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Majorana fermions have been building blocks of exciting 
phases of matter: 

 
•  Quantum wires (1 dim) 
•  Kitaev’s honeycomb lattice (2 dims) 
•  What happens in 3 dims? 
 

3 Dim topological superconductor: a new phase of matter 
 
Surface properties are robust to temperature, much more 
than genuinely 2 dim systems.  

Motivation 



Majorana fermions:  
 
Fermionic particles which are their own anti-particles 
 
 
They are encountered in:  

•  high energy physics  
•  condensed matter 

 
In 2 dims they are also non-Abelian anyons (Ising) 

Introduction 
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0 Dim 
Two Majorana fermions are equivalent to one normal 
fermion 
 
 
 
Fermionic mode occupation 
 

Majies as building blocks: 0D 
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1 Dim 
Even number of Majorana fermions: topological nanowire 

Majies as building blocks: 1D 

�i,1 �i,2
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the vacuum, 1, when brought together. If it is occupied ( f †
i fi = 1), then the fusion

of two such quasiparticles would leave behind a fermion that would correspond to
the y particle. The question then is: could localised Majorana modes actually exist
in solid state systems?

4.1 Kitaev’s toy model for a topological nanowire

Theory suggests that Majorana modes could appear in vortices in exotic supercon-
ductors, such as the p-wave superconductor [26], or as quasiparticles in fractional
quantum Hall states, like the Moore-Read state proposed for the filling fraction 5/2
[29]. However, as strongly correlated systems, the experimental verification of such
materials is still an open question. Building on the physics of p-wave superconduc-
tors, Kitaev proposed in 2001 a simplified one-dimensional model where Majorana
modes could appear at the ends of a superconducting wire [25]. While not having a
clear experimental realisation at the time, this simple toy model provided valuable
insights into the mechanisms that give rise to localised Majorana modes.

The remarkable thing about Kitaev’s toy model is that it is no longer a toy
model. In a seminal work Fu and Kane [51] discovered that topological insulators
in proximity of a normal s-wave superconductor could reproduce physics similar
to a p-wave superconductor. This soon lead to the prediction that the same could
be achieved with an even simpler settings by replacing the topological insulator
with a spin-orbit coupled semiconductor [52, 55]. When these ideas were applied to
one-dimensional nanowires, it was found that they could host Majorana end states
[54, 53]. This prediction was supported by experiments a few years later [45, 46, 47].
Such nanowires are no longer the only potential realisations of Kitaev’s toy model.
Proposals have been put forward to realise them also in optical lattices [61, 62], cav-
ity arrays [58], magnetic molecules [60], nanoparticles [59] and half-metals [56, 57].
Regardless of the diversity of microscopic realisations, the low energy physics in all
of them can always be cast in the form of the toy model, that we now discuss.

Let us assume the model is defined on a chain of L sites and that the fermions
in the system are spinless (or equivalently spin polarised). The superconducting
Hamiltonian for the system can then be written as

H =
L

Â
j=1

h
�w

⇣
f †

j f j+1 + f †
j+1 f j

⌘
� µ

⇣
f †

j f j �1/2
⌘

+
⇣

D f j f j+1 +D

⇤ f †
j+1 f †

j

⌘i
,

(18)
where w is the tunnelling amplitude, µ is the chemical potential and D = |D |eiq is
the superconducting pairing potential. Following [25] we express this Hamiltonian
for L complex fermions in terms of 2L Majorana operators by employing the decom-
position (17). Including the superconducting phase q in their definition, we define
f j = e�iq/2(g2 j�1 + ig2 j)/2. In terms of the Majorana operators the Hamiltonian
takes the form

H =
i
2

L

Â
j=1

⇥
�µg2 j�1g2 j +(w+ |D |)g2 jg2 j+1 +(�w+ |D |)g2 j�1g2 j+2

⇤
, (19)

which allows us to explore the phase diagram and the edge properties of the model.
There are two special limits in which the ground state can be obtained immediately.

Trivial phase: When the chemical potential term dominates, we can set |D | =
w = 0. The Hamiltonian is then given by

H =
i
2

L

Â
j=1

�µg2 j�1g2 j = �µ

L

Â
j=1

( f †
j f j �1/2), µ � w, |D |. (20)

f†
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2

fi
Hamiltonian 



1 Dim 
•  If  

Majies as building blocks: 1D 

w = �, µ = 0 H = iw
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Majorana fermions appear at the edge of the wire 



Majorana fermions statistics: 

Majies as building blocks: 1D 
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tFig. 6.15 (a) The exchange of two Majorana fermions, �i and � j. (b) Four Majorana fermions �1,..., �4 give
rise to z1 = (�1 + i�2)/2 and z2 = (�3 + i�4)/2 fermions. When Majorana fermion �1 is braided
around Majorana fermion �3 then their non-Abelian unitary evolution is given by
U2 = e2i✓�1�3 = e2i✓(z1z2 + z1z†2 + z†1z2 + z†1z†2).

Let us now turn to the braiding properties of Majorana fermions. For that consider the
clockwise exchange of two Majorana fermions �i and � j as shown in Figure 6.15(a). The
most general unitary operator that can act on their state is given by

U = a1 + b�i + c� j + d�i� j, (6.76)

where a, b, c and d are general complex numbers. The unitarity condition UU† = 1

imposes the following equations

aa⇤ + bb⇤ + cc⇤ + dd⇤ = 1, ab⇤ + ba⇤ + cd⇤ + dc⇤ = 0,

ac⇤ � bd⇤ + ca⇤ � db⇤ = 0, �ad⇤ + bc⇤ � cb⇤ + da⇤ = 0. (6.77)

Moreover, as this evolution is meant to exchange �i and � j, we should also haveU�iU† /
� j. This gives

aa⇤ + bb⇤ � cc⇤ � dd⇤ = 0, ab⇤ + ba⇤ � cd⇤ � dc⇤ = 0,

�ac⇤ + bd⇤ + ca⇤ � db⇤ = 0, ad⇤ � bc⇤ � cb⇤ + da⇤ , 0. (6.78)

Finally, it should beU� jU† / �i giving

aa⇤ � bb⇤ + cc⇤ � dd⇤ = 0, �ab⇤ + ba⇤ � cd⇤ + dc⇤ = 0,

ac⇤ + bd⇤ + ca⇤ + db⇤ = 0, ad⇤ + bc⇤ + cb⇤ + da⇤ , 0. (6.79)

We can easily verify that there are two independent solutions to these equations. Either
a = d = 0 and b = c = ei�/

p
2 or b = c = 0 and a = d = ei✓/

p
2. These solutions

correspond to two distinctive evolutionsU andU0,

U = ei✓
p

2
(1 + �i� j), U0 = ei�

p
2

(�i + � j), (6.80)

respectively. The second one,U0, is Abelian asU02 = ei2�. The first one,U, corresponds
to a non-Abelian monodromy U2 = e2i✓�i� j. It is obtained when two Majorana fermions
that belong to di↵erent fermionic modes are braided. To analyse the action of U consider
the configuration in Figure 6.15(b) with four Majorana fermions �i, i = 1, ..., 4 giving rise

U2 = ei⇡/4�1�3 = ei⇡/4(a1a2 + a1a
†
2 + a†1a2 + a†1a

†
2)

{a1, b1} =
1

2

Fusion 

Braiding 



2 Dim 
Kitaev’s honeycomb lattice 

Majies as building blocks: 2D 

H = ±i
X

hi,ji

�i�j

•  Analytically tractable. 
•  Equivalent to a p-wave superconductor. 
•  It supports vortices that behave like Majorana fermions 

(same as in 1 Dim). 
•  Vortices interact causing nucleation of new topo phase. 



Kitaev’s honeycomb lattice 

Majies as building blocks: 2D 

•  Chern (winding) number 

H =
X

p

(f†
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•  Particle-hole symmetry: if         is stationary state then 
              is also stationary state.  
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Kitaev’s honeycomb lattice 

Majies as building blocks: 2D 

⌫ = 1⌫ = 1

p

If   -flux through the hole (vortex) 
then zero energy mode is allowed. 

⇡

E(p)

€ 

ΨE =0
+ =Ψ−E =0Then                         is single Majorana zero mode 

localised at vortex.  

E = 0



3D:  
 
•  Can we build 3D topological superconductor out of 

interacting Majorana fermions? 

•  What is topological order? 

•  What are the edge (surface) states? 

•  Majorana fermions anywhere? 

Majies as building blocks: 3D 



Cubic lattice: 
 
Only  
 

Majies as building blocks: 3D 

H = ±i
X

hi,ji

�i�j
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Fermions: 

3D Model: superconductor 
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FIG. 1: (Upper) The cubic lattice with Majorana fermions
residing on its vertices. The unit cell is a plaquette with
four vertices along the x � z plane depicted in grey. A vec-
tor �n is depicted that connects two vertices of the lattice.
The Hamiltonian couples Majorana fermions at vertices with
distance
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+�n
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p
5. (Lower Left) Pairs

of Majorana fermions �

k,u

, �

k,d

within the unit cell along
the z-direction are combined to construct a complex fermion
a

k

= (�
k,d

+i�

k,u

)/2 for k = 1, 2. (Lower Right) The lattice in
terms of the complex fermions is also cubic. The unit cell has
two sites with fermions a1 and a2 residing at them, depicted
by black and white sites, respectively.

in Fig. 1. The Hamiltonian that describes the interac-
tions between Majorana fermions is given by

H =
X

j,s

X

k,k

0
,l,l

0

±itj,s,k,l

�
k,l,j�k

0
,l

0
,j+s (1)

The sign ± is chosen according to the orientation of the
interaction and it will be explicitly given in the particu-
lar models studied below. Moreover, s is such that the
interactions are between Majorana fermions at vertices
with lattice distance

�n2
x

+ �n2
y

+ �n2
z

 5, (2)

as shown in Fig. 1. In other words interactions are be-
tween sites of the cubic lattice that are at most three

lattice steps apart without being all in the same direc-
tion.

We now combine pairs of Majorana fermions along the
z-direction within the same unit cell to construct com-
plex fermionic modes. The resulting lattice of complex
fermionic modes is again cubic. The unit cell has now two
vertices, a white and a black with fermionic annihilation
operators, a1,j and a2,j, respectively, given by

a
k

=
�

k,d

+ i�
k,u

2
, a†

k

=
�

k,d

� i�
k,u

2
, (3)

for k = 1, 2. By employing definitions (3) we can write
the Hamiltonian in terms of complex fermions

H =
X

j,s

 †
j h(j, j + s) j+s (4)

where  j = (a1,j, a
†
1,j, a2,j, a

†
2,j)

T and h(j, j + s) deter-
mines the interaction between the complex fermions. At
this point we keep h(j, j + s) completely general, pro-
vided it respects condition (2). As the system is peri-
odic we can Fourier transform the fermionic operators
a

k,j =
P

p eip·ja
k,p with k = 1, 2 to obtain

H =
X

p

 †
ph(p) p, (5)

where  p = (a1,p, a†
1,�p, a2,p, a†

2,�p)T and the kernel

h(p) is a 4 ⇥ 4 Hermitian matrix.

B. Symmetries and spectrum

At this point the fermionic Hamiltonian (5) is com-
pletely general. We would like now to impose time-
reversal and particle-hole symmetries. These symmetries
can be described by introducing the unitary operators,
CTR and CPH, and by demanding that

C†
TRh⇤(�p)CTR = h(p) (6)

for time-reversal symmetry, with CTR = ±CT

TR and

C†
PHh⇤(�p)CPH = �h(p) (7)

for particle-hole symmetry, with CPH = ⌥CT

PH. A kernel
Hamiltonian that satisfies conditions (6) and (7) can be
unitarily brought in a completely o↵-diagonal form [7, 8]

h(p) =

✓
0 D(p)

D†(p) 0

◆
. (8)

Given the 2⇥ 2 matrix D(p) we can write down the four
eigenvalues of hp as

E(p) = ±

s
tr(DD†)

2
±

r
tr(DD†)2

2
� Det(DD†) (9)
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FIG. 1: (Upper) The cubic lattice with Majorana fermions
residing on its vertices. The unit cell is a plaquette with
four vertices along the x � z plane depicted in grey. A vec-
tor �n is depicted that connects two vertices of the lattice.
The Hamiltonian couples Majorana fermions at vertices with
distance
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unitarily brought in a completely o↵-diagonal form [7, 8]

h(p) =

✓
0 D(p)

D†(p) 0

◆
. (8)

Given the 2⇥ 2 matrix D(p) we can write down the four
eigenvalues of hp as

E(p) = ±

s
tr(DD†)

2
±

r
tr(DD†)2

2
� Det(DD†) (9)
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in Fig. 1. The Hamiltonian that describes the interac-
tions between Majorana fermions is given by

H =
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The sign ± is chosen according to the orientation of the
interaction and it will be explicitly given in the particu-
lar models studied below. Moreover, s is such that the
interactions are between Majorana fermions at vertices
with lattice distance

�n2
x

+ �n2
y

+ �n2
z

 5, (2)

as shown in Fig. 1. In other words interactions are be-
tween sites of the cubic lattice that are at most three

lattice steps apart without being all in the same direc-
tion.

We now combine pairs of Majorana fermions along the
z-direction within the same unit cell to construct com-
plex fermionic modes. The resulting lattice of complex
fermionic modes is again cubic. The unit cell has now two
vertices, a white and a black with fermionic annihilation
operators, a1,j and a2,j, respectively, given by

a
k

=
�
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for k = 1, 2. By employing definitions (3) we can write
the Hamiltonian in terms of complex fermions

H =
X
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 †
j h(j, j + s) j+s (4)

where  j = (a1,j, a
†
1,j, a2,j, a

†
2,j)

T and h(j, j + s) deter-
mines the interaction between the complex fermions. At
this point we keep h(j, j + s) completely general, pro-
vided it respects condition (2). As the system is peri-
odic we can Fourier transform the fermionic operators
a

k,j =
P

p eip·ja
k,p with k = 1, 2 to obtain

H =
X

p

 †
ph(p) p, (5)

where  p = (a1,p, a†
1,�p, a2,p, a†

2,�p)T and the kernel

h(p) is a 4 ⇥ 4 Hermitian matrix.

B. Symmetries and spectrum

At this point the fermionic Hamiltonian (5) is com-
pletely general. We would like now to impose time-
reversal and particle-hole symmetries. These symmetries
can be described by introducing the unitary operators,
CTR and CPH, and by demanding that
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for time-reversal symmetry, with CTR = ±CT

TR and
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unitarily brought in a completely o↵-diagonal form [7, 8]
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Given the 2⇥ 2 matrix D(p) we can write down the four
eigenvalues of hp as
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2
� Det(DD†) (9)
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h(p) is a 4 ⇥ 4 Hermitian matrix.

B. Symmetries and spectrum

At this point the fermionic Hamiltonian (5) is com-
pletely general. We would like now to impose time-
reversal and particle-hole symmetries. These symmetries
can be described by introducing the unitary operators,
CTR and CPH, and by demanding that

C†
TRh⇤(�p)CTR = h(p) (6)

for time-reversal symmetry, with CTR = ±CT

TR and
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PHh⇤(�p)CPH = �h(p) (7)

for particle-hole symmetry, with CPH = ⌥CT

PH. A kernel
Hamiltonian that satisfies conditions (6) and (7) can be
unitarily brought in a completely o↵-diagonal form [7, 8]

h(p) =
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D†(p) 0

◆
. (8)
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where the two ± signs are independent. Hence, the spec-
trum of h(p) consists of two negative, E1(p)  E2(p)  0
and two positive ones 0  E3(p)  E3(p) with the sym-
metry E1(p) = �E4(p) and E2(p) = �E3(p). We de-
note the corresponding eigenvectors of the eigenvalues
E

l

(p) as |�
l

(p)i, for l = 1, ..., 4. We consider that the
system is prepared in its lowest energy, where both neg-
ative valance bands are completely occupied.

In the following we choose the representations CTR =
�y ⌦ 11 and CPH = 11 ⌦ �x that correspond to the sym-
metries of the topological superconductor DIII.

C. Winding number

We would like now to define a criterion that can deter-
mine if the system is topologically ordered or not. For
a kernel Hamiltonian that is written in an o↵-diagonal
form as in (8) we can define a three-dimensional version
of the winding number in the following way. Consider
the operator

Q(p) = 2
X

l=1,2

|�
l

(p)i h�
l

(p)|� 11⌦ 11 =

✓
0 q(p)

q†(p) 0

◆
.

(10)
We can now define the winding number that characterises
the system’s ground state as a function of the Brillouin
zone, BZ [8]. With the help of q(p) the winding number
is given by

⌫ =
1

24⇡2

Z

BZ

d3p ✏abctr[(q�1@
a

q)(q�1@
b

q)(q�1@
c

q)].

(11)

This topological characteristic is well defined if there is a
non-zero energy gap above the ground state, i.e. E2(p) 6=
0 for any p.

III. EXAMPLES OF INTERACTIONS

A. Winding number ⌫ = ±1 case

B. Winding number ⌫ = ±2 case

C. Winding number ⌫ = ±3 case

D. Winding number ⌫ = ±4,±6 cases

IV. EDGE PROPERTIES

A. Open boundaries and surface states

B. Gapping the edge states
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FIG. 1: (Upper) The cubic lattice with Majorana fermions
residing on its vertices. The unit cell is a plaquette with
four vertices along the x � z plane depicted in grey. A vec-
tor �n is depicted that connects two vertices of the lattice.
The Hamiltonian couples Majorana fermions at vertices with
distance
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
p
5. (Lower Left) Pairs

of Majorana fermions �

k,u

, �

k,d

within the unit cell along
the z-direction are combined to construct a complex fermion
a

k

= (�
k,d

+i�

k,u

)/2 for k = 1, 2. (Lower Right) The lattice in
terms of the complex fermions is also cubic. The unit cell has
two sites with fermions a1 and a2 residing at them, depicted
by black and white sites, respectively.

in Fig. 1. The Hamiltonian that describes the interac-
tions between Majorana fermions is given by

H =
X

j,s

X

k,k

0
,l,l

0

±itj,s,k,l

�
k,l,j�k

0
,l

0
,j+s (1)

The sign ± is chosen according to the orientation of the
interaction and it will be explicitly given in the particu-
lar models studied below. Moreover, s is such that the
interactions are between Majorana fermions at vertices
with lattice distance

�n2
x

+ �n2
y

+ �n2
z

 5, (2)

as shown in Fig. 1. In other words interactions are be-
tween sites of the cubic lattice that are at most three

lattice steps apart without being all in the same direc-
tion.

We now combine pairs of Majorana fermions along the
z-direction within the same unit cell to construct com-
plex fermionic modes. The resulting lattice of complex
fermionic modes is again cubic. The unit cell has now two
vertices, a white and a black with fermionic annihilation
operators, a1,j and a2,j, respectively, given by

a
k

=
�

k,d

+ i�
k,u

2
, a†

k

=
�

k,d

� i�
k,u

2
, (3)

for k = 1, 2. By employing definitions (3) we can write
the Hamiltonian in terms of complex fermions

H =
X

j,s

 †
j h(j, j + s) j+s (4)

where  j = (a1,j, a
†
1,j, a2,j, a

†
2,j)

T and h(j, j + s) deter-
mines the interaction between the complex fermions. At
this point we keep h(j, j + s) completely general, pro-
vided it respects condition (2). As the system is peri-
odic we can Fourier transform the fermionic operators
a

k,j =
P

p eip·ja
k,p with k = 1, 2 to obtain

H =
X

p

 †
ph(p) p, (5)

where  p = (a1,p, a†
1,�p, a2,p, a†

2,�p)T and the kernel

h(p) is a 4 ⇥ 4 Hermitian matrix.

B. Symmetries and spectrum

At this point the fermionic Hamiltonian (5) is com-
pletely general. We would like now to impose time-
reversal and particle-hole symmetries. These symmetries
can be described by introducing the unitary operators,
CTR and CPH, and by demanding that

C†
TRh⇤(�p)CTR = h(p) (6)

for time-reversal symmetry, with CTR = ±CT

TR and

C†
PHh⇤(�p)CPH = �h(p) (7)

for particle-hole symmetry, with CPH = ⌥CT

PH. A kernel
Hamiltonian that satisfies conditions (6) and (7) can be
unitarily brought in a completely o↵-diagonal form [7, 8]

h(p) =

✓
0 D(p)

D†(p) 0

◆
. (8)

Given the 2⇥ 2 matrix D(p) we can write down the four
eigenvalues of hp as

E(p) = ±

s
tr(DD†)

2
±

r
tr(DD†)2

2
� Det(DD†) (9)
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in Fig. 1. The Hamiltonian that describes the interac-
tions between Majorana fermions is given by

H =
X

j,s

X

k,k

0
,l,l

0

±itj,s,k,l
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k,l,j�k

0
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0
,j+s (1)

The sign ± is chosen according to the orientation of the
interaction and it will be explicitly given in the particu-
lar models studied below. Moreover, s is such that the
interactions are between Majorana fermions at vertices
with lattice distance

�n2
x

+ �n2
y

+ �n2
z

 5, (2)

as shown in Fig. 1. In other words interactions are be-
tween sites of the cubic lattice that are at most three

lattice steps apart without being all in the same direc-
tion.

We now combine pairs of Majorana fermions along the
z-direction within the same unit cell to construct com-
plex fermionic modes. The resulting lattice of complex
fermionic modes is again cubic. The unit cell has now two
vertices, a white and a black with fermionic annihilation
operators, a1,j and a2,j, respectively, given by
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for k = 1, 2. By employing definitions (3) we can write
the Hamiltonian in terms of complex fermions

H =
X

j,s

 †
j h(j, j + s) j+s (4)

where  j = (a1,j, a
†
1,j, a2,j, a

†
2,j)

T and h(j, j + s) deter-
mines the interaction between the complex fermions. At
this point we keep h(j, j + s) completely general, pro-
vided it respects condition (2). As the system is peri-
odic we can Fourier transform the fermionic operators
a

k,j =
P

p eip·ja
k,p with k = 1, 2 to obtain

H =
X

p

 †
ph(p) p, (5)

where  p = (a1,p, a†
1,�p, a2,p, a†

2,�p)T and the kernel

h(p) is a 4 ⇥ 4 Hermitian matrix.

B. Symmetries and spectrum

At this point the fermionic Hamiltonian (5) is com-
pletely general. We would like now to impose time-
reversal and particle-hole symmetries. These symmetries
can be described by introducing the unitary operators,
CTR and CPH, and by demanding that

C†
TRh⇤(�p)CTR = h(p) (6)

for time-reversal symmetry, with CTR = ±CT

TR and

C†
PHh⇤(�p)CPH = �h(p) (7)

for particle-hole symmetry, with CPH = ⌥CT

PH. A kernel
Hamiltonian that satisfies conditions (6) and (7) can be
unitarily brought in a completely o↵-diagonal form [7, 8]

h(p) =
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0 D(p)

D†(p) 0
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. (8)

Given the 2⇥ 2 matrix D(p) we can write down the four
eigenvalues of hp as
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where the two ± signs are independent. Hence, the spec-
trum of h(p) consists of two negative, E1(p)  E2(p)  0
and two positive ones 0  E3(p)  E3(p) with the sym-
metry E1(p) = �E4(p) and E2(p) = �E3(p). We de-
note the corresponding eigenvectors of the eigenvalues
E

l

(p) as |�
l

(p)i, for l = 1, ..., 4. We consider that the
system is prepared in its lowest energy, where both neg-
ative valance bands are completely occupied.

In the following we choose the representations CTR =
�y ⌦ 11 and CPH = 11 ⌦ �x that correspond to the sym-
metries of the topological superconductor DIII.

C. Winding number

We would like now to define a criterion that can deter-
mine if the system is topologically ordered or not. For
a kernel Hamiltonian that is written in an o↵-diagonal
form as in (8) we can define a three-dimensional version
of the winding number in the following way. Consider
the operator

Q(p) = 2
X

l=1,2

|�
l

(p)i h�
l

(p)|� 11⌦ 11 =

✓
0 q(p)

q†(p) 0

◆
.

(10)
We can now define the winding number that characterises
the system’s ground state as a function of the Brillouin
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3D Model: Example 1 

2 Example models

2.1 From uniform strengths

Using the ansatz the each tk,l,~j0 = 0,±1 we can find many models. We then piece these models together to
create the new models listed below.

2.1.1 Winding number 0,±1,±2
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Figure 1: For the model with Chern numbers 0,±1,±2: Diagrams showing the interactions between the
Majorana fermions in the unit cell and the surrounding lattice. The unit cell, indicated by the dotted green
line, contains four Majoranas labeled 1, 2, 3 and 4. Majoranas 1 and 3 combine to form Dirac fermion a1,~j and
2 and 4 combine to form Dirac fermion a2,~j . The interactions’ orientation is denoted by the direction of the
arrow. If an interaction is shown by a dashed line then the intereaction has negative sign. The colour denotes
which variable is assocaited with it: t1 (Red), t2 (Green), t3 (Blue). For example a red dashed line denotes
and interation strength -t1.

The first model is defined by the D-matrix

⇥
D~p

⇤
11

= (� cos(px) + cos(pz) + sin(py))t1 + (� cos(2py)� cos(py))t2 + (2i sin(py) + cos(px � pz))t3⇥
D~p

⇤
12

= �(i sin(px)� sin(py) + i sin(pz))t1 + i(sin(2py)� sin(py))t2 + (i sin(px � pz) + 2 sin(py + pz))t3⇥
D~p

⇤
21

= (i sin(px) + sin(py) + i sin(pz))t1 � i(sin(2py)� sin(py))t2 � (i sin(px � pz)� 2 sin(py + pz))t3⇥
D~p

⇤
22

= (cos(px)� cos(pz) + sin(py))t1 + (cos(2py) + cos(py))t2 + (2i sin(py)� cos(px � pz))t3

We can set the overall scalling of the model by letting t3 = 1. It is now possible to scan the model and find
gapped regions for �2  t1, t2  2,
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Figure 1: For the model with Chern numbers 0,±1,±2: Diagrams showing the interactions between the
Majorana fermions in the unit cell and the surrounding lattice. The unit cell, indicated by the dotted green
line, contains four Majoranas labeled 1, 2, 3 and 4. Majoranas 1 and 3 combine to form Dirac fermion a1,~j and
2 and 4 combine to form Dirac fermion a2,~j . The interactions’ orientation is denoted by the direction of the
arrow. If an interaction is shown by a dashed line then the intereaction has negative sign. The colour denotes
which variable is assocaited with it: t1 (Red), t2 (Green), t3 (Blue). For example a red dashed line denotes
and interation strength -t1.
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Figure 2: For the model with Chern numbers 0,±1: Diagrams showing the interactions between the Majorana
fermions in the unit cell and the surrounding lattice. The unit cell, indicated by the dotted green line, contains
four Majoranas labeled 1, 2, 3 and 4. Majoranas 1 and 3 combine to form Dirac fermion a1,~j and 2 and 4
combine to form Dirac fermion a2,~j . The interactions’ orientation is denoted by the direction of the arrow. If
an interaction is shown by a dashed line then the intereaction has negative sign. The colour denotes which
variable is assocaited with it: t1 (Red), t2 (Green), t3 (Blue). For example a red dashed line denotes and
interation strength -t1.

We see several gapped regions. For each of these regions we can calculate a winding number numerically, which
leaves us with the portrait,
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2 Example models
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Using the ansatz the each tk,l,~j0 = 0,±1 we can find many models. We then piece these models together to
create the new models listed below.
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Figure 1: For the model with Chern numbers 0,±1,±2: Diagrams showing the interactions between the
Majorana fermions in the unit cell and the surrounding lattice. The unit cell, indicated by the dotted green
line, contains four Majoranas labeled 1, 2, 3 and 4. Majoranas 1 and 3 combine to form Dirac fermion a1,~j and
2 and 4 combine to form Dirac fermion a2,~j . The interactions’ orientation is denoted by the direction of the
arrow. If an interaction is shown by a dashed line then the intereaction has negative sign. The colour denotes
which variable is assocaited with it: t1 (Red), t2 (Green), t3 (Blue). For example a red dashed line denotes
and interation strength -t1.

The first model is defined by the D-matrix
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= (cos(px)� cos(pz) + sin(py))t1 + (cos(2py) + cos(py))t2 + (2i sin(py)� cos(px � pz))t3

We can set the overall scalling of the model by letting t3 = 1. It is now possible to scan the model and find
gapped regions for �2  t1, t2  2,
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Figure 2: For the model with Chern numbers 0,±1: Diagrams showing the interactions between the Majorana
fermions in the unit cell and the surrounding lattice. The unit cell, indicated by the dotted green line, contains
four Majoranas labeled 1, 2, 3 and 4. Majoranas 1 and 3 combine to form Dirac fermion a1,~j and 2 and 4
combine to form Dirac fermion a2,~j . The interactions’ orientation is denoted by the direction of the arrow. If
an interaction is shown by a dashed line then the intereaction has negative sign. The colour denotes which
variable is assocaited with it: t1 (Red), t2 (Green), t3 (Blue). For example a red dashed line denotes and
interation strength -t1.

We see several gapped regions. For each of these regions we can calculate a winding number numerically, which
leaves us with the portrait,

6

In this model with find winding numbers 0,±1.

We can consider this model at the point t1 = t2 = t3 = 1 with open boundaries and see the emergance of an
edge state. To study this point numerically first restrict ourselves to 10 Majorana Fermions in the z-direction.
As a reference point we scan over the momenta in the x- and y-directions and calculate the all the di↵erent
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3D Model: Example 2 

Periodic BC in all 3 directions 

p
x

py

E(p)

⌫ = 1



We see that as soon as we switch to open boundaries we have a gapless state appearing on the edge. We then
introduce boundary fields

B(t) = B(b) = ↵x�
x ⌦ I2 + ↵y�

y ⌦ I2 + ↵z�
z ⌦ I2 (1)

where �x,y,z are the Pauli matrices. We observe that varying ↵x and �z move the position of the cones (one
for each end) while making ↵y non-zero induces a gap in the edge state, as seen by the following figure

If we have B(t) 6= B(b) then it is possible to separate the two cones in momentum space.

It is also possible to calculate phases for the cones (separating the cones makes it easier). For each cone we
define a (very small) closed loop,C, around the gapless point. Associated with the cone we can define an
eigenstate | (px, py)i which has the lowest positive energy. From this eigenstate with calculate

� =

I

C

1

i
ln [h (px(t), py(t)) | (px(t+ dt), py(t+ dt))i]

We find that if the ↵y is zero or very small then around each cone we find a phase of ⇡.
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3D Model: Example 2 

Edge states are gapped.  
Does the surface support Majorana fermions? 

p
x

py

E(p)

Periodic BC in only 2 directions and 
“Zeeman term” in y-direction  

⌫ = 1



Conclusions 

Three-dimensional topological insulators and topological 
superconductors provide a laboratory for probing new 
properties of matter: 
 
•  High temperature superconductivity 
•  Single Dirac cone on surface 

•  Can add fields, interactions, … on the boundary 
for quantum simulations. 

•  Lab for generating stable Majorana fermions: 
•  at surface? 
•  at monopoles in the bulk? 

 
 
    New physics and new technological applications 

⌫ = 0,±1,±2,±3,±4,±6


