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2D Commuting Projector Codes

Definitions

Λ is a 2D lattice.
Each vertex occupied by d-level quantum particle.
Hamiltonian H = −

∑
X⊂Λ PX with

PX = 0 if radius(X )≥ w .
[PX ,PY ] = 0.
PX are projectors (optional).

Code C = {ψ : PX |ψ〉 = |ψ〉}
= ground space of H
= image of code projector Π =

∏
X PX

With proper coarse graining, we can assume that
Λ is a regular square lattice.
Each PX acts on 2× 2 cell.
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2D Commuting Projector Codes

Well known examples

Kitaev’s toric code
Bombin’s topological color codes
Levin & Wen’s string-net models
Turaev-Viro models
Kitaev’s quantum double models
Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes.
Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
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2D Commuting Projector Codes

Standard definitions

Correctable region

A region M ⊂ Λ is correctable if there exists a recovery operation R
such that R(TrMρ) = ρ for all code states ρ.

Minimum distance
The minimum distance d is the size of the smallest non-correctable
region.

Logical operator

Operator L such that L|ψ〉 is a code state for any code state |ψ〉.

Rate (capacity)

The rate of a code is R = k
n where k = log dim(C) and n = |Λ| in the

number of particles.
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Holographic Disentangling Lemma

Statement of the lemma

Holographic disentangling lemma
Let M ⊂ Λ be a correctable region and suppose that its boundary ∂M
is also correctable. Then, there exists a unitary operator U∂M acting
only on the boundary of M such that, for any code state |ψ〉,

U∂M |ψ〉 = |φM〉 ⊗ |ψ′M〉

for some fixed state |φM〉 on M.

Remark
For a trivial code k = 0, every region is correctable, so we recover the
area law S(M) ≤ |∂M| for commuting Hamiltonians of Wolf, Verstraete,
Hastings, and Cirac.
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Holographic Disentangling Lemma

Proof

Let M be correctable.
Assume ∂M is correctable.
Let M = A ∪ B, M = C ∪ D, and ∂M = B ∪ C.
Write Π = PABPBM with [PAB,PBM ] = 0.

M

M = Λ\M

HB =
⊕

J HBJ
L
⊗HBJ

R
and Π =

⊕
J PABJ

L
⊗ PBJ

RM

This last sum over J contains only one non-zero factor since
B ⊂ M is correctable.
We can divide B into two subsystems B1 and B2 such that
Π = VBPAB1 ⊗ PB2MV †B. (?)
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Holographic Disentangling Lemma

Proof

Let M be correctable.
Assume ∂M is correctable.
Let M = A ∪ B, M = C ∪ D, and ∂M = B ∪ C.

M

M = Λ\M

A
B
C
D

Combining (?) with (??), Π′ = V †BV †CΠVBVC = PAB1PB2C1PC2D

PAB1 = |ηAB1〉〈ηAB1 | is rank one since AB1 ⊂ M is correctable.
PB2C1 = |νB2C1〉〈νB2C1 | is rank one since B2C1 ⊂ ∂M is correctable.
Let VB2C1 be any unitary such that VB2C1 |νB2C1〉 = |αB2〉 ⊗ |βC2〉.
Then U∂M = VB2C1V †BV †C disentangles region M as claimed.
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Holographic Minimum Distance

Statement of the result

Holographic minimum distance

Region M ⊂ Λ is correctable if its boundary is smaller than the
minimum distance |∂M| ≤ cd .

Bulky errors are not problematic: it’s the skinny ones we need to
worry about.
This hints at our next result: string-like logical operators.

David Poulin (Sherbrooke) 2D Quantum Memories Coogee’13 13 / 25



Holographic Minimum Distance

Statement of the result

Holographic minimum distance

Region M ⊂ Λ is correctable if its boundary is smaller than the
minimum distance |∂M| ≤ cd .

Bulky errors are not problematic: it’s the skinny ones we need to
worry about.
This hints at our next result: string-like logical operators.

David Poulin (Sherbrooke) 2D Quantum Memories Coogee’13 13 / 25



Holographic Minimum Distance

Statement of the result

Holographic minimum distance

Region M ⊂ Λ is correctable if its boundary is smaller than the
minimum distance |∂M| ≤ cd .

Bulky errors are not problematic: it’s the skinny ones we need to
worry about.
This hints at our next result: string-like logical operators.

David Poulin (Sherbrooke) 2D Quantum Memories Coogee’13 13 / 25



Holographic Minimum Distance

Proof

M

M = Λ\M

Let M ⊂ Λ be a correctable region.
If |∂M| ≤ d , then ∂M is also correctable.
Thus, we can reconstruct any code state ρ from ρAD = Tr∂Mρ.
But from the Holographic disentangling lemma, ρAD = ηA ⊗ ρD
with ηA independent of the encoded state ρ.
Thus, we can reconstruct ρ from ρD = TrM∪∂Mρ, so M ∪ ∂M is
correctable.
We can continue to grow M this way until |∂M| ≥ d .
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Capacity-Stability Tradeoff

Statement of the result

Capacity-Stability Tradeoff

k ≤ c n
d2

Singleton’s bound: k ≤ n − 2(d − 1).

Hamming bound: k ≤ n
[
1− d

2n log 3− H( d
2n )

]
.

Kitaev’s codes (with punctures) saturate this bound, so it is tight.
Holes of linear size ` separated by distance `.
Minimum distance d ∝ `.
Number of logical qubits k ∝ number of holes ∝ n/`2 ∝ n/d2.

No “good codes" in 2D, i.e. k ∝ n and d ∝ n.
For classical codes, k ≤ c n√

d
.

We will need two tools to prove this result.
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Capacity-Stability Tradeoff

Tool 1

Information-theoretic condition for error correction

M is correctable iff S(MM) = S(M)− S(M) for any code state ρ.

Obvious for pure states.
Let ρMM be a code state and ρMMR its purification.
By assumption, there exists R on Λ such that
R(TrMρMMR) = ρMMR and R(TrMρMM ⊗ ρR) = ρMM ⊗ ρR.
Since relative entropy can only decrease under the action of a
CPTP map, S(ρMMR‖ρMM ⊗ ρR) = S(TrMρMMR‖TrMρMM ⊗ ρR)

Using S(ρAB‖ρA ⊗ ρB) = S(A) + S(B)− S(AB) and the fact that
ρMMR is pure, we get the desired result.
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Capacity-Stability Tradeoff

Tool 2

Union of correctable regions
Let M1 and M2 be correctable distant regions and suppose that ∂M1 is
also correctable. Then, M1 ∪M2 is correctable.

Trivial for syndrome-based error correction (e.g. stabilizer codes).
We will prove the Knill-Laflamme condition ΠOM1 ⊗OM2Π ∝ Π.
The holographic disentangling lemma applied to M1 implies that
Π = VBVC |ηAB1〉〈ηAB1 | ⊗ |νB2C1〉〈νB1C1 | ⊗ PC2DV †BV †C .
So ΠOM1 ⊗OM2Π = f (OM1)ΠOM2Π ∝ Π

where f (OM1) = 〈ηAB1 |〈νB2C1 |V †BOM1V B|ηAB1〉|νB2C1〉.
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Capacity-Stability Tradeoff

Proof of Capacity-Stability tradeoff

Squares have perimeter ≈ d .
Region A (union of blue squares) is correctable.
Region B (union of red squares) is correctable.

A B A B A B

A B A B AB

A B A B A B

A B A B AB

C

C C C C C

C C CC

C C C C C

Let’s apply the information theoretic conditions to maximally mixed
code state ρ = Π/Tr(Π) in two different ways:

Using S(BC) ≤ S(B) + S(C) and S(AC) ≤ S(A) + S(C)

2S(ABC) ≤ 2S(C)

S(ABC) = k .
S(C) ≤ |C| ∝ number of circles ∝ n

d2 .
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String-Like Logical Operators
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String-Like Logical Operators

Statement of the result

String-like logical operators
There exists a non-trivial logical operator supported on a string-like
region.

Well known for Kitaev’s toric code.
Intuitive for known models that support anyons:

The ground state can be changed by dragging an anyon around a
topologically non-trivial loop.
This process is realized on a string, and generated a logical
operation.

Relation to thermal instability?
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String-Like Logical Operators

Proof, part 1

There exists a string-like region that is not-correctable.

Let M be a string-like region.
Suppose M is correctable.
Consider its boundary ∂M = ∂ML ∪ ∂MR.
If either ∂ML or ∂MR are not correctable, we
are done.
Otherwise ∂M = ∂ML ∪ ∂MR is correctable, and therefore M ∪ ∂M
is correctable.
Continue until we arrive at Λ is correctable, which is impossible.
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String-Like Logical Operators

Proof, part 2

Let M be a non-correctable string-like region.
There exists OM such that ΠOMΠ ��∝ Π.
Let ΠM =

∏
X∩M 6=∅ PX

Then X = ΠMOMΠM is a non-trivial logical
operator supported on M ∪ ∂M.

Λ

M

Any function of X , e.g. exp(−iXθ), is also a logical operator with
the same support.
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Open Questions

All our results extend to D-dimensional lattices, e.g. k ≤ cn/d
2

D−1

How about infinite dimensions (LDPC codes)? (Delfosse & Zémor)
String-like logical operators⇒ constant energy barrier.

This is not directly related to thermal instability.
2D Ising model has an energy barrier ∝

√
n, but an energy ∝ n at

finite temperature.
What matters is entropy (for a given energy, many more
configurations many with small error droplets than with a large one).
Can we characterize all string-like logical operators?
Relation between commuting projector codes and anyon models.

Extend to frustration-free Hamiltonians (and therefore to all
gapped Hamiltonians, i.e. Hastings).

Use proof techniques to show that gapped Hamiltonian ∈ QCMA.
Extension to subsystem codes?

With local stabilizer (Bombin) and without (Bacon-Shor).
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