Two dimensional quantum memories Commuting projector codes

David Poulin

Département de Physique Université de Sherbrooke
Joint work with Sergey Bravyi and Barbara Terhal

Sydney Quantum information Theory Workshop
Coogee, Australia, January 2013

Outline

(1) 2D Commuting Projector Codes
(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance
(4) Capacity-Stability Tradeoff
(5) String-Like Logical Operators
(6) Open Questions

Outline

(1) 2D Commuting Projector Codes
(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance

4 Capacity-Stability Tradeoff
(5) String-Like Logical Operators

6 Open Questions

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle. - Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- Code $\mathcal{C}=\left\{\psi: P_{X}|\psi\rangle=|\psi\rangle\right\}$ = ground space of H $=$ image of code projector $\Pi=\Pi_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
 = ground space of H $=$ image of code projector $\Pi=\Pi_{X} P_{X}$ - With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with

= ground space of H
$=$ image of code projector $\Pi=\Pi_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if $\operatorname{radius}(X) \geq w$.
- P_{X} are projectors (optional).
- Code $\mathcal{C}=$
= ground space of H
$=$ image of code projector $\Pi=\Pi_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if $\operatorname{radius}(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).

= ground space of H
$=$ image of code projector $\Pi=\Pi_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if radius $(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).
= ground space of H
$=$ image of code projector $\Pi=\Pi_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if radius $(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).
- Code $\mathcal{C}=\left\{\psi: P_{X}|\psi\rangle=|\psi\rangle\right\}$
= ground space of H
$=$ image of code projector $\Pi=\prod_{X} P_{X}$
- With proper coarse graining, we can assume that

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if radius $(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).
- Code $\mathcal{C}=\left\{\psi: P_{X}|\psi\rangle=|\psi\rangle\right\}$
= ground space of H
$=$ image of code projector $\Pi=\prod_{X} P_{X}$
- With proper coarse graining, we can assume that
- \wedge is a regular square lattice.
- Each P_{x} acts on 2×2 cell.

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if radius $(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).
- Code $\mathcal{C}=\left\{\psi: P_{X}|\psi\rangle=|\psi\rangle\right\}$
= ground space of H
$=$ image of code projector $\Pi=\prod_{X} P_{X}$
- With proper coarse graining, we can assume that
- Λ is a regular square lattice.

Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H=-\sum_{X \subset \Lambda} P_{X}$ with
- $P_{X}=0$ if radius $(X) \geq w$.
- $\left[P_{X}, P_{Y}\right]=0$.
- P_{X} are projectors (optional).
- Code $\mathcal{C}=\left\{\psi: P_{X}|\psi\rangle=|\psi\rangle\right\}$
= ground space of H
$=$ image of code projector $\Pi=\prod_{X} P_{X}$
- With proper coarse graining, we can assume that
- Λ is a regular square lattice.
- Each P_{X} acts on 2×2 cell.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsystem codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

Subsysten codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsysten codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsysten codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsystern codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
 The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsystern codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
 Subsystem codes do not belong to this family.

Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin \& Wen’s string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

Subsystem codes do not belong to this family.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho\right)=\rho$ for all code states ρ.

```
Minimum distance
The minimum distance d is the size of the smallest non-correctable
region.
```


Logical operator

Onerator I such that $L|\psi\rangle$ is a code state for any code state

Rate (capacity)

The rate of a code is $R=\frac{k}{n}$ where $k=\log \operatorname{dim}(C)$ and $n=|\Lambda|$ in the number of particles.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho\right)=\rho$ for all code states ρ.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Onerator 1 such that $L|\psi\rangle$ is a code state for any code state

Rate (capacity)

The rate of a code is $R=\frac{k}{n}$ where $k=\log \operatorname{dim}(C)$ and $n=|\Lambda|$ in the number of particles.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho\right)=\rho$ for all code states ρ.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R=\frac{k}{n}$ where $k=\log \operatorname{dim}(C)$ and $n=|\Lambda|$ in the number of particles.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho\right)=\rho$ for all code states ρ.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R=\frac{k}{n}$ where $k=\log \operatorname{dim}(\mathcal{C})$ and $n=|\Lambda|$ in the number of particles.

Outline

(1) 2D Commuting Projector Codes

2) Holographic Disentangling Lemma

(3) Holographic Minimum Distance
4) Capacity-Stability Tradeoff
(5) String-Like Logical Operators

6 Open Questions

Statement of the lemma

Holographic disentangling lemma

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$
U_{\partial M}|\psi\rangle=\left|\phi_{M}\right\rangle \otimes\left|\psi_{\bar{M}}^{\prime}\right\rangle
$$

for some fixed state $\left|\phi_{M}\right\rangle$ on M.

> Remark
> For a trivial code $k=0$, every region is correctable, so we recover the area law $S(M) \leq|\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.

Statement of the lemma

Holographic disentangling lemma

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$
U_{\partial M}|\psi\rangle=\left|\phi_{M}\right\rangle \otimes\left|\psi_{\bar{M}}^{\prime}\right\rangle
$$

for some fixed state $\left|\phi_{M}\right\rangle$ on M.

Remark

For a trivial code $k=0$, every region is correctable, so we recover the area law $S(M) \leq|\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.

Proof

- Let M be correctable.
- Assume $\partial \mathrm{M}$ is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{A B} P_{B \bar{M}}$ with $\left[P_{A B}, P_{B \bar{M}}\right]=0$.

- $\mathcal{H}_{B}=\bigoplus_{j} \mathcal{H}_{B_{L}^{J}} \otimes \mathcal{H}_{B_{F}^{J}}$ and $\Pi=\bigoplus_{j} P_{A B_{L}^{J}} \otimes P_{B_{R}^{J} M}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^{1} and B^{2} such that $\Pi=V_{B} P_{A B^{1}} \otimes P_{B^{2} \bar{M}} V_{B}^{\dagger} .(\star)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{A B} P_{B \bar{M}}$ with $\left[P_{A B}, P_{B \bar{M}}\right]=0$.

- $\mathcal{H}_{B}=\bigoplus_{J} \mathcal{H}_{B_{L}^{J}} \otimes \mathcal{H}_{B_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{A B_{L}^{J}} \otimes P_{B_{R}^{J} \bar{M}}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^{1} and B^{2} such that $\Pi=V_{B} P_{A B^{1}} \otimes P_{B^{2} \bar{M}} V_{B}^{\dagger} \cdot(\star)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{A B} P_{B \bar{M}}$ with $\left[P_{A B}, P_{B \bar{M}}\right]=0$.

- $\mathcal{H}_{B}=\bigoplus_{J} \mathcal{H}_{B_{L}^{J}} \otimes \mathcal{H}_{B_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{A B_{L}^{J}} \otimes P_{B_{R}^{J} \bar{M}}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^{1} and B^{2} such that $\Pi=V_{B} P_{A B^{1}}$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{A B} P_{B \bar{M}}$ with $\left[P_{A B}, P_{B \bar{M}}\right]=0$.

- $\mathcal{H}_{B}=\oplus_{J} \mathcal{H}_{B_{L}^{J}} \otimes \mathcal{H}_{B_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{A B_{L}^{J}} \otimes P_{B_{R}^{J} M}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^{1} and B^{2} such that $\Pi=V_{B} P_{A B^{1}} \otimes P_{B^{2} M} V_{B}^{\dagger} .(\star)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{M C} P_{C D}$ with $\left[P_{M C}, P_{C D}\right]=0$.

- $\mathcal{H}_{C}=\bigoplus_{j} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi=\bigoplus_{j} P_{M C_{L}^{J}} \otimes P_{C_{R}^{J} D}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^{1} and C^{2} such that $\Pi=V_{C} P_{M C^{1}} \otimes P_{C^{2} D} V_{C}^{\dagger} .(* *)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{M C} P_{C D}$ with $\left[P_{M C}, P_{C D}\right]=0$.

- $\mathcal{H}_{C}=\bigoplus_{j} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi=\bigoplus_{j} P_{M C_{L}^{J}} \otimes P_{C_{R}^{J D}}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^{1} and C^{2} such that $\Pi=V_{C} P_{M C^{1}}$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{M C} P_{C D}$ with $\left[P_{M C}, P_{C D}\right]=0$.

- $\mathcal{H}_{C}=\bigoplus_{J} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{M C_{L}^{J}} \otimes P_{C_{R}^{J} D}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^{1} and C^{2} such that $\Pi=V_{C} P_{M C^{1}} \otimes P_{C^{2} D} V_{C}^{\dagger} .(\star *)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{M C} P_{C D}$ with $\left[P_{M C}, P_{C D}\right]=0$.

$\bar{M}=\Lambda \ M$
- $\mathcal{H}_{C}=\bigoplus_{J} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{M C_{L}^{J}} \otimes P_{C_{R}^{J} D}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^{1} and C^{2} such that $\Pi=V_{C} P_{M C^{1}}$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.
- Write $\Pi=P_{M C} P_{C D}$ with $\left[P_{M C}, P_{C D}\right]=0$.

$\bar{M}=\Lambda M$
- $\mathcal{H}_{C}=\bigoplus_{J} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi=\bigoplus_{J} P_{M C_{L}^{J}} \otimes P_{C_{R}^{J} D}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^{1} and C^{2} such that $\Pi=V_{C} P_{M C^{1}} \otimes P_{C^{2} D} V_{C}^{\dagger} .(\star \star)$

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

- Combining ($*$) with ($(*)$), $\Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle \otimes\left|\beta_{C^{2}}\right\rangle$
- Then $U_{\partial M}=V_{B^{2} C^{\dagger}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

- Combining ((\star) with $(\star \star), \Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle$
- Then $U_{\partial M}=V_{B^{2} C^{\dagger}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

- Combining (\star) with ($\star \star$), $\Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle$
- Then $U_{\partial M}=V_{B^{2} C^{1}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

$\bar{M}=\Lambda \ M$
- Combining (\star) with ($\star \star$), $\Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle$
- Then $U_{\partial M}=V_{B^{2} C^{\dagger}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

$\bar{M}=\Lambda M$
- Combining (\star) with ($\star \star$), $\Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle \otimes\left|\beta_{C^{2}}\right\rangle$.
- Then $U_{\partial M}=V_{B^{2} C^{1}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M=A \cup B, \bar{M}=C \cup D$, and $\partial M=B \cup C$.

$\bar{M}=\Lambda M$
- Combining (\star) with ($\star \star$), $\Pi^{\prime}=V_{B}^{\dagger} V_{C}^{\dagger} \Pi V_{B} V_{C}=P_{A B^{1}} P_{B^{2} C^{1}} P_{C^{2} D}$
- $P_{A B^{1}}=\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right|$ is rank one since $A B^{1} \subset M$ is correctable.
- $P_{B^{2} C^{1}}=\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{2} C^{1}}\right|$ is rank one since $B^{2} C^{1} \subset \partial M$ is correctable.
- Let $V_{B^{2} C^{1}}$ be any unitary such that $V_{B^{2} C^{1}}\left|\nu_{B^{2} C^{1}}\right\rangle=\left|\alpha_{B^{2}}\right\rangle \otimes\left|\beta_{C^{2}}\right\rangle$.
- Then $U_{\partial M}=V_{B^{2} C^{1}} V_{B}^{\dagger} V_{C}^{\dagger}$ disentangles region M as claimed.

Outline

(1) 2D Commuting Projector Codes
(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance

4 Capacity-Stability Tradeoff
(5) String-Like Logical Operators
6) Open Questions

Statement of the result

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq c d$.

Statement of the result

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq c d$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.

Statement of the result

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq c d$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr} \partial м \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{\text {MUam }} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr} \partial м \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{\text {M }}$ дм ρ, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{\text {M }}$ a $2 \mathrm{M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ. correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{M \cup \partial M \rho}$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{M \cup \partial M \rho}$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{M \cup \partial M \rho}$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \wedge$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{A D}=\operatorname{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{A D}=\eta_{A} \otimes \rho_{D}$ with η_{A} independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_{D}=\operatorname{Tr}_{M \cup \partial M \rho}$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

Outline

(1) 2D Commuting Projector Codes

(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance

4 Capacity-Stability Tradeoff
(5) String-Like Logical Operators
(6) Open Questions

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ
- Minimum distance $d \propto \ell$
- Number of logical qubits $k \propto$ number of holes $\propto n / l^{2} \propto n / d^{2}$
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$

We mill need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Statement of the result

Capacity-Stability Tradeoff

$$
k \leq c \frac{n}{d^{2}}
$$

- Singleton's bound: $k \leq n-2(d-1)$.
- Hamming bound: $k \leq n\left[1-\frac{d}{2 n} \log 3-H\left(\frac{d}{2 n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- Holes of linear size ℓ separated by distance ℓ.
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n / \ell^{2} \propto n / d^{2}$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

We will need two tools to prove this result.

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

- Obvious for pure states.
- Let $\rho_{M \bar{M}}$ be a code state and $\rho_{M \bar{M} R}$ its purification.
- By assumption, there exists \mathcal{R} on \wedge such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R}\right)=\rho_{M \bar{M} R}$ and $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)=\rho_{M M} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S\left(\rho_{M \bar{M} R} \| \rho_{M \bar{M}} \otimes \rho_{R}\right)=S\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R} \| \operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)$
- Using $S\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=S(A)+S(B)-S(A B)$ and the fact that $\rho_{M \bar{M} R}$ is pure, we get the desired result.

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

- Obvious for pure states.
- Let $\rho_{M \bar{M}}$ be a code state and $\rho_{M \bar{M} R}$ its purification.
- By assumption, there exists \mathcal{R} on \wedge such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R}\right)=\rho_{M \bar{M} R}$ and $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)=\rho_{M \bar{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S\left(\rho_{M \bar{M} R} \| \rho_{M \bar{M}} \otimes \rho_{R}\right)=S\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R} \| \operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)$
- Using $S\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=S(A)+S(B)-S(A B)$ and the fact that $\rho_{M \bar{M} R}$ is pure, we get the desired result.

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

- Obvious for pure states.
- Let $\rho_{M \bar{M}}$ be a code state and $\rho_{M \bar{M} R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R}\right)=\rho_{M \bar{M} R}$ and $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)=\rho_{M \bar{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S\left(\rho_{M \bar{M} R} \| \rho_{M \bar{M}} \otimes \rho_{R}\right)=S\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R} \| \operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)$
 $\rho_{M \bar{M} R}$ is pure, we get the desired result.

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

- Obvious for pure states.
- Let $\rho_{M \bar{M}}$ be a code state and $\rho_{M \bar{M} R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R}\right)=\rho_{M \bar{M} R}$ and $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)=\rho_{M \bar{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S\left(\rho_{M \bar{M} R} \| \rho_{M \bar{M}} \otimes \rho_{R}\right)=S\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R} \| \operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)$

Tool 1

Information-theoretic condition for error correction

M is correctable iff $S(M \bar{M})=S(\bar{M})-S(M)$ for any code state ρ.

- Obvious for pure states.
- Let $\rho_{M \bar{M}}$ be a code state and $\rho_{M \bar{M} R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R}\right)=\rho_{M \bar{M} R}$ and $\mathcal{R}\left(\operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)=\rho_{M \bar{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S\left(\rho_{M \bar{M} R} \| \rho_{M \bar{M}} \otimes \rho_{R}\right)=S\left(\operatorname{Tr}_{M} \rho_{M \bar{M} R} \| \operatorname{Tr}_{M} \rho_{M \bar{M}} \otimes \rho_{R}\right)$
- Using $S\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=S(A)+S(B)-S(A B)$ and the fact that $\rho_{M \bar{M} R}$ is pure, we get the desired result.

Tool 2

Union of correctable regions

Let M_{1} and M_{2} be correctable distant regions and suppose that ∂M_{1} is also correctable. Then, $M_{1} \cup M_{2}$ is correctable.

Tool 2

Union of correctable regions

Let M_{1} and M_{2} be correctable distant regions and suppose that ∂M_{1} is also correctable. Then, $M_{1} \cup M_{2}$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).

Tool 2

Union of correctable regions

Let M_{1} and M_{2} be correctable distant regions and suppose that ∂M_{1} is also correctable. Then, $M_{1} \cup M_{2}$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M 1} \otimes O_{M_{2}} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_{1} implies that

Tool 2

Union of correctable regions

Let M_{1} and M_{2} be correctable distant regions and suppose that ∂M_{1} is also correctable. Then, $M_{1} \cup M_{2}$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M 1} \otimes O_{M_{2}} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_{1} implies that $\Pi=V_{B} V_{C}\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right| \otimes\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{1} C^{1}}\right| \otimes P_{C^{2} D} V_{B}^{\dagger} V_{C}^{\dagger}$.

Tool 2

Union of correctable regions

Let M_{1} and M_{2} be correctable distant regions and suppose that ∂M_{1} is also correctable. Then, $M_{1} \cup M_{2}$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M 1} \otimes O_{M_{2}} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_{1} implies that $\Pi=V_{B} V_{C}\left|\eta_{A B^{1}}\right\rangle\left\langle\eta_{A B^{1}}\right| \otimes\left|\nu_{B^{2} C^{1}}\right\rangle\left\langle\nu_{B^{1} C^{1}}\right| \otimes P_{C^{2} D} V_{B}^{\dagger} V_{C}^{\dagger}$.
- So $\Pi O_{M 1} \otimes O_{M_{2}} \Pi=f\left(O_{M_{1}}\right) \Pi O_{M_{2}} \Pi \propto \Pi$ where $f\left(O_{M_{1}}\right)=\left\langle\eta_{A B^{1}}\right|\left\langle\nu_{B^{2} C^{1}}\right| V_{B}^{\dagger} O_{M_{1}} V^{B}\left|\eta_{A B^{1}}\right\rangle\left|\nu_{B^{2} C^{1}}\right\rangle$.

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's anply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:
- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:
- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C)=S(B C)-S(A) \text { and } \quad S(A B C)=S(A C)-S(B)
$$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C)=S(B C)-S(A) \quad \text { and } \quad S(A B C)=S(A C)-S(B)
$$

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C) \leq S(B)+S(C)-S(A) \quad \text { and } \quad S(A B C) \leq S(A)+S(C)-S(B)
$$

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C) \leq S(B)+S(C)-S(A) \quad \text { and } \quad S(A B C) \leq S(A)+S(C)-S(B)
$$

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

$$
2 S(A B C) \leq 2 S(C)
$$

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C) \leq S(B)+S(C)-S(A) \quad \text { and } \quad S(A B C) \leq S(A)+S(C)-S(B)
$$

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

$$
2 S(A B C) \leq 2 S(C)
$$

- $S(A B C)=k$.
c number of circles $\propto \frac{n}{d^{2}}$.

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region B (union of red squares) is correctable.

- Let's apply the information theoretic conditions to maximally mixed code state $\rho=\Pi / \operatorname{Tr}(\Pi)$ in two different ways:

$$
S(A B C) \leq S(B)+S(C)-S(A) \quad \text { and } \quad S(A B C) \leq S(A)+S(C)-S(B)
$$

- Using $S(B C) \leq S(B)+S(C)$ and $S(A C) \leq S(A)+S(C)$

$$
2 S(A B C) \leq 2 S(C)
$$

- $S(A B C)=k$.
- $S(C) \leq|C| \propto$ number of circles $\propto \frac{n}{d^{2}}$.

Outline

(1) 2D Commuting Projector Codes
(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance
(4) Capacity-Stability Tradeoff
(5) String-Like Logical Operators
6) Open Questions

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
- Relation to thermal instability?

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
- The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
- This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
- The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
- This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
- The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
- This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

Statement of the result

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
- The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
- This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

Proof, part 1

There exists a string-like region that is not-correctable.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{I} or ∂M_{R} are not correctable, we

- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at \wedge is correctable, which is impossible.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{L} or ∂M_{R} are not correctable, we

- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at \wedge is correctable, which is impossible.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{L} or ∂M_{R} are not correctable, we
 are done.
- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at \wedge is correctable, which is impossible.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{L} or ∂M_{R} are not correctable, we are done.

- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at \wedge is correctable, which is impossible.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{L} or ∂M_{R} are not correctable, we are done.
- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at \wedge is correctable, which is impossible.

Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M=\partial M_{L} \cup \partial M_{R}$.
- If either ∂M_{L} or ∂M_{R} are not correctable, we are done.
- Otherwise $\partial M=\partial M_{L} \cup \partial M_{R}$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_{M} such that $\Pi O_{M} \Pi \not \propto \Pi$.
- Let $\Pi_{M}=\prod_{X \cap M \neq \emptyset} P_{X}$
- Then $X=\Pi_{M} O_{M} \Pi_{M}$ is a non-trivial logical

- Any function of X, e.g. $\exp (-i X \theta)$, is also a logical operator with the same support.

Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_{M} such that $\Pi O_{M} \Pi \not \varnothing \Pi$.
- Let $\Pi_{M}=\prod_{X \cap M \neq \emptyset} P_{X}$
- Then $X=\Pi_{M} O_{M} \Pi_{M}$ is a non-trivial logical operator supported on $M \cup \partial M$.

- Any function of X, e.g. $\exp (-i X \theta)$, is also a logical operator with the same support.

Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_{M} such that $\Pi O_{M} \Pi \not \varnothing \Pi$.
- Let $\Pi_{M}=\prod_{X \cap M \neq \emptyset} P_{X}$
- Then $X=\Pi_{M} O_{M} \Pi_{M}$ is a non-trivial logical operator supported on $M \cup \partial M$.

- Any function of X, e.a. $\exp (-i X \theta)$, is also a logical operator with the same support.

Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_{M} such that $\Pi O_{M} \Pi \not \varnothing \Pi$.
- Let $\Pi_{M}=\prod_{X \cap M \neq \emptyset} P_{X}$
- Then $X=\Pi_{M} O_{M} \Pi_{M}$ is a non-trivial logical operator supported on $M \cup \partial M$.

- Any function of X, e.g. $\exp (-i X \theta)$, is also a logical operator with the same support.

Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_{M} such that $\Pi O_{M} \Pi \not \varnothing \Pi$.
- Let $\Pi_{M}=\prod_{X \cap M \neq \emptyset} P_{X}$
- Then $X=\Pi_{M} O_{M} \Pi_{M}$ is a non-trivial logical operator supported on $M \cup \partial M$.

- Any function of X, e.g. $\exp (-i X \theta)$, is also a logical operator with the same support.

Outline

(1) 2D Commuting Projector Codes
(2) Holographic Disentangling Lemma
(3) Holographic Minimum Distance
(4) Capacity-Stability Tradeoff
(5) String-Like Logical Operators
(6) Open Questions

- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$ - How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor) - String-like logical operators \Rightarrow constant energy barrier.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq \mathrm{cn} / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one)
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings)
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq \mathrm{cn} / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one)
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings)
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq \mathrm{cn} / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one)
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings)
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings)
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings)
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamilto
gapped Hamiltonians, i.e. Hastings
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor)
- All our results extend to D-dimensional lattices, e.g. $k \leq c n / d^{\frac{2}{D-1}}$
- How about infinite dimensions (LDPC codes)? (Delfosse \& Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
- Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor).

