## Fun with QMA and non-unitary gates



## Dan Browne

joint work with: Naïri Usher


## QMA

* Kitaev (1999) - QMA: The quantum analogue of NP


## QMA for beginners



## NP



Arthur
Poly-time classical computer


Merlin

Unbounded
computational power


## Arthur



Merlin

Decision problem:
"Is there an answer to the problem of gravity?"

Arthur can verify
validity of proof in poly-time


## Arthur



Merlin

Decision problem:
"Is there an answer to the problem of gravity?"

Arthur can verify
validity of proof in poly-time
"No"
"And there is no
fake proof I could send to you to trick you into thinking the answer is yes"


## Arthur

Poly-time classical computer


## Merlin

Decision problem
Arthur can verify
"Yes = 1"
"And here's the proof" validity of proof in poly-time
"No = O"
"And there is no fake proof ..."


## Arthur

Poly-time classical computer

Decision problem

Arthur can verify validity of proof in poly-time

## Merlin



Unbounded computational power

## "Is there an answer to the problem of gravity?"



SPOILER: "I lied.


We need quantum data! It is not in NP."

## QMA

* Kitaev (1999) - QMA: The quantum analogue of NP


## QMA

## Arthur

Poly-time quantum computer


Merlin
Unbounded computational
power

Decision problem

Arthur can verify validity of proof in poly-time

$\frac{\text { quantum proof }}{|\psi\rangle}$
"Yes = 1"
with "high
enough"
probability
"No = 0"
"And there is no fake proof ..."

## Local Hamiltonian Problem



## Local Hamiltonian Problem

Given: A k-local n-qubit Hamiltonian

$$
H=\sum_{j} H_{j}
$$

$$
0 \leq H_{j} \leq 1
$$

$$
H_{j}: k \text {-local }
$$

with a promise that the ground state energy of H is:

$$
\begin{array}{rl}
E_{0}>b & E=b \cdots \cdots \cdots \cdots \\
\quad \text { or } & \\
0<E_{0}<a & =a \cdots \cdots \cdots \cdots \\
E & =0
\end{array}
$$

Problem: Determine whether $\mathrm{E}_{0}>\mathrm{b}$ or $\mathrm{E}_{0}<a$ ?

## LH is QMA-complete

## LH is in QMA



## ground state of $\mathbf{H}$

$|\psi\rangle$
Can efficiently estimate the energy on a quantum computer.

## LH is hard for QMA

## Encode proof verification for any QMA problem into a ground state of a LH


poly-time verification
ground state

Yes instances: Low energy
No instances: Higher energy

## Encoding a computation in a ground state

Feynman's History state idea

## History State



$$
\begin{array}{r}
|\psi\rangle=\left|\psi_{\mathrm{in}}\right\rangle|0\rangle \\
+U_{1}\left|\psi_{\mathrm{in}}\right\rangle|1\rangle \\
+U_{2} U_{1}\left|\psi_{\mathrm{in}\rangle}\right\rangle|2\rangle \\
+U_{3} U_{2} U_{1}\left|\psi_{\mathrm{in}\rangle}\right\rangle|3\rangle \\
+\cdots
\end{array}
$$

## Encoding a computation in a ground state

Propagator Hamiltonian:

$$
\begin{aligned}
H_{\text {prop }}= & \sum_{j} H_{j} \quad H_{j}= \\
- & -\frac{1}{2}\left(U_{j} \otimes|j\rangle\langle j-1|+\text { h.c. }\right)+ \\
& \frac{1}{2} \mathbb{1} \otimes(|j\rangle\langle j|+|j+1\rangle\langle j+1|)
\end{aligned}
$$

Ground space is space of history states:

$$
\begin{array}{r}
\left|\psi_{\mathrm{in}}\right\rangle|0\rangle \\
+U_{1}\left|\psi_{\mathrm{in}}\right\rangle|1\rangle \\
+U_{2} U_{1}\left|\psi_{\mathrm{in}}\right\rangle|2\rangle \\
+U_{3} U_{2} U_{1}\left|\psi_{\mathrm{in}}\right\rangle|3\rangle
\end{array}
$$

## Encoding a computation in a ground state

This works, because the ground space of

$$
\begin{aligned}
H_{j}= & -\frac{1}{2}\left(U_{j} \otimes|j\rangle\langle j-1|+\text { h.c. }\right)+ \\
& \frac{1}{2} \mathbb{1} \otimes(|j\rangle\langle j|+|j+1\rangle\langle j+1|)
\end{aligned}
$$

is:

$$
|\psi\rangle|j-1\rangle+U_{j}|\psi\rangle|j\rangle
$$

## Encoding a computation in a ground state

This works, because the ground space of

$$
\begin{aligned}
H_{j}= & -\frac{1}{2}\left(U_{j} \otimes|j\rangle\langle j-1|+\text { h.c. }\right)+ \\
& \frac{1}{2} \mathbb{1} \otimes(|j\rangle\langle j|+|j+1\rangle\langle j+1|)
\end{aligned}
$$

is:

$$
\begin{gathered}
H_{j}\left(|\psi\rangle|j-1\rangle+U_{j}|\psi\rangle|j\rangle\right) \\
=(1 / 2)\left(-U_{j}|\psi\rangle|j\rangle+U_{j}|\psi\rangle|j\rangle\right)=0
\end{gathered}
$$

## QMA

## Arthur

Poly-time quantum computer


Merlin
Unbounded computational
power

Decision problem

Arthur can verify validity of proof in poly-time

$\frac{\text { quantum proof }}{|\psi\rangle}$
"Yes = 1"
with "high
enough"
probability
"No = 0"
"And there is no fake proof ..."

## Encoding a computation in a ground state

The verification circuit we wish to encode:

$\mathbf{L}=$ No. of unitary gates in circuit

## Encoding a computation in a ground state

Maps into the ground space of

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$



$$
H_{\mathrm{in}}=\sum_{j \in \text { ancilla }}
$$

$$
H_{\text {out }}=|0\rangle_{\text {out }}\langle 0| \otimes|L\rangle_{\text {clock }}\langle L|
$$

## Encoding a computation in a ground state

Yes instance:

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$

No frustration:
Each term of Hamiltonian can reach its ground space:


Ground state:
« History state of this circuit

## Encoding a computation in a ground state

No instance:

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$

Frustration:
Hout wants output qubit to be in state 1, but no proof state exists to allow this.

Ancillas:


## Promise gap scaling

LH Problem: Determine whether $\mathrm{E}_{0}>\mathrm{b}$ or $\mathrm{E}_{0}<a$ ?

$$
\begin{array}{cl}
E_{0}>b & E=b \cdots \cdots \cdots \cdots \\
\quad \text { or } & \\
0<E_{0}<a & E=a \cdots \cdots \cdots
\end{array}
$$

We need the "promise gap" between yes and no to remain inverse polynomial.

## Encoding a computation in a ground state

## Kitaev:

Energy of no frustrated ground state instance scales with

$$
E_{0} \geq \lambda_{1} 2 \sin ^{2}(\theta / 2)
$$

2nd lowest eigenvalue of $\mathrm{H}_{\text {prop }}$

Kitaev's $\mathrm{H}_{\text {prop: }}$
Lowest eigenvalue:

$$
1-\cos (\pi / L+1) \approx \frac{\pi}{2(L+1)^{2}}
$$

## LH is QMA-complete

## Non-unitary ground state computation?

Our work: (Usher/Browne, unfinished 2015)

Non-unitary ground state computation?

Our work: (Usher/Browne, unfinished 2015)

## What if?



Ground State
Computation

Add projectors to the circuits

Verifier circuits

## Non-unitary ground state computation?

## Renormalised Projectors / Post-selection

E.g. quantum lottery ticket


## Non-unitary ground state computation?

## Why?

- Curiosity! - Feynman’s construction pre-dates all quantum computing theory.
- Add projectors to unitary circuits and you get:

Fault-tolerant Quantum Computation
Measurement-based Quantum Computation postIQP $=$ postBQP $=P P$

Non-unitary ground state computation?

## Why it will never work!

postlQP $=\boldsymbol{p o s t B Q P}=\mathbf{P P}$

Aaronson:
If deterministic projectors (post-selection) are added to unitary gates, we can efficiently solve PP-hard problems.

Non-unitary ground state computation?

## Why it might just work.....

postlQP = postBQP $=P P$


One-bit teleportation circuit (Zhou / Leung / Chuang 2000).

Non-unitary ground state computation?

## Why it might just work.....

postlQP = postBQP $=P P$


One-bitZero-bit teleportation circuit.

NB Norm of output is independent of input.

## Encoding a computation in a ground state

## Why it also might just work.....

In Kitaev construction, Hout projects the input to the correct proof state.

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$



## The projector gadget

Recall Kitaev and Feynman's unitary gadget:

$$
\begin{aligned}
H_{j}= & -\frac{1}{2}\left(U_{j} \otimes|j\rangle\langle j-1|+\text { h.c. }\right)+ \\
& \frac{1}{2} \mathbb{1} \otimes(|j\rangle\langle j|+|j+1\rangle\langle j+1|)
\end{aligned}
$$

that had ground space

$$
|\psi\rangle|j-1\rangle+U_{j}|\psi\rangle|j\rangle
$$

## A projector gadget?

For projector P , want a gadget

$$
H_{p}=?
$$

that has ground space

$$
\begin{array}{cc}
|\psi\rangle|j-1\rangle+\frac{P|\psi\rangle|j\rangle}{\beta} & \quad \text { where } \\
\beta=\| P|\psi\rangle|j\rangle \|
\end{array}
$$

To avoid PP-hardness, we assume $\beta$ will be equal for all states $|\Psi\rangle$.

## The projector gadget

$$
H_{j}=\left(\frac{\beta^{2}}{1+\beta^{2}}\right) P \otimes\left(-\frac{1}{\beta}|j-1\rangle\langle j|-\frac{1}{\beta}|j\rangle\langle j-1|+\frac{1}{\beta^{2}}|j-1\rangle\langle j-1|+|j\rangle\langle j|\right)+P^{\perp} \otimes|j\rangle\langle j|
$$

has the ground space we want!

$$
|\psi\rangle|j-1\rangle+\frac{P|\psi\rangle|j\rangle}{\beta}
$$

NB In the limit $\beta \rightarrow 1, P \rightarrow \mathbb{1}$, we recover Kitaev/Feynman gadget.

## The projector gadget

$$
H_{j}=\left(\frac{\beta^{2}}{1+\beta^{2}}\right) P \otimes\left(-\frac{1}{\beta}|j-1\rangle\langle j|-\frac{1}{\beta}|j\rangle\langle j-1|+\frac{1}{\beta^{2}}|j-1\rangle\langle j-1|+|j\rangle\langle j|\right)+P^{\perp} \otimes|j\rangle\langle j|
$$

$$
\begin{aligned}
& H_{j}\left(|\psi\rangle|j-1\rangle+\frac{P|\psi\rangle|j\rangle}{\beta}\right) \\
& \propto-\frac{P}{\beta}|\psi\rangle|j\rangle+\frac{P}{\beta}|\psi\rangle|j\rangle=0
\end{aligned}
$$

## The projector gadget

$$
H_{j}=\left(\frac{\beta^{2}}{1+\beta^{2}}\right) P \otimes\left(-\frac{1}{\beta}|j-1\rangle\langle j|-\frac{1}{\beta}|j\rangle\langle j-1|+\frac{1}{\beta^{2}}|j-1\rangle\langle j-1|+|j\rangle\langle j|\right)+P^{\perp} \otimes|j\rangle\langle j|
$$

has the ground space we want!

$$
|\psi\rangle|j-1\rangle+\frac{P|\psi\rangle|j\rangle}{\beta}
$$

NB In the limit $\beta \rightarrow 1, P \rightarrow \mathbb{1}$, we recover Kitaev/Feynman gadget.

## Encoding a computation in a ground state

With this gadget, we can construct Hamiltonians

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$

such that "Yes" instances have low energy...


Ground state:
ఒ History state of this circuit

## Encoding a computation in a ground state

And No instances have frustration

$$
H=H_{\mathrm{in}}+H_{\mathrm{prop}}+H_{\mathrm{out}}
$$

The "promise gap" satisfies Kitaev's formula

$$
\text { Need to check this! } \xrightarrow{E_{0} \geq \lambda_{1} 2 \sin ^{2}(\theta / 2)}
$$

2nd lowest eigenvalue of $\mathrm{H}_{\text {prop }}$

## Characterising the promise gap

December 2014: We had a beautiful and elegant analytic bound on $\lambda_{1}$ for many circuits.

January 2015: We found one of these in the proof...


## Characterising the promise gap

Instead - some quick and simple proof-of-principle numerics.


Equivalent to


## Characterising the promise gap


n : Number of 1-bit teleportations in circuit

## Characterising the promise gap

## Extra ancillas giving low energy excited states. :-(



## Characterising the promise gap

A second try


Equivalent to


## Characterising the promise gap


n : Number of 1-bit teleportations in circuit

## Conclusion

It works! Sometimes.....
(probably)

## Where do we go next?

## Where do we go next?

* Numerical evidence for 1/poly promise gap scaling:
* But when does exponential scaling occur?
* Analytic bounds?
* Aim: A QMA construction from a non-universal gate set with projectors (e.g. IQP circuit).




## Where do we go next?

* Complexity
* When does BQP + projectors = BQP
* Is constant probability on input states sufficient?
* Can we characterise exponentially closing gap with other complexity classes?




## Where do we go next?

* Post-selection gives IQP / MBQC circuits trivial time complexity. QMA with constant clock-steps?


Need many clocks!

## Where do we go next?

* Incorporate fault tolerance?
* Error detection gadgets to project onto error free states?
* Robustness of Hamiltonian to perturbations?
* Norm of history state vectors problematic?



## Where do we go next?

* Other applications for the projector gadget?
* Adiabatic Quantum Computation?
* Relationship with Bacon and Flammia's adiabatic cluster state model?


Thank you!


