Two dimensional quantum memories Commuting projector codes

David Poulin

Département de Physique Université de Sherbrooke

Joint work with Sergey Bravyi and Barbara Terhal

Sydney Quantum information Theory Workshop Coogee, Australia, January 2013

Outline

- 2D Commuting Projector Codes
- Polographic Disentangling Lemma
- 3 Holographic Minimum Distance
 - 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- Open Questions

Outline

1 2D Commuting Projector Codes

- 2 Holographic Disentangling Lemma
- 3 Holographic Minimum Distance
- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- 6 Open Questions

A is a 2D lattice.

- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- Λ is a 2D lattice.
- Each vertex occupied by *d*-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- Λ is a 2D lattice.
- Each vertex occupied by *d*-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by *d*-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).

• Code
$$\mathcal{C} = \{\psi : \boldsymbol{P}_{\boldsymbol{X}} | \psi \rangle = | \psi \rangle \}$$

- = ground space of H
- = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

2D Commuting Projector Codes Well known examples

Kitaev's toric code

- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

2D Commuting Projector Codes Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

2D Commuting Projector Codes

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_M \rho) = \rho$ for all code states ρ .

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R = \frac{k}{n}$ where $k = \log \dim(\mathcal{C})$ and $n = |\Lambda|$ in the number of particles.

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_M \rho) = \rho$ for all code states ρ .

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R = \frac{k}{n}$ where $k = \log \dim(\mathcal{C})$ and $n = |\Lambda|$ in the number of particles.

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_M \rho) = \rho$ for all code states ρ .

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator *L* such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R = \frac{k}{n}$ where $k = \log \dim(\mathcal{C})$ and $n = |\Lambda|$ in the number of particles.

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_M \rho) = \rho$ for all code states ρ .

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator *L* such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Rate (capacity)

The rate of a code is $R = \frac{k}{n}$ where $k = \log \dim(\mathcal{C})$ and $n = |\Lambda|$ in the number of particles.

Outline

2D Commuting Projector Codes

Participation Provide Active Activ

3 Holographic Minimum Distance

- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- 6 Open Questions

Holographic disentangling lemma

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$|\mathcal{J}_{\partial M}|\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

for some *fixed* state $|\phi_M\rangle$ on *M*.

Remark

For a trivial code k = 0, every region is correctable, so we recover the area law $S(M) \le |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.

Holographic disentangling lemma

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$|\mathcal{J}_{\partial M}|\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

for some *fixed* state $|\phi_M\rangle$ on *M*.

Remark

For a trivial code k = 0, every region is correctable, so we recover the area law $S(M) \le |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.

• Let *M* be correctable.

- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_I^{\prime}} \otimes \mathcal{H}_{B_B^{\prime}}$ and $\Pi = \bigoplus_J P_{AB_I^{\prime}} \otimes P_{B_B^{\prime}\overline{M}}$
- This last sum over J contains only one non-zero factor since B ⊂ M is correctable.
- We can divide *B* into two subsystems *B*¹ and *B*² such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_r^J} \otimes \mathcal{H}_{B_B^J}$ and $\Pi = \bigoplus_J P_{AB_r^J} \otimes P_{B_R^J \overline{M}}$
- This last sum over J contains only one non-zero factor since B ⊂ M is correctable.
- We can divide *B* into two subsystems *B*¹ and *B*² such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_J^{\prime}} \otimes \mathcal{H}_{B_B^{\prime}}$ and $\Pi = \bigoplus_J P_{AB_J^{\prime}} \otimes P_{B_J^{\prime}\overline{M}}$
- This last sum over J contains only one non-zero factor since B ⊂ M is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B^J_r} \otimes \mathcal{H}_{B^J_r}$ and $\Pi = \bigoplus_J P_{AB^J_r} \otimes P_{B^J_r \overline{M}}$
- This last sum over J contains only one non-zero factor since B ⊂ M is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_I^J} \otimes \mathcal{H}_{B_B^J}$ and $\Pi = \bigoplus_J P_{AB_I^J} \otimes P_{B_B^J \overline{M}}$
- This last sum over *J* contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B^J_l} \otimes \mathcal{H}_{B^J_R}$ and $\Pi = \bigoplus_J P_{AB^J_l} \otimes P_{B^J_R \overline{M}}$
- This last sum over *J* contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L^J} \otimes \mathcal{H}_{B_B^J}$ and $\Pi = \bigoplus_J P_{AB_L^J} \otimes P_{B_B^J \overline{M}}$
- This last sum over *J* contains only one non-zero factor since *B* ⊂ *M* is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L^J} \otimes \mathcal{H}_{B_R^J}$ and $\Pi = \bigoplus_J P_{AB_L^J} \otimes P_{B_R^J \overline{M}}$
- This last sum over *J* contains only one non-zero factor since *B* ⊂ *M* is correctable.
- We can divide *B* into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^{\dagger}$. (*)
- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_{C} = \bigoplus_{J} \mathcal{H}_{C_{I}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi = \bigoplus_{J} P_{MC_{I}^{J}} \otimes P_{C_{R}^{J}D}$
- This last sum over *J* contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide *C* into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^{\dagger}$. (**)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_{C} = \bigoplus_{J} \mathcal{H}_{C_{I}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi = \bigoplus_{J} P_{MC_{I}^{J}} \otimes P_{C_{R}^{J}D}$
- This last sum over *J* contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide *C* into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^{\dagger}$. (**)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_{C} = \bigoplus_{J} \mathcal{H}_{C_{I}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi = \bigoplus_{J} P_{MC_{I}^{J}} \otimes P_{C_{R}^{J}D}$
- This last sum over *J* contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide *C* into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^{\dagger}$. (**)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_{C} = \bigoplus_{J} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi = \bigoplus_{J} P_{MC_{L}^{J}} \otimes P_{C_{R}^{J}D}$
- This last sum over *J* contains only one non-zero factor since *C* ⊂ ∂*M* is correctable.
- We can divide *C* into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^{\dagger}$. (**)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_{C} = \bigoplus_{J} \mathcal{H}_{C_{L}^{J}} \otimes \mathcal{H}_{C_{R}^{J}}$ and $\Pi = \bigoplus_{J} P_{MC_{L}^{J}} \otimes P_{C_{R}^{J}D}$
- This last sum over *J* contains only one non-zero factor since C ⊂ ∂M is correctable.
- We can divide *C* into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^{\dagger}$. (**)

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (*) with (**), $\Pi' = V_B^{\dagger} V_C^{\dagger} \Pi V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$
- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^{\dagger} V_C^{\dagger}$ disentangles region *M* as claimed.

Outline

- 2D Commuting Projector Codes
- 2 Holographic Disentangling Lemma
- 3 Holographic Minimum Distance
- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- 6 Open Questions

Holographic Minimum Distance

Statement of the result

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.

Holographic minimum distance

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.

• If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- But from the Holographic disentangling lemma, ρ_{AD} = η_A ⊗ ρ_D with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ .
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.

- But from the Holographic disentangling lemma, ρ_{AD} = η_A ⊗ ρ_D with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow *M* this way until $|\partial M| \ge d$.

Outline

- 2D Commuting Projector Codes
- 2 Holographic Disentangling Lemma
- 3 Holographic Minimum Distance
- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- 6 Open Questions

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \le n 2(d 1)$.
- Hamming bound: $k \le n \left| 1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right|$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
 - Holes of linear size *l* separated by distance *l*.
 - Minimum distance d oc l.
 - Number of logical qubits $l < \infty$ number of holes $\infty n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \le n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \le n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
 - Holes of linear size ℓ separated by distance ℓ .
 - Minimum distance $d \propto \ell$.
 - Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

• Holes of linear size ℓ separated by distance ℓ .

- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \le n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n 2(d 1)$.
- Hamming bound: $k \leq n \left[1 \frac{d}{2n} \log 3 H(\frac{d}{2n}) \right]$.

• Kitaev's codes (with punctures) saturate this bound, so it is tight.

- Holes of linear size ℓ separated by distance ℓ .
- Minimum distance $d \propto \ell$.
- Number of logical qubits $k \propto$ number of holes $\propto n/\ell^2 \propto n/d^2$.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For classical codes, $k \le c \frac{n}{\sqrt{d}}$.

Information-theoretic condition for error correction

M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

Obvious for pure states.

- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists *R* on Λ such that *R*(Tr_Mρ_{MMR}) = ρ_{MMR} and *R*(Tr_Mρ_{MM} ⊗ ρ_R) = ρ_{MM} ⊗ ρ_R
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} || \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}B}$ is pure, we get the desired result.
M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

• Obvious for pure states.

- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}R}) = \rho_{M\overline{M}R}$ and $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}} \otimes \rho_{R}) = \rho_{M\overline{M}} \otimes \rho_{R}$
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} \| \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}B}$ is pure, we get the desired result.

M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

• Obvious for pure states.

- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}R}) = \rho_{M\overline{M}R}$ and $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}} \otimes \rho_{R}) = \rho_{M\overline{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} \| \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}B}$ is pure, we get the desired result.

M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

- Obvious for pure states.
- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}R}) = \rho_{M\overline{M}R}$ and $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}} \otimes \rho_{R}) = \rho_{M\overline{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} \| \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}B}$ is pure, we get the desired result.

M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

- Obvious for pure states.
- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}R}) = \rho_{M\overline{M}R}$ and $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}} \otimes \rho_{R}) = \rho_{M\overline{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} \| \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}B}$ is pure, we get the desired result.

M is correctable iff $S(M\overline{M}) = S(\overline{M}) - S(M)$ for any code state ρ .

- Obvious for pure states.
- Let $\rho_{M\overline{M}}$ be a code state and $\rho_{M\overline{M}R}$ its purification.
- By assumption, there exists \mathcal{R} on Λ such that $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}R}) = \rho_{M\overline{M}R}$ and $\mathcal{R}(\operatorname{Tr}_{M}\rho_{M\overline{M}} \otimes \rho_{R}) = \rho_{M\overline{M}} \otimes \rho_{R}$.
- Since relative entropy can only decrease under the action of a CPTP map, $S(\rho_{M\overline{M}R} \| \rho_{M\overline{M}} \otimes \rho_R) = S(\text{Tr}_M \rho_{M\overline{M}R} \| \text{Tr}_M \rho_{M\overline{M}} \otimes \rho_R)$
- Using $S(\rho_{AB} \| \rho_A \otimes \rho_B) = S(A) + S(B) S(AB)$ and the fact that $\rho_{M\overline{M}R}$ is pure, we get the desired result.

Union of correctable regions

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
 We will prove the Knill-Laflamme condition DOW & OV D < D
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB1}\rangle \langle \eta_{AB1} | \otimes |\nu_{B^2C1}\rangle \langle \nu_{B1C1} | \otimes P_{C^2D} V_B^{\dagger} V_C^{\dagger}$.
- So $\Pi O_{M1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$ where $f(O_{M_1}) = \langle \eta_{AB^1} | \langle \nu_{B^2 C^1} | V_B^{\dagger} O_{M_1} V^B | \eta_{AB^1} \rangle | \nu_{B^2 C^1} \rangle$.

Union of correctable regions

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB^1}\rangle\langle\eta_{AB^1}| \otimes |\nu_{B^2C^1}\rangle\langle\nu_{B^1C^1}| \otimes P_{C^2D} V_B^{\dagger} V_C^{\dagger}$.
- So $\Pi O_{M1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$ where $f(O_{M_1}) = \langle \eta_{AB^1} | \langle \nu_{B^2 C^1} | V_B^{\dagger} O_{M_1} V^B | \eta_{AB^1} \rangle | \nu_{B^2 C^1} \rangle$.

Union of correctable regions

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB^1}\rangle \langle \eta_{AB^1}| \otimes |\nu_{B^2 C^1}\rangle \langle \nu_{B^1 C^1}| \otimes P_{C^2 D} V_B^{\dagger} V_C^{\dagger}$.
- So $\Pi O_{M1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$ where $f(O_{M_1}) = \langle \eta_{AB^1} | \langle \nu_{B^2 C^1} | V_B^{\dagger} O_{M_1} V^B | \eta_{AB^1} \rangle | \nu_{B^2 C^1} \rangle$.

Union of correctable regions

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB^1}\rangle\langle\eta_{AB^1}| \otimes |\nu_{B^2C^1}\rangle\langle\nu_{B^1C^1}| \otimes P_{C^2D} V_B^{\dagger} V_C^{\dagger}$.
- So $\Pi O_{M1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$ where $f(O_{M_1}) = \langle \eta_{AB^1} | \langle \nu_{B^2 C^1} | V_B^{\dagger} O_{M_1} V^B | \eta_{AB^1} \rangle | \nu_{B^2 C^1} \rangle$.

Union of correctable regions

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB^1}\rangle\langle\eta_{AB^1}| \otimes |\nu_{B^2C^1}\rangle\langle\nu_{B^1C^1}| \otimes P_{C^2D} V_B^{\dagger} V_C^{\dagger}$.
- So $\Pi O_{M1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$ where $f(O_{M_1}) = \langle \eta_{AB^1} | \langle \nu_{B^2 C^1} | V_B^{\dagger} O_{M_1} V^B | \eta_{AB^1} \rangle | \nu_{B^2 C^1} \rangle$.

Proof of Capacity-Stability Tradeoff

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

• Using $S(BC) \leq S(B) + S(C)$ and $S(AC) \leq S(A) + S(C)$ $2S(ABC) \leq 2S(C)$

S(ABC) = k. S(C) ≤ |C| ∝ number of circles ∝ n/d².

- Squares have perimeter $\approx d$.
- Region A (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

• Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$ $2S(ABC) \le 2S(C)$

S(ABC) = k. S(C) ≤ |C| ∝ number of circles ∝ n/2.

Proof of Capacity-Stability tradeoff

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

• Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$ $2S(ABC) \le 2S(C)$

S(ABC) = k. S(C) ≤ |C| ∝ number of circles ∝ n/d².

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

S(ABC) = S(BC) - S(A) and S(ABC) = S(AC) - S(B)• Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$ $2S(ABC) \le 2S(C)$

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

S(ABC) = S(BC) - S(A) and S(ABC) = S(AC) - S(B)• Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$

 $2S(ABC) \leq 2S(C)$

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

 $S(ABC) \le S(B) + S(C) - S(A)$ and $S(ABC) \le S(A) + S(C) - S(B)$ • Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$

 $2S(ABC) \leq 2S(C)$

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

 $S(ABC) \le S(B) + S(C) - S(A)$ and $S(ABC) \le S(A) + S(C) - S(B)$ • Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$

 $2S(ABC) \leq 2S(C)$

•
$$S(ABC) = k$$
.
• $S(C) \le |C| \propto$ number of circles $\propto \frac{n}{d^2}$.

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

 $S(ABC) \le S(B) + S(C) - S(A)$ and $S(ABC) \le S(A) + S(C) - S(B)$ • Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$

$$2S(ABC) \leq 2S(C)$$

- Squares have perimeter $\approx d$.
- Region *A* (union of blue squares) is correctable.
- Region *B* (union of red squares) is correctable.

 Let's apply the information theoretic conditions to maximally mixed code state ρ = Π/Tr(Π) in two different ways:

 $S(ABC) \le S(B) + S(C) - S(A)$ and $S(ABC) \le S(A) + S(C) - S(B)$ • Using $S(BC) \le S(B) + S(C)$ and $S(AC) \le S(A) + S(C)$

$$2S(ABC) \leq 2S(C)$$

Outline

- 2D Commuting Projector Codes
- 2 Holographic Disentangling Lemma
- 3 Holographic Minimum Distance
- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators

6 Open Questions

String-like logical operators

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

String-like logical operators

There exists a non-trivial logical operator supported on a string-like region.

Well known for Kitaev's toric code.

- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

String-like logical operators

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

String-like logical operators

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

String-like logical operators

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

String-like logical operators

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.
- Otherwise ∂M = ∂M_L ∪ ∂M_R is correctable, and therefore M ∪ ∂M is correctable.
- Continue until we arrive at A is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

- Let *M* be a string-like region.
- Suppose *M* is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.

- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.

• Let *M* be a non-correctable string-like region.

- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$
- Then $X = \prod_M O_M \prod_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

 Any function of X, e.g. exp(-iXθ), is also a logical operator with the same support.

- Let *M* be a non-correctable string-like region.
- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$
- Then $X = \prod_M O_M \prod_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

 Any function of X, e.g. exp(-iXθ), is also a logical operator with the same support.

- Let *M* be a non-correctable string-like region.
- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$
- Then $X = \prod_M O_M \prod_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

 Any function of X, e.g. exp(-iXθ), is also a logical operator with the same support.
Proof, part 2

- Let *M* be a non-correctable string-like region.
- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$
- Then X = Π_MO_MΠ_M is a non-trivial logical operator supported on M ∪ ∂M.

 Any function of X, e.g. exp(-iXθ), is also a logical operator with the same support.

Proof, part 2

- Let *M* be a non-correctable string-like region.
- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$
- Then $X = \prod_M O_M \prod_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

 Any function of X, e.g. exp(-iXθ), is also a logical operator with the same support.

Outline

- 2D Commuting Projector Codes
- 2 Holographic Disentangling Lemma
- 3 Holographic Minimum Distance
- 4 Capacity-Stability Tradeoff
- 5 String-Like Logical Operators
- Open Questions

• All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$

• How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)

• String-like logical operators \Rightarrow constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier ∝ √n, but an energy ∝ n at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators'
- Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier ∝ √n, but an energy ∝ n at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators'
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian ∈ QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian ∈ QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian ∈ QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- All our results extend to *D*-dimensional lattices, e.g. $k \le cn/d^{\frac{2}{D-1}}$
 - How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
- String-like logical operators \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - Relation between commuting projector codes and anyon models.
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
 - Use proof techniques to show that gapped Hamiltonian \in QCMA.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).