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How to rotate a qubit by 0.2377?
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How to rotate a qubit by 0.2377?

@ Along the z axis: just wait for r = 0.237h/J seconds.
@ Along the x axis: just Rabi pulse the qubit for r = 0.237h/A
seconds.
@ General by Euler angle decomposition.
How about errors?
@ Algorithm uses 10° qubits and has dept 108.
@ There are 10'* occasions to pick up errors

1) = |67) + |E) = (U + eVi)(lop-1) + |Ei—1))
= |Er) = eVild) ) + (U + €V)|Ei—1)
= |E/| < e+ |E—i]

@ The final error is proportional to the number of gates (identity).
@ Each gate requires accuracy < 1074,
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Fault-tolerant techniques
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Fault-tolerant techniques
Transversal gates
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@ This only works for very special angles 6.
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@ This only works for very special angles 6.
@ Error can be further suppressed by iterating (concatenation).
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@ This only works for very special angles 6.

@ Error can be further suppressed by iterating (concatenation).
@ We can realize the Clifford group this way: CNOT, H, P = Z!/2,
@ U itself is Clifford, so iterations don’t introduce more errors.
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Fault-tolerant techniques
Transversal gates
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" ok

@ This only works for very special angles 6.

@ Error can be further suppressed by iterating (concatenation).
@ We can realize the Clifford group this way: CNOT, H, P = Z!/2,
@ U itself is Clifford, so iterations don’t introduce more errors.

@ Not a universal gate set.

@ Slightly more general setting admits T= Z!/4, universal.
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Fault-tolerant techniques
State injection
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Fault-tolerant techniques
State injection
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operations. J

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 7129



Fault-tolerant techniques
State injection

[v) = a|0) + B|1)
Yo) :cosg\m +sing|1)

0 0
cos 5\0>\w) + sin ill)ay]@
A o Bl AN Bl Bt/
= cos 5 3 [v) isin > NG

@ Measure |i) : (cos & —isinZoy)|1h) = Ry(—0)|)
@ Measure | — i) : (cos & +isin §a,) ) = Ry(6)|)

UyW>

Can realize a rotation around y of angle +£6 given state |Yy) and Clifford
operations. J

@ An error 6 £ € in the state |Yj) translate into an error € in the gate.
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Fault-tolerant techniques
Magic state distillation

How to get accurate states |Yy)?
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Fault-tolerant techniques
Magic state distillation

How to get accurate states |Yy)?

Yore) —  — [Yorce)
[Yoire) — 0
Yoie) — 0
[Yore) — 0
[Yoie) — 0

@ U is Clifford.
@ This only works for very special angles 6.

@ With Clifford operations, all we needis 6 = 7/8toget T = ZV4,
universal.
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Fault-tolerant techniques
Cost for physical noise rate 1%

Precision | # inputs
1073 5
1073 17
10-° 28
1078 87
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10-1 436
10-18 697
10-2 1309
10-%° 2181
103 3632
1079 6543

Meier, Eastin, & Knill
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Precision | # inputs

1073 5

1073 17

10~° 28

10~8 87

10-10 139 @ This is the number of noisy \YW/8>
1012 261 states needed to distill one
10°5 436 high-accuracy |, g).

1018 697

10-23 1309

10~ 2181

1038 3632

10~% 6543

Meier, Eastin, & Knill

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 9/29



Fault-tolerant techniques
Cost for physical noise rate 1%

Precision | # inputs

103 5

1073 17

10-° 28

10-3 87

10-10 139 @ This is the number of noisy |Y, g)
10-12 261 states needed to distill one

10*12 436 high-accuracy |, g).

18_23 ?239 @ ltis assumed that Clifford operations
10-2 2181 are noiseless.

10738 3632

10=% 6543

Meier, Eastin, & Knill
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Compiling complex gates
Compilation

How to rotate a qubit by 0.2377?

@ Get a universal set of gates CNOT, H, P = Z'/2, T = Z!/4,

o Because they are "transversal" in the code.
e By distilling |Y; 5).
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@ Get a universal set of gates CNOT, H, P = Z'/2, T = Z!/4,

o Because they are "transversal" in the code.
e By distilling |Y; 5).

@ Compile: R(0.237) ~HTHPTPTHTHPTPTPTHPTHPHTPHTPTH
@ Precision ¢ requires O(log® %) gates (Solovay-Kitaev).
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Compiling complex gates
Compilation

How to rotate a qubit by 0.2377?

@ Get a universal set of gates CNOT, H, P = Z'/2, T = Z!/4,

o Because they are "transversal" in the code.
e By distilling |Y; 5).

@ Compile: R(0.237) ~HTHPTPTHTHPTPTPTHPTHPHTPHTPTH
@ Precision ¢ requires O(log® %) gates (Solovay-Kitaev).
@ Hidden constant in O are huge.
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Compiling complex gates
Cost for physical noise rate 1%

Precision | # inputs
1073 5
1073 17
10-6 28
10-3 87
10-10 139
10~ 12 261
10~1 436
10~18 697
10-% 1309
107% 2181
1038 3632
1079 6543

Meier, Eastin, & Knill

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 12/29



Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates
1073 5 1073 28

10— 17 1073 132

10-6 28 1077 670

1078 87 10710 3,284
10-10 139 10~ 14,312
1012 261 1022 74,162
10~1 436 10733 347,388
10-18 697 103! 1,692,692
10=23 1309

107% 2181

1038 3632

1079 6543

Kliuchnikov, Maslov, &
Meier, Eastin, & Knill Mosca
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Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates

1073 5 1073 28

1072 17 1072 132 @ Need precision
10-° 28 1077 670 10~ 14
1078 87 10~10 3,284

10710 139 10~15 14,312
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Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates

1073 5 1073 28

1072 17 1072 132 @ Need precision
10-° 28 1077 670 10~ 14

10~8 87 10-10 3,284

1010 139 10-15 14,312 @ Compiled logical
10-12 261 10-22 74,162 gates will use 10*
10715 436 103 347,388 T gates

10-18 697 103! 1,692,692

10-2 1309

1072 2181

1038 3632

10—% 6543

Kliuchnikov, Maslov, &
Meier, Eastin, & Knill Mosca
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Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates
10-3 5 10-3 28
1072 17 1072 132 @ Need precision
10-6 28 1077 670 10~ 14
1078 87 10710 3,284
10710 139 1015 14312 @ Compiled logical
10-"2 261 10-22 74,162 gates will use 10*
10715 436 103 347,388 T gates
—18 —51
}8723 ?239 10 1692692 5 Each of these T
10-29 2181 gates must have
1074 6543 W =10"18
Kliuchnikov, Maslov, &
Meier, Eastin, & Knill Mosca
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Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates
10-3 5 10-3 28
1072 17 1072 132 @ Need precision
10-6 28 1077 670 10~ 14
1078 87 10710 3,284
10710 139 1015 14312 @ Compiled logical
10-"2 261 10-22 74,162 gates will use 10*
10715 436 103 347,388 T gates
—18 —51
18723 ?239 10 1692692 5 Each of these T
10-29 2181 gates must have
1074 6543 W =10"18
Kliuchnikov, Maslov, &
Meier, Eastin, & Knill Mosca

Overhead = 14,312 x 697 = 9,975, 464
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Compiling complex gates
Cost for physical noise rate 1%

Precision | #inputs  Precision | # T gates
10-3 5 10-3 28
1072 17 1072 132 @ Need precision
10-6 28 1077 670 10~ 14
1078 87 10710 3,284
10710 139 1015 14312 @ Compiled logical
10-"2 261 10-22 74,162 gates will use 10*
10715 436 103 347,388 T gates
—18 —51
18723 ?239 10 1692692 5 Each of these T
10-29 2181 gates must have
1074 6543 W =10"18
Kliuchnikov, Maslov, &
Meier, Eastin, & Knill Mosca

Overhead = 14,312 x 697 = 9,975, 464
Clifford operation cost not accounted.
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High-level state distillation
High level state distillation

Our approach
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Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
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Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
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High-level state distillation
High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
e T= R3.
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High-level state distillation
High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).

o T=Rs.
@ Note that Rk_1Z|Yk> = |Yk>.
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High-level state distillation
High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
o T=Rs.
@ Note that Rk_1Z|Yk> = |Yk>.
@ Need R;_; to distil gates |Y;) (Gottesman-Chuang).
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High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
o T=Rs.
@ Note that Rk_1Z|Yk> = |Yk>.
@ Need R;_; to distil gates |Y;) (Gottesman-Chuang).
@ Compiling becomes trivial (next slide).
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High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
o T=Rs.
@ Note that Rk_1Z|Yk> = |Yk>.
@ Need R;_; to distil gates |Y;) (Gottesman-Chuang).
@ Compiling becomes trivial (next slide).

@ Landahl & Cesare used Reed-Muller codes to distill |Yk)
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High-level state distillation
High level state distillation

Our approach

@ High level magic-state distillation |¥;) = |Yp) with § = 27 /2*.
@ Corresponding rotations R, = R(27/2).
o T=Rs.
@ Note that Rk_1Z|Yk> = |Yk>.
@ Need R;_; to distil gates |Y;) (Gottesman-Chuang).
@ Compiling becomes trivial (next slide).

@ Landahl & Cesare used Reed-Muller codes to distill |Yk)
@ We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111

!

R(27/23%)
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111

!

Reen/2%) {7
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111

T )

R(en/2) {©
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111

I

R(2r/2%) {(f)

R(27/2%Y) {f
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High-level state distillation

How to rotate a qubit by 0.2377?

0.237 = 27 x 0.00011101011100001010001111010111

I

R(2r/2%) {(f)

R(27/2%Y) {é
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High-level state distillation

How to rotate a qubit by 0.2377?

10
0.237 = 27 x 0.000111010111000010100011110T6411

I

R(2r/2%) {(f)

R(27/2%Y) {é
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High-level state distillation

How to rotate a qubit by 0.2377?

10
0.237 = 27 x 0.000111010111000010100011110T6411

Il

R(2r/2%) {(f)

R(2|7r/231) {é

Nothing
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High-level state distillation

How to rotate a qubit by 0.2377?

10
0.237 = 27 x 0.000111010111000010100011110T6411
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High-level state distillation

How to rotate a qubit by 0.2377?

10
0.237 = 27 x 0.000111010111000010100011110T6411

Duclos-Cianci & Poulin (Sherbrooke)

Il

R(2r/2%) {(f)

R(|2|7r/231) {é

Nothing
I

R(2ﬂ/229){é
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High-level state distillation

How to rotate a qubit by 0.2377?

010
0.237 = 27 x 0.0001110101110000101000111TO%11

Il

R(2r/2%) {(f)

R(|2|7r/231) {é

Nothing
I

R(2ﬂ/229){é
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High-level state distillation

How to rotate a qubit by 0.2377?

010
0.237 = 27 x 0.0001110101110000101000111TO%11

Il

R(2r/2%) {(f)

R(|2|7r/231) {é

Nothing
I

R(2ﬂ/229){é

Clifford (deterministic)

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation



High-level state distillation

How to rotate a qubit by 0.2377?

010
0.237 = 27 x 0.0001110101110000101000111TO%11

Il

R(2r/2%) {(f)

R(|2|7r/231) {é

Nothing
I

R(2ﬂ/229){é

Clifford (deterministic)

@ Rotate to precision 2¢ with k + 1 of these rotations.
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High-level state distillation

How to rotate a qubit by 0.2377?

010
0.237 = 27 x 0.0001110101110000101000111TO%11

Il

R(2r/2%) {(f)

R(|2|7r/231) {é

Nothing
I

R(27r/229){é

Clifford (deterministic)

@ Rotate to precision 2¢ with k + 1 of these rotations.
@ Get any single-qubit rotation by Euler angles decomposition.
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High-level state distillation
Twirl

@ For a qubit basis {|+)), [4)}, twirl T|+) = |v) and T|¢) = —|)
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High-level state distillation
Twirl

@ For a qubit basis {|+)), [4)}, twirl T|+) = |v) and T|¢) = —|)
@ Twirl makes matrices diagonal in {|+), |1))} basis

;MJMW (Wlple) - [WXW] + (Wlpl) - [9)]
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High-level state distillation
Twirl

@ For a qubit basis {|+)), [4)}, twirl T|+) = |v) and T|¢) = —|)
@ Twirl makes matrices diagonal in {|+), |1))} basis

;MJMW (Wlple) - [WXW] + (Wlpl) - [9)]

@ Twirl for {|0), 1)} is Ty = Z.
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High-level state distillation
Twirl

@ For a qubit basis {|+)), [4)}, twirl T|+) = |v) and T|¢) = —|)
@ Twirl makes matrices diagonal in {|+), |1))} basis

;MJMW (Wlple) - [WXW] + (Wlpl) - [9)]

@ Twirl for {|0), 1)} is Ty = Z.
@ Twirl for {lYk>, ’?k>} isT, = Ri_1Z

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation



High-level state distillation
Twirl

@ For a qubit basis {|+)), [4)}, twirl T|+) = |v) and T|¢) = —|)
@ Twirl makes matrices diagonal in {|+), |1))} basis

;MJMW (Wlple) - [WXW] + (Wlpl) - [9)]

@ Twirl for {|0), 1)} is Ty = Z.
@ Twirl for {lYk>, ’?k>} isT, = Ri_1Z
@ We can perform T; with a |Y;_) state.
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High-level state distillation
Swap test

e
|Yk +€‘Yk H
Vi) +€lYi) |73

(0) + 1)) [¥e) =5 [0} Ye) [¥i) + [1)]¥2) [ Ye)
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High-level state distillation
Swap test

e
|Yk +€‘Yk H
Vi) +€lYi) |73

S WAP

(10) + INY)Ye) == [0)[Yi)[Ye) + [1D)[Yi)[Ye)

—— [0)[Y)[Ye) + [1)|Yi)[Ye)
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High-level state distillation
Swap test

e
|Yk +€‘Yk H
Vi) +€lYi) |73

(10) + [I)1¥i) | Yi) % ) 1Y) [Yi) + [1)[Yi) [ Yi)

—— |0)|Yi)| Y) + |1)|Yi) | Y)
SR, 10) i) [Ye) + 1) 1Y) )
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High-level state distillation
Swap test

e
|Yk +€‘Yk H
Vi) +€lYi) |73

(10) + (1)) YY) 225 10)| Y

Yi) + DY) Y)
DY) | Ye)

DY) | Vi)

) Yi)
—— [0)|Yi) | Yi)
— |0)[¥i) [ Y)

= (10) + [1))[Y)

+
+
SWAP +

|
|
Yi)
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High-level state distillation
Swap test

0) +[1

T
|Yk +€‘Yk H
Vi) +€lYi) |73

(10) + 1)) [¥e) [ Ye) 2% SWAP|>|Yk>|Yk>+|1>| Yi)|Y)
L 0) Y Ya) + [1)]¥) Y
2L 10) i) [ Ye) + [1)]¥i) | ¥i)
= ([0} + [1))[¥i) | ¥)
(10) + [1))[¥e)[Ye) =25 [0)[¥i) | Ye) + [1)]¥2) Vo)
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High-level state distillation
Swap test
N

Vi) + €| Vi)

Vi) +€lYi) .l

k

(10) + 1)) Y3 Ye) 220 | |Yk

(10) + [T [¥e) 225 10) 7 Ya) + |1)[¥e) Vi)
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High-level state distillation
Swap test

10) +[1)
Vi) + €l Yi) -
Vi) +€lYi)
(10) + 1) [Ye) [Ye) 255 0) Ve [Ya) + [1)] Ve | Ya)
L 0) Y Ya) + [1)]¥) Y
SUAP 0) i) | Y) + 1Y) | Y
= ([0} + [1))[¥i) | ¥)
(10) + 1) [T ¥y 225 [0)[Fa) [ Ya) + [1)12) [ Vi)
)70 |¥e)
)76 |Ye)
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High-level state distillation
Swap test

0) + 1)
|Yk —l—E‘Yk

Vi) +€lYi) .l

(10) + 1)) [Ye) =5 [0) ¥ |Yi) + 1) %) |¥i)
L 0) Y Ya) + [1)]¥) Y
2L 10) i) [ Ye) + [1)]¥i) | ¥i)
= ([0} + [1))[¥i) | ¥)
(10) + [1))[7e) [ v2) =25 |0y k>m>+|1>| Al k>
)70 |¥e)
0)[¥1)|Yi)
)
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 18/29



High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
e This can be obtained from any state by twirling.
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
e This can be obtained from any state by twirling.
@ How to perform T;?
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
e This can be obtained from any state by twirling.

@ How to perform 7;?
e Answer: By injecting distilled |Y;_,) states.
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
e This can be obtained from any state by twirling.
@ How to perform 7;?
e Answer: By injecting distilled |Y;_,) states.
@ How to perform controlled-SWAP without introducing more errors?
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High-level state distillation
Swap test

@ Get outcome + with probability 1 — 2e.
@ Given this outcome, state is |Y)|Yx) + €|Y) | V).
@ Get outcome — with probability 2e, reject the state.

Distillation

Can quadratically increase the fidelity of |Y;) using 7 and controlled
SWAP gate.

@ Works as well for incoherent noise |Yi)(Yx| + €| Yi)(Yk|-
e This can be obtained from any state by twirling.
@ How to perform 7;?
e Answer: By injecting distilled |Y;_,) states.
@ How to perform controlled-SWAP without introducing more errors?

o Not a Clifford operation.
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High-level state distillation
4 qubit code

U1)/00) = )
0§ N
0) U _% Ut
0) ~
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZUT = XIIX

0y —dY ot X, = UX,Ut = zz1
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.
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High-level state distillation
4 qubit code

U[)]00) = [4)

Z, = Uz Ut = 2z11Z
W)>{ % — X, = UX,U" = Xx1I
Z, = UZ,Ut = XIIX

0 — Y E ]V X, = UX,Ut = zz1

S| = UZUT = 7777
S S, = UZ,UT = XXXX

@ U is Clifford.
® Z|0) = [0) & S[¢) = [¥).
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High-level state distillation
4 qubit code

U[)]00) = [4)

Z, = Uz Ut = 2z11Z

— X, = UX, Ut = xx11
Z, = UZ,Ut = XIIX

0§ S
_%

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

® Z|0) = |0) & S[y) = |
@ This code detects all

¥).

single-qubit errors.
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

® Z|0) = |0) < S|ib) = [4)).
@ This code detects all single-qubit errors.
e Error rate e — €2.
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX
0y —dY ot X, = UX,Ut = zz1
0) - S\ = UZUt = 7277

S S, = UZ,UT = XXXX

@ U is Clifford.

© Z|0) = |0) < S[Y) = [¢)).

@ This code detects all single-qubit errors.
e Error rate e — €2.

@ Apply H to all qubits maps S to itself.
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX
0y —dY ot X, = UX,Ut = zz1
0) - S\ = UZUt = 7277

S S, = UZ,UT = XXXX

@ U is Clifford.

© Z|0) = |0) < S[Y) = [¢)).

@ This code detects all single-qubit errors.
e Error rate e — €2.

@ Apply H to all qubits maps S to itself.
o H®Z \H®* = XIIX = Z,
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

© Z|0) = |0) < S[Y) = [¢)).

@ This code detects all single-qubit errors.
e Error rate e — €2.

@ Apply H to all qubits maps S to itself.
o H®Z \H®* = XIIX = Z,
o H¥X H® = 77ZIl =X,
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

© Z|0) = |0) < S[Y) = [¢)).
@ This code detects all single-qubit errors.
e Error rate e — €2.
@ Apply H to all qubits maps S to itself.
o H®Z \H®* = XIIX = Z,
o H¥X H® = 77ZIl =X,
o H®YZ,H® = 7117 = 7,
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High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

© Z|0) = |0) < S[Y) = [¢)).
@ This code detects all single-qubit errors.
e Error rate e — €2.
@ Apply H to all qubits maps S to itself.
o H®Z \H®* = XIIX = Z,
o H¥X H® = 77ZIl =X,
o H®YZ,H® = 7117 = 7,
o H®X,H®* = XXII = X,

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation



High-level state distillation
4 qubit code

Ul4)|00) = [¢) Z, = Uz,Ut = z11Z

W)>{ % | X, = UX,U' = XX
X

Z, = UZLUT = XIIX

U Ut V. — _
10) X, = UX,Ut = 7zl
0) - S| = UZUT = 7777
S S, = UZ4UT = XXXX
@ U is Clifford.

@ Z|0) = |0) < S[vb) = [¢).
@ This code detects all single-qubit errors.
o Errorrate e — €.
@ Apply H to all qubits maps S to itself.
o H®Z H® =XIIX =7,
o H®¥X \H® =771l =X,
o H®YZ,H® = 7117 = 7,
o H®X,H®* = XXIl =X,
@ Transversal Hadamard realizes SWAP.
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Encoded SWAP test

[0) + [1) @
[Yi)
[Yi) @

el
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Encoded SWAP test

[0) + [1) @
V) =
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
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Encoded SWAP test

[0) + [1) @
V) =
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
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Encoded SWAP test

[0) + [1) @
V) =
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
e So up to /8 rotations, c-H = c-Z, the latter is Clifford.
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Encoded SWAP test

[0) + [1) @
V) =
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
e So up to /8 rotations, c-H = c-Z, the latter is Clifford.
o 7/8 rotations are obtained by injecting |Y3).
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Encoded SWAP test

[0) + [1) @
V) =
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
e So up to /8 rotations, c-H = c-Z, the latter is Clifford.
o 7/8 rotations are obtained by injecting |Y3).

@ But |Y3) gates are noisy!

Duclos-Cianci & Poulin (Sherbrooke)

Quantum Compiling & Distillation

GT'13 20/29



Encoded SWAP test

[0) + [1) @
[Yi)
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
e So up to /8 rotations, c-H = c-Z, the latter is Clifford.
o 7/8 rotations are obtained by injecting |Y3).

@ But |Y3) gates are noisy!

e This is OK, they are used inside an error correcting code.
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Encoded SWAP test

[0) + [1) @
[Yi)
[Yi) @

el

@ How to realize controlled-H gates? (Not Clifford)
o Note that H = R(w/8) Z R(—n/8)
e So up to /8 rotations, c-H = c-Z, the latter is Clifford.
o 7/8 rotations are obtained by injecting |Y3).
@ But |Y3) gates are noisy!
e This is OK, they are used inside an error correcting code.
e We can use previously distilled |¥5) states when distilling |¥;).
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High-level state distillation
Summary

To distill a |Yx) state, we need...
@ Some noisy versions of |Yx).

@ Some “not so noisy" versions of |Y;_;) to implement the twirl 7.

o As used in the SWAP test.
e To make the |Y;) noise more diagonal if desired (not needed).

@ Some “not so noisy" versions of |¥3) to implement the c-H.
Given the accuracy 1 — ¢; of the inputs |Y;), we can...
@ Compute the accuracy of the distilled |Yk).

@ Compute the rejection probability (wasting these inputs)

o Reject when the 4-qubit code detects an error.
@ Reject when the SWAP test fails.

@ Knowing the rejection probability enables us to compute the
average number of each component used.

@ In our calculations, the accuracy of |Y;) has two components
(diagonal and off-diagonal).
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o Distillation with perfect gates takes ¢ to ¢, = ce;.
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Rule of thumb

o Distillation with perfect gates takes ¢ to ¢, = ce;.
@ The use of noisy |Y;) to distill |Y;) will deteriorate this e;.
@ How accurate should the |Y;) be?
e Having ¢; = 1073° while attempting to distill ¢, = 10~1° seems like
an overkill, we’ve wasted our time obtaining very high-quality |Y;).
o If they are too noisy, distillation will be useless.

@ If N; states |Y;) are used in the distillation, use ¢; =~ €, /N;.
e This will roughly double ¢;.
@ This could be thoroughly optimized.
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Results
Initial accuracy

@ Standard assumption: |Y3) is initially prepared with accuracy 1%,
and distilled to any desired accuracy.
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Results
Initial accuracy

@ Standard assumption: |Y3) is initially prepared with accuracy 1%,
and distilled to any desired accuracy.

@ How well should we assume |Y;) can be prepared?

@ Does it make sense to prepare |Y1) ~ |0) +2719]1) to accuracy
1%7?

@ May as well prepare |0).

Assumption on initial accuracy

@ We use the scheme of Meier, Eastin, & Knill to prepare |Y3)
assuming an initial error of 1%.

@ For all other |Yi), k > 3, we initially prepare |0) ~ |Y), which we
can do to great accuracy (Clifford).

@ As always, additional cost for Clifford operations is not accounted.

v
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Results
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@ Requires 4 c-H gates to distill 2 states |Yx) (per round).

@ Gates c-H are realized by injecting states |Y3): rate 1/2.

@ Higher rate encoding?

@ Use [[n =2m + 2,k = 2m,d = 2]] with the property that H®"
SWAPs qubit j with m + .
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e ¢ o m? since there are more locations for failures.
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e Increase m along the distillation flow.

@ Gain is more that just factor of 2 because of the recursive nature
of the distillation.
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High rate generalization
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@ Error suppression € — ce?

e ¢ o m? since there are more locations for failures.
@ Rejection probability p o me

e Increase m along the distillation flow.

@ Gain is more that just factor of 2 because of the recursive nature
of the distillation.

@ Enables to smoothly vary target accuracy.
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Solovay-Kitaev-like compiling.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
Conclusion & Outlook

@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
Conclusion & Outlook

@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.

@ Start with better approximations: |0) is very close to |Yx) for k > 1.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
Conclusion & Outlook

@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.
@ Start with better approximations: |0) is very close to |Yx) for k > 1.
@ Add cost of Clifford gates.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
Conclusion & Outlook

@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.
@ Start with better approximations: |0) is very close to |Yx) for k > 1.
@ Add cost of Clifford gates.

e Not simply multiplicative: required accuracy changes along the
distillation flow.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
Conclusion & Outlook

@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.
@ Start with better approximations: |0) is very close to |Yx) for k > 1.
@ Add cost of Clifford gates.
e Not simply multiplicative: required accuracy changes along the
distillation flow.

@ Rate 1 code for controlled SWAP.

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT'13 29/29



Outlook & Conclusion
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@ Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.
e Found savings of a 2-4 orders of magnitude for relevant noise
regimes.
@ Start with better approximations: |0) is very close to |Yx) for k > 1.
@ Add cost of Clifford gates.

e Not simply multiplicative: required accuracy changes along the
distillation flow.

@ Rate 1 code for controlled SWAP.
@ Use proper optimization instead of rule of thumb.
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