro-
tations of the atomic states we can also obtain Sx and
Sy, thus reconstructing the whole vector field and the
associated topological invariant, �.

Note that in practice experiments will have to “pix-
elize” the time of flight images, counting the number of
atoms on each “square” of the e⇥ective Brillouin zone
and estimating the averages of Sx, Sy or Sz. After many
repetitions this method will provide a discrete distribu-
tion of normalized vectors {Sm}L�L

m=1, on a lattice evenly
sampled over momentum space. We suggest grouping
the pixels, partitioning the experimental image into sets
of triangles, T = {SjT ,SkT ,SlT }. The momentum inte-
gral in (4) restricted to the any such triangle is half the
solid angle covered by the spins that sit on its corners.
Therefore, we may construct a “discretized” version of
the Chern number, �D ⇧
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8�SjT ·SkT ⇥SlT , which for

all purposes will be su⇤ciently close to �, while retaining
its stability and robustness against local perturbations.

Experimentally, the setup could be realized by com-
bining ideas for spin-dependent potentials [19, 20], with
recent techniques for creating dipole traps using micro-
scope objectives [21]. More precisely, we suggest project-
ing two triangular lattice patterns on a two-dimensional
sheet of light that traps the fermionic atoms. An electro-
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FIG. 1: Haldane-type model. (a) Two triangular optical lattices (A and B) are Raman coupled by a laser that makes an atom
switch sublattice (A � B). This allows for both next-nearest neighbor hoppings, ta,b, and a complex nearest neighbor hopping,
tjk, whose phase depends on the momentum imparted by the Raman laser, �p. (b) Phase diagram of the zero-energy ground
states, as a function of the energy imbalance between lattices, �/ta, and the momentum imparted by the laser, �p = (0,�py).
We plot the exact phase boundary in the thermodynamic limit (black solid line), together with a color graded simulation of the
Chern number for a finite lattice with 1000 sites. The diagrams on the right hand side show how the Dirac points are displaced
on the distribution of Bloch vectors Sz(k) induced by the Hamiltonian (blue negative, red positive).

a phase to the hopping

tjk ⇤ t exp(i⌅jk), ⌅jk = �p · (xj + xk)/2. (2)

This corresponds to a momentum boost in the Brillouin
zone, �p, which displaces the energy bands created by
the Raman hopping, t, relative to the other contributions,
ta,b and ⇧. While the total flux over each hexagonal pla-
quette is zero, the bipartite nature of the lattice allows
the phases ⌅jk to have a non-trivial e⇥ect: along the path
1 ⌅ 2 ⌅ 3 ⌅ 1, depicted in Fig. 1a the local e⇥ective
magnetic flux, given by ⌅12 + ⌅23, is non-zero.

The single-particle model with all the previous ingredi-
ents can be well approximated by a family of momentum
space Hamiltonians written as [3]

H(k) ⇤ �E S(k) · �. (3)

Here, E is an energy scale, � = (⇤x,⇤y,⇤z) are the Pauli
matrices and the unit vector S is the pseudospin in the
space of internal states of the atom, |a⌥, |b⌥. All topolog-
ical properties of the model can be obtained from study-
ing the momentum configuration of the vector field S. In
particular, the eigenstates of the lowest energy band are
pure states determined by the Bloch vector S and give
this band a total Chern number
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perimentally determined from the time-of-flight images
that appear when the atoms are released from the optical
trap [6]. The idea is to fill the lattice with enough atoms

to cover the lowest energy band. The experiment may
begin with a Mott state in which only the A sublattice
is filled, and adiabatically progress towards larger values
of ta, t and ⇧. Once the approximate ground state is pre-
pared, switching o⇥ the trap in adequate timescales [6]
transforms the atom cloud into the momentum distri-
butions of its density, na,b(k), giving direct access to
Sz(k) = 1

2 [na(k) � nb(k)]. By performing in-flight ro-
tations of the atomic states we can also obtain Sx and
Sy, thus reconstructing the whole vector field and the
associated topological invariant, �.

Note that in practice experiments will have to “pix-
elize” the time of flight images, counting the number of
atoms on each “square” of the e⇥ective Brillouin zone
and estimating the averages of Sx, Sy or Sz. After many
repetitions this method will provide a discrete distribu-
tion of normalized vectors {Sm}L�L

m=1, on a lattice evenly
sampled over momentum space. We suggest grouping
the pixels, partitioning the experimental image into sets
of triangles, T = {SjT ,SkT ,SlT }. The momentum inte-
gral in (4) restricted to the any such triangle is half the
solid angle covered by the spins that sit on its corners.
Therefore, we may construct a “discretized” version of
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Experimentally, the setup could be realized by com-
bining ideas for spin-dependent potentials [19, 20], with
recent techniques for creating dipole traps using micro-
scope objectives [21]. More precisely, we suggest project-
ing two triangular lattice patterns on a two-dimensional
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FIG. 1: Haldane-type model. (a) Two triangular optical lattices (A and B) are Raman coupled by a laser that makes an atom
switch sublattice (A � B). This allows for both next-nearest neighbor hoppings, ta,b, and a complex nearest neighbor hopping,
tjk, whose phase depends on the momentum imparted by the Raman laser, �p. (b) Phase diagram of the zero-energy ground
states, as a function of the energy imbalance between lattices, �/ta, and the momentum imparted by the laser, �p = (0,�py).
We plot the exact phase boundary in the thermodynamic limit (black solid line), together with a color graded simulation of the
Chern number for a finite lattice with 1000 sites. The diagrams on the right hand side show how the Dirac points are displaced
on the distribution of Bloch vectors Sz(k) induced by the Hamiltonian (blue negative, red positive).

a phase to the hopping

tjk ⇤ t exp(i⌅jk), ⌅jk = �p · (xj + xk)/2. (2)

This corresponds to a momentum boost in the Brillouin
zone, �p, which displaces the energy bands created by
the Raman hopping, t, relative to the other contributions,
ta,b and ⇧. While the total flux over each hexagonal pla-
quette is zero, the bipartite nature of the lattice allows
the phases ⌅jk to have a non-trivial e⇥ect: along the path
1 ⌅ 2 ⌅ 3 ⌅ 1, depicted in Fig. 1a the local e⇥ective
magnetic flux, given by ⌅12 + ⌅23, is non-zero.

The single-particle model with all the previous ingredi-
ents can be well approximated by a family of momentum
space Hamiltonians written as [3]

H(k) ⇤ �E S(k) · �. (3)

Here, E is an energy scale, � = (⇤x,⇤y,⇤z) are the Pauli
matrices and the unit vector S is the pseudospin in the
space of internal states of the atom, |a⌥, |b⌥. All topolog-
ical properties of the model can be obtained from study-
ing the momentum configuration of the vector field S. In
particular, the eigenstates of the lowest energy band are
pure states determined by the Bloch vector S and give
this band a total Chern number
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begin with a Mott state in which only the A sublattice
is filled, and adiabatically progress towards larger values
of ta, t and ⇧. Once the approximate ground state is pre-
pared, switching o⇥ the trap in adequate timescales [6]
transforms the atom cloud into the momentum distri-
butions of its density, na,b(k), giving direct access to
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2 [na(k) � nb(k)]. By performing in-flight ro-
tations of the atomic states we can also obtain Sx and
Sy, thus reconstructing the whole vector field and the
associated topological invariant, �.

Note that in practice experiments will have to “pix-
elize” the time of flight images, counting the number of
atoms on each “square” of the e⇥ective Brillouin zone
and estimating the averages of Sx, Sy or Sz. After many
repetitions this method will provide a discrete distribu-
tion of normalized vectors {Sm}L�L

m=1, on a lattice evenly
sampled over momentum space. We suggest grouping
the pixels, partitioning the experimental image into sets
of triangles, T = {SjT ,SkT ,SlT }. The momentum inte-
gral in (4) restricted to the any such triangle is half the
solid angle covered by the spins that sit on its corners.
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bining ideas for spin-dependent potentials [19, 20], with
recent techniques for creating dipole traps using micro-
scope objectives [21]. More precisely, we suggest project-
ing two triangular lattice patterns on a two-dimensional
sheet of light that traps the fermionic atoms. An electro-
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FIG. 1: Left: The honeycomb lattice with fermions tunnelling
from one site to the neighbouring (coupling t) as well as to
the next-to-neighbouring sites (couplings tb and tw). The
unit cell is depicted with two sites named b and w. Right:

The energy dispersion of the t- and tb,w-terms of Hamiltonian
(1) for momenta that cross trough both Fermi points, P+ and
P�. The tb,w-term opens up asymmetric energy gaps �E+

and �E� to the corresponding Fermi points. We take the
Fermi energy EF (depicted with dashed line) between both
gaps so that only the lower band is completely filled. For
�E� � �E+ we can adiabatically eliminate P�. Here we
took t = 1, tb = 0.02 and tw = 0.1.

w-particles. Note also the minus phase factor in front of
the t

b

couplings.
For Fermi energies, E

F

, close to half filling (see Fig.
1) Hamiltonian (1) has the following characteristics. The
low energy behaviour of the first t-term, H

t

, is equivalent
to graphene [14, 15]. The energy dispersion relation E(p)
with respect to this term becomes zero for two isolated
momenta, P± = (0,±4⇡/(3

p
3)), called Fermi points.

Expanding the Hamiltonian around these momenta gives

H±
t

⇡ �3

2
t

Z

d2rb†(r)(@
x

± i@
y

)w(r) + H.c., (2)

where b(r) and w(r) are the continuous version of the
fermionic operators and @

x,y

are partial derivatives in
the two spatial dimensions. The Hamiltonians H±

t

are
gapless, so they describe massless Dirac fermions.

The second t
b,w

-term, H
tb,w , opens an energy gap at

the Fermi points. We now take the phase acquired
by w fermions to be � = �2⇡/3 for the direction
n1=(3/2,

p
3/2) (�� for the direction �n1) and zero for

the rest of the directions. Then, close to the two Fermi
points, i.e. within the low energy approximation, H

tb,w

assumes the following forms

H+
tb,w

⇡ �3

Z

d2rt
b

b(r)†b(r),

H�
tb,w

⇡ 3

Z

d2r
⇥

t
w

w(r)†w(r) � t
b

b(r)†b(r)
⇤

. (3)

These Hamiltonians give rise to the energy gaps �E+ =
3t

b

for P+ and �E� = 3(t
b

+ t
w

) for P�. Hence, the
non-zero phase factor � allows us to open di↵erent gaps
for the two Fermi points. In particular, we choose

t
b

⌧ t
w

, (4)

so the two Fermi points have a large energy di↵erence,
as shown in Fig. 1. By restricting to low enough energy
scales, of the order of �E+, the dynamics of P� will
be frozen and it can be neglected. To demonstrate this
consider the ground state, |gsi, of the system and two
excited states, |e+i corresponding to the lowest energy
excitation at P+ and |e�i corresponding to P�. Next,
we assign the energy gaps �E+ and �E� between each
of the excited states and the ground state. Assume that
the system is initially prepared in the ground state |gsi.
Consider a small perturbation in the system that cou-
ples the ground state to both excited states with equal
strength ⌦ of the order of �E+. This perturbation has as
an e↵ect a negligible population to be transferred to |e�i
and most of the dynamics to take place only between |gsi
and |e+i. Indeed, by adiabatic elimination we find that
the maximum population of |e�i state at all times is of
the order of (⌦/�E�)2, which we also verified numeri-
cally. Hence, we can safely neglect the P� Fermi point
as long as the perturbations acting on the system satisfy
⌦ ⌧ �E�.

Finally, the interaction U -term, H
U

, of Hamiltonian
(1) is local and acts as a repulsion between the fermions
in the same unit cell. In the continuous approximation
it takes the form

H
U

⇡ U

Z

d2rb†(r)b(r)w†(r)w(r), (5)

where for U ⌧ �E� we only consider fermionic modes
around the P+ Fermi point. Combining all the compo-
nents together we can write the continuum limit of (1),
up to an overall energy shift, in the following way

H⇡
Z

d2r
h

 †�c� · p + �
z

Mc2
�

 +
g2

2
jµj

µ

i

, (6)

where  (r) = (b(r) w(r))T is the Dirac spinor, �
µ

are
the Pauli operators with � = (�

y

,�
x

), p = (�i@
x

,�i@
y

),
j
x

=  ̄�
x

 =  †�
y

 , j
y

=  ̄�
y

 =  †�
x

 ,  ̄ =  †�
z

and j0 =  † . Moreover, g2 = U

3 , c = 3
2 t and M = 2

3
tb
t

2 .
Hence, the nearest neighbour tunnelling coupling corre-
sponds to the speed of light, the next-to-nearest neigh-
bour tunnelling coupling gives rise to the mass M of the
Dirac fermions and the lattice fermion interaction corre-
sponds directly to the current-current interaction of the
Thirring model.
From Thirring model to Chern-Simons theory:– Hamil-

tonian (6) exactly describes the massive Thirring model
in 2 + 1 dimensions. We now employ the path integral
formalism to show the connection of this model to Chern-
Simons-Maxwell theory [11]. By applying a Wick rota-
tion on the temporal coordinate, we can write the cor-
responding Euclidean partition function of the Thirring
model as
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FIG. 1: Left: The honeycomb lattice with fermions tunnelling
from one site to the neighbouring (coupling t) as well as to
the next-to-neighbouring sites (couplings tb and tw). The
unit cell is depicted with two sites named b and w. Right:

The energy dispersion of the t- and tb,w-terms of Hamiltonian
(1) for momenta that cross trough both Fermi points, P+ and
P�. The tb,w-term opens up asymmetric energy gaps �E+

and �E� to the corresponding Fermi points. We take the
Fermi energy EF (depicted with dashed line) between both
gaps so that only the lower band is completely filled. For
�E� � �E+ we can adiabatically eliminate P�. Here we
took t = 1, tb = 0.02 and tw = 0.1.

w-particles. Note also the minus phase factor in front of
the t

b

couplings.
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1) Hamiltonian (1) has the following characteristics. The
low energy behaviour of the first t-term, H
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, is equivalent
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the maximum population of |e�i state at all times is of
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Hence, the nearest neighbour tunnelling coupling corre-
sponds to the speed of light, the next-to-nearest neigh-
bour tunnelling coupling gives rise to the mass M of the
Dirac fermions and the lattice fermion interaction corre-
sponds directly to the current-current interaction of the
Thirring model.
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tonian (6) exactly describes the massive Thirring model
in 2 + 1 dimensions. We now employ the path integral
formalism to show the connection of this model to Chern-
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FIG. 1: Left: The honeycomb lattice with fermions tunnelling
from one site to the neighbouring (coupling t) as well as to
the next-to-neighbouring sites (couplings tb and tw). The
unit cell is depicted with two sites named b and w. Right:

The energy dispersion of the t- and tb,w-terms of Hamiltonian
(1) for momenta that cross trough both Fermi points, P+ and
P�. The tb,w-term opens up asymmetric energy gaps �E+

and �E� to the corresponding Fermi points. We take the
Fermi energy EF (depicted with dashed line) between both
gaps so that only the lower band is completely filled. For
�E� � �E+ we can adiabatically eliminate P�. Here we
took t = 1, tb = 0.02 and tw = 0.1.

w-particles. Note also the minus phase factor in front of
the t
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couplings.
For Fermi energies, E
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, close to half filling (see Fig.
1) Hamiltonian (1) has the following characteristics. The
low energy behaviour of the first t-term, H
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, is equivalent
to graphene [14, 15]. The energy dispersion relation E(p)
with respect to this term becomes zero for two isolated
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) for P�. Hence, the
non-zero phase factor � allows us to open di↵erent gaps
for the two Fermi points. In particular, we choose
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so the two Fermi points have a large energy di↵erence,
as shown in Fig. 1. By restricting to low enough energy
scales, of the order of �E+, the dynamics of P� will
be frozen and it can be neglected. To demonstrate this
consider the ground state, |gsi, of the system and two
excited states, |e+i corresponding to the lowest energy
excitation at P+ and |e�i corresponding to P�. Next,
we assign the energy gaps �E+ and �E� between each
of the excited states and the ground state. Assume that
the system is initially prepared in the ground state |gsi.
Consider a small perturbation in the system that cou-
ples the ground state to both excited states with equal
strength ⌦ of the order of �E+. This perturbation has as
an e↵ect a negligible population to be transferred to |e�i
and most of the dynamics to take place only between |gsi
and |e+i. Indeed, by adiabatic elimination we find that
the maximum population of |e�i state at all times is of
the order of (⌦/�E�)2, which we also verified numeri-
cally. Hence, we can safely neglect the P� Fermi point
as long as the perturbations acting on the system satisfy
⌦ ⌧ �E�.
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, of Hamiltonian
(1) is local and acts as a repulsion between the fermions
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it takes the form
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Hence, the nearest neighbour tunnelling coupling corre-
sponds to the speed of light, the next-to-nearest neigh-
bour tunnelling coupling gives rise to the mass M of the
Dirac fermions and the lattice fermion interaction corre-
sponds directly to the current-current interaction of the
Thirring model.
From Thirring model to Chern-Simons theory:– Hamil-

tonian (6) exactly describes the massive Thirring model
in 2 + 1 dimensions. We now employ the path integral
formalism to show the connection of this model to Chern-
Simons-Maxwell theory [11]. By applying a Wick rota-
tion on the temporal coordinate, we can write the cor-
responding Euclidean partition function of the Thirring
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FIG. 1: Left: The honeycomb lattice with fermions tunnelling
from one site to the neighbouring (coupling t) as well as to
the next-to-neighbouring sites (couplings tb and tw). The
unit cell is depicted with two sites named b and w. Right:

The energy dispersion of the t- and tb,w-terms of Hamiltonian
(1) for momenta that cross trough both Fermi points, P+ and
P�. The tb,w-term opens up asymmetric energy gaps �E+

and �E� to the corresponding Fermi points. We take the
Fermi energy EF (depicted with dashed line) between both
gaps so that only the lower band is completely filled. For
�E� � �E+ we can adiabatically eliminate P�. Here we
took t = 1, tb = 0.02 and tw = 0.1.

w-particles. Note also the minus phase factor in front of
the t
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couplings.
For Fermi energies, E

F

, close to half filling (see Fig.
1) Hamiltonian (1) has the following characteristics. The
low energy behaviour of the first t-term, H

t

, is equivalent
to graphene [14, 15]. The energy dispersion relation E(p)
with respect to this term becomes zero for two isolated
momenta, P± = (0,±4⇡/(3
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3)), called Fermi points.
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where b(r) and w(r) are the continuous version of the
fermionic operators and @
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are partial derivatives in
the two spatial dimensions. The Hamiltonians H±
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are
gapless, so they describe massless Dirac fermions.

The second t
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-term, H
tb,w , opens an energy gap at

the Fermi points. We now take the phase acquired
by w fermions to be � = �2⇡/3 for the direction
n1=(3/2,
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3/2) (�� for the direction �n1) and zero for

the rest of the directions. Then, close to the two Fermi
points, i.e. within the low energy approximation, H
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) for P�. Hence, the
non-zero phase factor � allows us to open di↵erent gaps
for the two Fermi points. In particular, we choose
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so the two Fermi points have a large energy di↵erence,
as shown in Fig. 1. By restricting to low enough energy
scales, of the order of �E+, the dynamics of P� will
be frozen and it can be neglected. To demonstrate this
consider the ground state, |gsi, of the system and two
excited states, |e+i corresponding to the lowest energy
excitation at P+ and |e�i corresponding to P�. Next,
we assign the energy gaps �E+ and �E� between each
of the excited states and the ground state. Assume that
the system is initially prepared in the ground state |gsi.
Consider a small perturbation in the system that cou-
ples the ground state to both excited states with equal
strength ⌦ of the order of �E+. This perturbation has as
an e↵ect a negligible population to be transferred to |e�i
and most of the dynamics to take place only between |gsi
and |e+i. Indeed, by adiabatic elimination we find that
the maximum population of |e�i state at all times is of
the order of (⌦/�E�)2, which we also verified numeri-
cally. Hence, we can safely neglect the P� Fermi point
as long as the perturbations acting on the system satisfy
⌦ ⌧ �E�.

Finally, the interaction U -term, H
U

, of Hamiltonian
(1) is local and acts as a repulsion between the fermions
in the same unit cell. In the continuous approximation
it takes the form
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d2rb†(r)b(r)w†(r)w(r), (5)

where for U ⌧ �E� we only consider fermionic modes
around the P+ Fermi point. Combining all the compo-
nents together we can write the continuum limit of (1),
up to an overall energy shift, in the following way
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Hence, the nearest neighbour tunnelling coupling corre-
sponds to the speed of light, the next-to-nearest neigh-
bour tunnelling coupling gives rise to the mass M of the
Dirac fermions and the lattice fermion interaction corre-
sponds directly to the current-current interaction of the
Thirring model.
From Thirring model to Chern-Simons theory:– Hamil-

tonian (6) exactly describes the massive Thirring model
in 2 + 1 dimensions. We now employ the path integral
formalism to show the connection of this model to Chern-
Simons-Maxwell theory [11]. By applying a Wick rota-
tion on the temporal coordinate, we can write the cor-
responding Euclidean partition function of the Thirring
model as
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We can introduce a vector field a
µ

through the following
identity
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so that the exponent of the partition function becomes
quadratic with respect to the fermionic field. We can
now integrate out the spinor fields

Z

D ̄ D exp



�c

Z

d3x  ̄
⇣

6@ +
g

c
6a � Mc

⌘

 

�

=

exp
�� Se↵[a]

 

, (9)

and obtain an a
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-dependent e↵ective action given by
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Upon applying a Pauli-Villars regularisation [16, 17] to
the e↵ective action we obtain a parity violating term
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
we take Mc/|Mc| to be positive.

Next, we introduce an interpolating action SI[a, A]
given by

SI[a, A] = (12)
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where A
µ

is an Abelian gauge field. By integrating the
partition function of SI[a, A] with respect to A

µ

or with
respect to a

µ

it is possible to prove [19] the following
equivalence between the two di↵erent partition functions
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A

⌫

can take non-zero
values everywhere much like the Aharonov-Bohm e↵ect.
Measurement of topological order:– Finally, we would

like to identify the topological order of the tight bind-
ing model given in (1). Initially, we consider the Chern-
Simons theory. The relevant physical observables should
be operators that are gauge-invariant as well as metric
independent. For that we take the Wilson loop opera-
tors

W (L) = exp
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �

L

, known
also as the Gauss integral, of the link L as hW (L)iCSM =
exp

� ± i�
L

/(8⇡)
�

. For a single unknotted loop L0 it
is �

L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms
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tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
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comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A

⌫

can take non-zero
values everywhere much like the Aharonov-Bohm e↵ect.
Measurement of topological order:– Finally, we would

like to identify the topological order of the tight bind-
ing model given in (1). Initially, we consider the Chern-
Simons theory. The relevant physical observables should
be operators that are gauge-invariant as well as metric
independent. For that we take the Wilson loop opera-
tors
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �

L

, known
also as the Gauss integral, of the link L as hW (L)iCSM =
exp

� ± i�
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. For a single unknotted loop L0 it
is �

L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
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, known
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surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
we take Mc/|Mc| to be positive.
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where A
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is an Abelian gauge field. By integrating the
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A
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Measurement of topological order:– Finally, we would

like to identify the topological order of the tight bind-
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independent. For that we take the Wilson loop opera-
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �
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, known
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. For a single unknotted loop L0 it
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L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms
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which is the Abelian Chern-Simons action up to correc-
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terms will have a negligible contribution. Expression (11)
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However, the Coleman-Hill theorem [18] guarantees that
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A
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hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
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having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �
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, known
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. For a single unknotted loop L0 it
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L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
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no further concreteness at higher loops. For convenience
we take Mc/|Mc| to be positive.

Next, we introduce an interpolating action SI[a, A]
given by

SI[a, A] = (12)
Z

d3x
⇣1

2
aµa

µ

� i✏�µ⌫a
�

@
µ

A
⌫

+
2⇡ic

g2
✏�µ⌫A

�

@
µ

A
⌫

⌘

,

where A
µ

is an Abelian gauge field. By integrating the
partition function of SI[a, A] with respect to A

µ

or with
respect to a

µ

it is possible to prove [19] the following
equivalence between the two di↵erent partition functions

ZI =

Z

Da
µ

DA
µ

e�SI[a,A] =

Z

Da
µ

exp



�
Z

d3x

✓

ig2

8⇡c
✏�µ⌫a

�

@
µ

a
⌫

+
1

2
aµa

µ

◆�

=

Z

DA
µ

exp



�
Z

d3x

✓

2⇡i c

g2
✏�µ⌫A

�

@
µ

A
⌫

+
1

4
F

µ⌫

Fµ⌫

◆�

=

ZCSM. (13)

Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A
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, known
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L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A
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Simons theory. The relevant physical observables should
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independent. For that we take the Wilson loop opera-
tors
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �
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, known
also as the Gauss integral, of the link L as hW (L)iCSM =
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. For a single unknotted loop L0 it
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L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms

3

We can introduce a vector field a
µ

through the following
identity

exp

✓

Z

d3x
g2

2
jµj

µ

◆

= (8)

Z

Da
µ

exp



�
Z

d3x

✓

1

2
aµa

µ

+ g jµa
µ

◆�

,

so that the exponent of the partition function becomes
quadratic with respect to the fermionic field. We can
now integrate out the spinor fields

Z

D ̄ D exp



�c

Z

d3x  ̄
⇣

6@ +
g

c
6a � Mc

⌘

 

�

=

exp
�� Se↵[a]

 

, (9)

and obtain an a
µ

-dependent e↵ective action given by

Se↵[a] = �c log
h

det
⇣

6@ +
g

c
6a � Mc

⌘i

. (10)

Upon applying a Pauli-Villars regularisation [16, 17] to
the e↵ective action we obtain a parity violating term

Se↵[a] =
ig2

8⇡c

Mc

|Mc|
Z

d3x ✏�µ⌫a
�

@
µ

a
⌫

+O
✓

@

Mc

◆

, (11)

which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
we take Mc/|Mc| to be positive.
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A

⌫

can take non-zero
values everywhere much like the Aharonov-Bohm e↵ect.
Measurement of topological order:– Finally, we would

like to identify the topological order of the tight bind-
ing model given in (1). Initially, we consider the Chern-
Simons theory. The relevant physical observables should
be operators that are gauge-invariant as well as metric
independent. For that we take the Wilson loop opera-
tors
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �
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, known
also as the Gauss integral, of the link L as hW (L)iCSM =
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. For a single unknotted loop L0 it
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L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms
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which is the Abelian Chern-Simons action up to correc-
tions of order @/Mc. As we are interested in the be-
haviour of the ground state of the system, which belongs
to its low energy sector, the O (@/Mc) and higher order
terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
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we take Mc/|Mc| to be positive.

Next, we introduce an interpolating action SI[a, A]
given by

SI[a, A] = (12)
Z

d3x
⇣1

2
aµa

µ

� i✏�µ⌫a
�

@
µ

A
⌫

+
2⇡ic

g2
✏�µ⌫A

�

@
µ

A
⌫

⌘

,

where A
µ

is an Abelian gauge field. By integrating the
partition function of SI[a, A] with respect to A

µ

or with
respect to a

µ

it is possible to prove [19] the following
equivalence between the two di↵erent partition functions

ZI =

Z

Da
µ

DA
µ

e�SI[a,A] =

Z

Da
µ

exp



�
Z

d3x

✓

ig2

8⇡c
✏�µ⌫a

�

@
µ

a
⌫

+
1

2
aµa

µ

◆�

=

Z

DA
µ

exp



�
Z

d3x

✓

2⇡i c

g2
✏�µ⌫A

�

@
µ

A
⌫

+
1

4
F

µ⌫

Fµ⌫

◆�

=

ZCSM. (13)

Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A
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values everywhere much like the Aharonov-Bohm e↵ect.
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independent. For that we take the Wilson loop opera-
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where L is an arbitrary link in 2 + 1 spacetime, possibly
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surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
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hibit non-zero topological entropy [22, 23] and they have
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wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms

hW (L)iCSM = exp(±i�L/8⇡)

Take L on the space plane, L0, and a single loop: �L0 = 0

3

We can introduce a vector field a
µ

through the following
identity

exp

✓

Z

d3x
g2

2
jµj

µ

◆

= (8)

Z

Da
µ

exp



�
Z

d3x

✓

1

2
aµa

µ

+ g jµa
µ

◆�

,

so that the exponent of the partition function becomes
quadratic with respect to the fermionic field. We can
now integrate out the spinor fields

Z

D ̄ D exp



�c

Z

d3x  ̄
⇣

6@ +
g

c
6a � Mc

⌘

 

�

=

exp
�� Se↵[a]

 

, (9)

and obtain an a
µ

-dependent e↵ective action given by

Se↵[a] = �c log
h

det
⇣

6@ +
g

c
6a � Mc

⌘i

. (10)

Upon applying a Pauli-Villars regularisation [16, 17] to
the e↵ective action we obtain a parity violating term

Se↵[a] =
ig2

8⇡c

Mc

|Mc|
Z

d3x ✏�µ⌫a
�

@
µ

a
⌫

+O
✓

@

Mc

◆

, (11)

which is the Abelian Chern-Simons action up to correc-
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terms will have a negligible contribution. Expression (11)
comes from one-loop calculations of Feynman diagrams.
However, the Coleman-Hill theorem [18] guarantees that
the Chern-Simons is the dominant term and it receives
no further concreteness at higher loops. For convenience
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where A
µ

is an Abelian gauge field. By integrating the
partition function of SI[a, A] with respect to A
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Summing up, through the bosonisation mechanism, we
have shown that the low energy sector of the 2 + 1-
dimensional Thirring model is equivalent to a Chern-
Simons-Maxwell theory. In the standard spacetime with
Lorentzian signature the topological action appears with
the coupling 2⇡c/g2. Hence, to enhance the Chern-
Simons action over the Maxwell term we need to make the
coupling g2 small. Alternatively, if we are interested in
obtaining the electromagnetic action in 2 + 1 dimensions
then we need to make the coupling g2 large. Here we are
interested in the case where the topological action is dom-
inant. The Chern-Simons term makes the gauge theory
massive, with a correlation length that decreases propor-
tionally to g2. In particular, the corresponding electric
and magnetic fields die o↵ exponentially fast away from
the sources. Nevertheless, the field A

⌫

can take non-zero
values everywhere much like the Aharonov-Bohm e↵ect.
Measurement of topological order:– Finally, we would

like to identify the topological order of the tight bind-
ing model given in (1). Initially, we consider the Chern-
Simons theory. The relevant physical observables should
be operators that are gauge-invariant as well as metric
independent. For that we take the Wilson loop opera-
tors

W (L) = exp

✓

i

g

I

L

A
µ

dxµ

◆
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where L is an arbitrary link in 2 + 1 spacetime, possibly
having many strands. It was shown in [20, 21] that the
expectation value of the Wilson loop, hW (L)iCSM, can
be expressed in terms of the linking number �

L

, known
also as the Gauss integral, of the link L as hW (L)iCSM =
exp

� ± i�
L

/(8⇡)
�

. For a single unknotted loop L0 it
is �

L0 = 0, so the expectation value becomes equal to
hW (L0)iCSM = 1. If L0 lies completely on the spatial
surface of the Chern-Simons theory, i.e. having no time
component, then this expectation value is evaluated with
respect to the ground state of the system | CSMi and it
gives

h CSM|W (L0) | CSMi = 1. (15)

Hence, the Chern-Simons theory has a ground state that
is stabilised in terms of Wilson operators of all possi-
ble loop shapes. For non-trivial ground states or loop
operators this condition can be satisfied only by states
that are condensates of all possible loops. Such loop
condensate states are topologically ordered as they ex-
hibit non-zero topological entropy [22, 23] and they have
non-trivial topological degeneracy when the system is
wrapped around the torus [24]. These two characteristics
are the main identification tools of topological order.

Condition (15) allows us to determine if the tight-
binding model with a low energy behaviour described by
the Thirring model is topologically ordered or not. It was
shown by Fradkin and Schaposnik [11] that the expecta-
tion value of the Wilson loop can be expressed in terms

Ground state is stabilised by all Wilson loop operators 
-> topologically ordered 
•  Topo entanglement entropy (Levin and Wen) 
•  Topo degeneracy (Freedman et al.) 
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where ⌃ is a surface bounded by the loop L. We can
employ this connection to express condition (15) of topo-
logical order in terms of fermionic observables. Consider
a spatial surface, ⌃0, of the Thirring model. The flux of
the fermionic current through ⌃0 is given in terms of the
current j0 =  † as
Z
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dS
µ

 ̄�µ =

Z
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dS
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b(r)†b(r) + w(r)†w(r)
⇤

. (17)

In terms of the tight binding model the flux of the current
j0 through ⌃0 becomes the sum of the fermionic densi-
ties of both species at the sites enclosed by ⌃0. Hence,
the expectation value of the exponential of these popula-
tions with respect to the ground state of the tight binding
model, | TBi, is given by

h TB| exp
h

i
X

i2⌃0

�

b†
i bi + w†

i wi

�

i

| TBi = 1. (18)

One can now directly determine if the tight binding
model is topologically ordered. In Fig. 2 we depict an
area ⌃0 of the lattice bounded by a loop L0. Care has
been taken so that L0 does not cut cells in half as they
are considered as a single point in space during the con-
tinuous approximation. Then (18) corresponds to mea-
suring the populations of b and w fermions, b†

i bi and

w†
i wi, in all sites within the region ⌃0 of the tight binding

model, constructing their sum and then averaging their
exponential over di↵erent realisations of the lattice ex-
periment. Note that if the coupling g2 is large and the
Maxwell term is dominant over the Chern-Simons action
then hW (L0)i ⇡ e�|⌃0|, where  is some positive con-
stant and |⌃0| is the area enclosed by the loop L0 [25].

This quantity decreases exponentially fast as the area of
the loop is increased. This area law behaviour reveals the
charge confinement of 2+1-dimensional QED [26] and it
can be directly demonstrated with our scheme.
Conclusions:– In this letter we have presented a tight

binding model that gives rise, in the low energy limit,
to Abelian Chern-Simons theories. We extended a ver-
sion of Haldane’s model, with imbalanced masses of the
resulting Dirac fermions so that one of them is adia-
batically eliminated. In this limit interactions between
fermions exactly reproduce the Thirring model. Upon
bosonisation the latter model is equivalent to the Abelian
Chern-Simons theory. A direct method to measure the
topological order of the system is proposed that requires
local density measurements of the fermions of the tight
binding model. These measurements can determine the
invariance of the ground state under applications of arbi-
trary Wilson loop operators of the model resulting from
bosonisation. The generalisation of this procedure to
non-Abelian Chern-Simons theories [27] is a fundamental
problem with practical applications to topological quan-
tum technologies [23].

A possible experimental realisation of the tight binding
model can be given in terms of spin-dependent potentials,
in the same lines as Refs. [28–30]. There interspecies
tunnelling along the honeycomb lattice is activated by
Raman assisted tunnelling, which can imprint complex
phase factors as the ones we require here [28]. The in-
teractions between fermions are restricted only within
the unit cell, and thus need to be independent of the
tunnelling couplings. For that one can employ optically
induced p-wave Feshbach resonance to manipulate the
collisional couplings U [31, 32]. Finally, the local atom
density measurements necessary to identify the topolog-
ical order can be performed with well established tech-
niques [33]. Relation (18) can then be verified for arbi-
trary surfaces ⌃0 with geometric characteristics that are
large compared to the correlation length of the system
[34].

Note that an alternative approach to obtain frac-
tional quantum Hall physics by introducing interactions
in the Haldane model has been recently presented in [35],
though that model is analytically intractable.
Acknowledgements:– JKP would like to thank Gunnar
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• Method to eliminate the “doubling” of Fermi points in 
lattice models -> possible to realise chiral models. 
• Analytically tractable model for FQHE. 
• No need for magnetic field. 
• Wilson loop behaviour by local density measurements. 

• Future: 
• Non-Abelian anyons 
• SU(N) Yang-Mills theories 2+1 dims 
• Extension to 3+1 dims 

Conclusions 
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