Positivity and sparsity in time-frequency distributions (with the benefit of hindsight)



David Gross Coogee (yeah!) Jan '15

## Outline

- Social science & math of phase spaces
- Why grown-ups should care
- Positivity & sparsity via uncertainty relations



## The social science of phase spaces

#### The story as told by a quantum optician



- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution

 sums to one, marginal distributions, symplectic covariance, except...

#### The story as told by a quantum optician



- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution
  - sums to one, marginal distributions, symplectic covariance, except...
- ...it may take on negative values.

When does the analogy hold perfectly?

Natural question: which states give rise to non-negative Wigner distributions?

```
Theorem [Hudson, '74]
The only pure states to possess a non-
negative Wigner functions are Gaussian
states.
```

 $\psi(x) \propto e^{i(x\theta x + vx)}$ 











## The quantum information lense

Goals of this program:

- "De-mystify" negativity,
- build a proper q'info resource theory of negativity,
- and pass to discrete systems along the way.

(Bonus: Connections to learnability of low-rank operators)

# The math of quantum phase spaces.

(Bear with me).

Canonical position / momentum operators:

 $[\hat{Q},\hat{P}]=i\hbar\mathbb{1}.$ 

That's a Lie algebra. Exponentiate...

Canonical position / momentum operators:

 $[\hat{Q},\hat{P}]=i\hbar\mathbb{1}.$ 

That's a Lie algebra. Exponentiate...

... to get the Weyl operators:

$$w(p,q) \propto e^{ip\hat{Q}}e^{iq\hat{P}}$$

for  $(p,q) \in \mathbb{R}^2$ .



$$w(\rho, \sigma) = \begin{bmatrix} \ddots & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Weyl operators form a group (up to phases)

$$w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2)$$
  
= exp{ $\pi i(p_1q_2 - q_1p_2)$ }

Weyl operators form a group (up to phases)

$$w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) \exp\{\pi i (p_1 q_2 - q_1 p_2)\}$$

Fun facts:

- The phase factor is symplectic inner product of parameters.
- The group is the *Heisenberg group* over  $\mathbb{R}$ .
- It acts irreducibly on  $\mathcal{H} = L^2(\mathbb{R})$ .

Fix a density operator  $\rho$ .

**Def.** The *characteristic function* of  $\rho$ 

```
\chi_{\rho}(p,q) = \operatorname{tr} \rho w(p,q)
```

maps phase-space points (p, q) to the expectation value of associated Weyl operator.

Fix a density operator  $\rho$ .

**Def.** The *characteristic function* of  $\rho$ 

```
\chi_{\rho}(\boldsymbol{p},\boldsymbol{q}) = \operatorname{tr} \rho w(\boldsymbol{p},\boldsymbol{q})
```

maps phase-space points (p, q) to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense if "expanding in Weyl terms of Weyl ops" is some kind of FT...

Fix a density operator  $\rho$ .

**Def.** The *characteristic function* of  $\rho$ 

```
\chi_{\rho}(\boldsymbol{p},\boldsymbol{q}) = \operatorname{tr} \rho w(\boldsymbol{p},\boldsymbol{q})
```

maps phase-space points (p, q) to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense if "expanding in Weyl terms of Weyl ops" is some kind of FT...
- ... but it *is*. E.g. it's the non-commutative FT over the Heisenberg group.

Fix a density operator  $\rho$ .

**Def.** The *characteristic function* of  $\rho$ :

 $\chi_{\rho}(\boldsymbol{p},\boldsymbol{q}) = \operatorname{tr} \rho w(\boldsymbol{p},\boldsymbol{q}).$ 

**Def.** The Wigner function of  $\rho$ 

$$W_{
ho}(oldsymbol{p},oldsymbol{q}) = \mathcal{F}_{(oldsymbol{p}',oldsymbol{q}')
ightarrow (oldsymbol{p},oldsymbol{q})} \chi_{
ho}(oldsymbol{p}',oldsymbol{q}')$$

is the (usual 2D) FT of the characteristic function.



Fix a density operator  $\rho$ .

**Def.** The *characteristic function* of  $\rho$ :

 $\chi_{\rho}(\boldsymbol{p},\boldsymbol{q}) = \operatorname{tr} \rho w(\boldsymbol{p},\boldsymbol{q}).$ 





Philosophical point:



## Let's go discrete.





## Dictionary 1

|                     | Continuous                                         | Discrete – <i>d</i> -dimensional                                   |
|---------------------|----------------------------------------------------|--------------------------------------------------------------------|
| Configuration space | $\mathbb{R}^n$                                     | $\mathbb{Z}_d^n = \{0, \dots, d-1\}^n$<br>Arithmetic is modulo $d$ |
| Hilbert space       | $L^2(\mathbb{R}^n)$                                | $\mathbb{C}^d \simeq L^2(\mathbb{Z}^n_d)$                          |
| Phase space         | $\mathbb{R}^{2n}$                                  | $\mathbb{Z}_d^{2n}$                                                |
| Weyl ops $w(p,q)$   | $e^{ip\hat{Q}}e^{iq\hat{P}}\ p,q\in {\mathbb R}^n$ | ??                                                                 |





#### Weyl operators Continuous:

$$w(\rho, o) = \begin{bmatrix} \ddots & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

 $w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) e^{\pi i (p_1 q_2 - q_1 p_2)}$ 

#### Weyl operators Continuous:

$$w(\rho, o) \stackrel{\circ}{=} \begin{bmatrix} \ddots & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\$$

 $w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) e^{\pi i (p_1 q_2 - q_1 p_2)}$ 

Discrete – for odd d – and with  $\omega = e^{2\pi i/d}$ :

$$w(\rho,q) \sim \begin{bmatrix} \omega^{1}P \\ \omega^{2}P \\ \vdots \\ \omega^{(\mu-1)p} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{bmatrix} \in q$$

 $\Rightarrow w(p_1,q_1) w(p_2,q_2) = w(p_1+p_2,q_1+q_2) \omega^{p_1q_2-q_1p_2}.$ 

#### Weyl operators Continuous:

 $w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) e^{\pi i (p_1 q_2 - q_1 p_2)}$ 

Discrete – for odd d – and with  $\omega = e^{2\pi i/d}$ :

$$W(p,q) \sim \begin{bmatrix} \omega'^{p} \\ \omega^{2p} \\ \vdots \\ \omega^{(k-1)p} \end{bmatrix} \begin{bmatrix} \ddots \\ \vdots \\ \vdots \end{bmatrix} \in q$$

 $\Rightarrow w(p_1,q_1) w(p_2,q_2) = w(p_1+p_2,q_1+q_2) \omega^{p_1q_2-q_1p_2}.$ 

Discrete Heisenberg group = generalized Paulis.

## Dictionary 2

|                     | Continuous                                                         | Discrete – <i>d</i> -dimensional                                               |
|---------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Configuration space | $\mathbb{R}^n$                                                     | $\mathbb{Z}_d^n = \{0, \dots, d-1\}^n$                                         |
| Hilbert space       | $L^2(\mathbb{R}^n)$                                                | $\mathbb{C}^d \simeq L^2(\mathbb{Z}^n_d)$                                      |
| Phase space         | $\mathbb{R}^{2n}$                                                  | $\mathbb{Z}_d^{2n}$                                                            |
| Weyl ops $w(p,q)$   | $e^{i p \hat{Q}} e^{i q \hat{P}}  onumber \ p,q \in {\mathbb R}^n$ | $egin{array}{lll} \hat{z}^p \hat{\chi}^q \ p,q \in \mathbb{Z}_d^n \end{array}$ |

## Dictionary 2

|                     | Continuous                        | Discrete – <i>d</i> -dimensional          |
|---------------------|-----------------------------------|-------------------------------------------|
| Configuration space | $\mathbb{R}^n$                    | $\mathbb{Z}_d^n = \{0, \dots, d-1\}^n$    |
| Hilbert space       | $L^2(\mathbb{R}^n)$               | $\mathbb{C}^d \simeq L^2(\mathbb{Z}^n_d)$ |
| Phase space         | $\mathbb{R}^{2n}$                 | $\mathbb{Z}_d^{2n}$                       |
| Weyl ops            | e <sup>ipQ</sup> e <sup>iqP</sup> | <sup>2</sup> <sup>p</sup> χ <sup>q</sup>  |
| w(p,q)              | $p,q \in \mathbb{R}^n$            | $p,q\in\mathbb{Z}_d^n$                    |
| Charact. func.      | tr( ho w(p,q))                    | tr( ho w(p,q))                            |
| Wigner func.        | real FT of c.f.                   | DFT of c.f.                               |





## Shared properties



Approach very satisfactory. Some shared properties:

Normalization

$$\sum_{p,q} W_{\rho}(p,q) = 1,$$

Inner products

$${\sf tr}\,
ho{\sf A}=\sum_{{m p},q}W_
ho({m p},q)W_{\!{
m A}}({m p},q)$$

## Shared properties



Approach very satisfactory. Some shared properties:

Normalization

$$\sum_{p,q} W_{\rho}(p,q) = 1,$$

Inner products

$${\sf tr}\,
ho{\sf A}=\sum_{{m p},{m q}}W_
ho({m p},{m q})W_{\!{m A}}({m p},{m q})$$

... and also (next slides)...

- symplectic covariance,
- positivity exactly for "Gaussians",
- described by "displaced parity operators".

## Positivity

**Recall continuous case: Thm.** [Hudson, '74] If  $\rho = |\psi\rangle\langle\psi|$ , then  $W_{\rho}$  non-negative iff  $\psi$  is a Gaussian state:  $\psi(x) \propto e^{i(x\theta x + vx)}$   $(x \in \mathbb{R}^n)$ .

## Positivity

Recall continuous case:

Thm. [Hudson, '74] If  $\rho = |\psi\rangle\langle\psi|$ , then  $W_{\rho}$  non-negative iff  $\psi$  is a Gaussian state:

$$\psi(x) \propto e^{i(x\theta x + vx)}$$
  $(x \in \mathbb{R}^n).$ 

#### My source of early pride:

**Thm.** ("Discrete Hudson") [DG, '06] If  $\rho = |\psi\rangle\langle\psi|$ , then  $W_{\rho}$  non-negative iff  $\psi$  is a stabilizer state. What is more, stabilizer states are those of the form

$$\psi(x) \propto e^{i2\pi/d(x\theta x + vx)}$$
  $(x \in \mathbb{Z}_d^n)$ 

(at least when restricted to their support).

### Symplectic Covariance



Let S be a symplectic phase space transformation. (I.e. det-1 matrix for one system). Then there is a unitary U such that $W_{U\rho U^{\dagger}}(p,q) = W_{\rho}(S(p,q)).$ 

## Symplectic Covariance



Let S be a symplectic phase space transformation. (I.e. det-1 matrix for one system). Then there is a unitary U such that

$$W_{U
ho U^{\dagger}}(p,q) = W_{
ho}(S(p,q)).$$

Remarks:

- In quantum optics, these are the ops of *linear optics*
- ► In math-phys U is the *metaplectic representation* of S
- ► In q'info, these Us are the Clifford group

## Symplectic Covariance



Let S be a symplectic phase space transformation. (I.e. det-1 matrix for one system). Then there is a unitary U such that

$$W_{U
ho U^{\dagger}}(p,q) = W_{
ho}(S(p,q)).$$

Remarks:

- In quantum optics, these are the ops of *linear optics*
- ▶ In math-phys *U* is the *metaplectic representation* of *S*
- ► In q'info, these Us are the Clifford group
- ► The ops preserve positivity ⇒ map Gaussians to Gaussians and stabs to stabs.

#### Parity operators

For every p, q, the map  $\rho \mapsto W_{\rho}(p, q)$  is linear in  $\rho$ , i.e. there is a phase space point operator A(p, q) such that

 $W_{\rho}(p,q) = \operatorname{tr} \rho A(p,q).$
#### Parity operators

For every p, q, the map  $\rho \mapsto W_{\rho}(p, q)$  is linear in  $\rho$ , i.e. there is a phase space point operator A(p, q) such that

$$W_{
ho}(p,q) = \operatorname{tr} 
ho A(p,q).$$

Short calculation:

$$A(p,q) = w(p,q)A(0,0)w(p,q)^{\dagger},$$

with

$$(A(0,0)\psi)(x)=\psi(-x)$$

the parity operator.

#### Parity operators

For every p, q, the map  $\rho \mapsto W_{\rho}(p, q)$  is linear in  $\rho$ , i.e. there is a phase space point operator A(p, q) such that

$$W_{
ho}(p,q) = \operatorname{tr} 
ho A(p,q).$$

Short calculation:

$$A(p,q) = w(p,q)A(0,0)w(p,q)^{\dagger},$$

with

$$(A(0,0)\psi)(x)=\psi(-x)$$

the parity operator.

In particular, the A(p,q)'s are *unitary* (and hermitian).

## Summary

| Configuration space     | $\  \mathbb{R}^n$                              | $\Big  \mathbb{Z}_d^n = \{0, \ldots, d-1\}^n$   |
|-------------------------|------------------------------------------------|-------------------------------------------------|
| Hilbert space           | $L^2(\mathbb{R}^n)$                            | $L^2(\mathbb{Z}_d^n)$                           |
| Phase space             | $\mathbb{R}^{2n}$                              | $\mathbb{Z}_d^{2n}$                             |
| Weyl operators          | $e^{i(p\hat{Q}-q\hat{P})}$                     | $\hat{z}(p)\hat{x}(q)$                          |
| Characteristic function | tr( ho w(p,q))                                 | tr( ho w(p,q))                                  |
| Wigner function         | FT of char. function<br>= exp. of disp. parity | FT of char. function $= \exp$ . of disp. parity |
| Non-negative            | $\psi(x) = e^{2\pi i (x\theta x + vx)}$        | $\psi(x) = e^{\frac{2\pi}{d}i(x\theta x + vx)}$ |
| Symmetries              | $\int Sp(\mathbb{R}^{2n})$                     | $Sp(\mathbb{Z}_d^{2n})$                         |





#### A few:

- Shows that Spekken's *episdemic toy theory* is actually stabilizer QM represented as Wigner functions
- Lead to some *simulability* results for mixed many-body dynamics [U Sydney, ongoing]
- Featured in construction of certain *quantum expanders* [DG, Eisert '07]
- But the real deal is...

# The Resource Theory of Stabilizer Computation

[Veitch, Housavin, Gottesman, Emerson '13 Some of the above + Ferrie, DG '12]



Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".



Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".



#### Of interest

- Practically: Error-correction thresholds
- Conceptually: "What drives putative QC speedup?" in part. for mixed states?

Which states qualify as magic resources?

- Call  $\rho$  muggle if it is the convex combination of stabs
- Otherwise,  $\rho$  is *magic*.



#### Resource Theory 1

|                    | Stabilizer comp | entanglement                                    |
|--------------------|-----------------|-------------------------------------------------|
| free operations    | Clifford        | LOCC                                            |
| free states        | muggle          | separable                                       |
| non-free states    | magic           | entangled                                       |
| tractable approx.  | ???             | pos. partial transp.<br>(tight for pure states) |
| bound states       | ???             | РРТ                                             |
| quantitative meas. | ???             | log negativity                                  |

#### Re-Visit magic state circuit

Looking at computation in Wigner rep...



... it's plain that

- Inputs are positively represented,
- Cliffords preserve that (symplectic covariance),
- Measurements are contractions with positive functions...

#### Re-Visit magic state circuit

Looking at computation in Wigner rep...



...it's plain that

- Inputs are positively represented,
- Cliffords preserve that (symplectic covariance),
- Measurements are contractions with positive functions...

Hence. . .

... entire scheme *efficiently simulable* unless resource states introduce negativity!

#### Negativity in mixed states

For mixed states: positive Wigner /muggle

- ► Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]

#### Negativity in mixed states

For mixed states: positive Wigner /muggle

- Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]

But nicest argument by [Waterloo gang]:



#### Negativity in mixed states

For mixed states: positive Wigner /muggle

- Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]

But nicest argument by [Waterloo gang]:



Pos-Wig is simplicial outer approx. of muggle

### Resource Theory 2

|                    | Stabilizer comp                        | entanglement                                    |
|--------------------|----------------------------------------|-------------------------------------------------|
| free operations    | Clifford                               | LOCC                                            |
| free states        | muggle                                 | separable                                       |
| non-free states    | magic                                  | entangled                                       |
| tractable approx.  | pos. Wigner<br>(tight for pure states) | pos. partial transp.<br>(tight for pure states) |
| bound states       | poswig                                 | РРТ                                             |
| distillable        | negwig?                                | NPT?                                            |
| quantitative meas. | log negativity                         | log negativity                                  |

## Proof sketch of discrete Hudson

... via phase-space uncertainty relations





#### Step 1: Parseval

Ingredient 1: Re-scaled A(p,q)'s are ONB matrix space:

$$\operatorname{tr}\left(\frac{1}{\sqrt{d}}A(p,q)\right)\left(\frac{1}{\sqrt{d}}A(p',q')\right) = \delta_{p,p'}\delta_{q,q'}.$$

#### Step 1: Parseval

Ingredient 1: Re-scaled A(p,q)'s are ONB matrix space:

$$\operatorname{tr}\left(\frac{1}{\sqrt{d}}A(p,q)\right)\left(\frac{1}{\sqrt{d}}A(p',q')\right) = \delta_{p,p'}\delta_{q,q'}.$$

Hence

$$\begin{aligned} |\rho||_{2}^{2} &= \sum_{i,j} |\rho_{i,j}|^{2} \\ &= \frac{1}{d} \sum_{p,q} |W_{\rho}(p,q)|^{2} \\ &= \left\| \frac{1}{\sqrt{d}} W_{\rho} \right\|_{2}^{2}. \end{aligned}$$

#### Step 1: Parseval

Ingredient 1: Re-scaled A(p,q)'s are ONB matrix space:

$$\operatorname{tr}\left(\frac{1}{\sqrt{d}}A(p,q)\right)\left(\frac{1}{\sqrt{d}}A(p',q')\right) = \delta_{p,p'}\delta_{q,q'}.$$

Hence

$$\begin{split} \|\rho\|_{2}^{2} &= \sum_{i,j} |\rho_{i,j}|^{2} \\ &= \frac{1}{d} \sum_{p,q} |W_{\rho}(p,q)|^{2} \\ &= \left\|\frac{1}{\sqrt{d}} W_{\rho}\right\|_{2}^{2}. \end{split}$$

So  $\rho$  and  $\frac{1}{\sqrt{d}}W_{\rho} =: W'_{\rho}$  have "same energy".

Ingredient 2: The energy can't be highly localized in phase space.

Ingredient 2: The energy can't be highly localized in phase space.

• Assume 
$$ho = |\psi\rangle\langle\psi|$$
 pure  $\Leftrightarrow \|\rho\|_2^2 = 1$ ,

Ingredient 2: The energy can't be highly localized in phase space.



- Assume  $ho = |\psi\rangle\langle\psi|$  pure  $\Leftrightarrow \|\rho\|_2^2 = 1$ ,
- ► and use ℓ<sub>1</sub>-norm as measure of de-localization:

$$\|\chi'_
ho\|_1 = \sum_{p,q} |W'_
ho(p,q)| \in [1,d]$$

Ingredient 2: The energy can't be highly localized in phase space.

- Assume 
$$ho = |\psi\rangle\langle\psi|$$
 pure  $\Leftrightarrow \|\rho\|_2^2 = 1$ ,

► and use ℓ<sub>1</sub>-norm as measure of de-localization:

$$\|\chi'_
ho\|_1 = \sum_{
ho,q} |W'_
ho(
ho,q)| \in [1,d]$$

By matrix Hölder inequality,

$$\|W_
ho'(oldsymbol{p},oldsymbol{q})\|\leq rac{1}{\sqrt{d}}\|A(oldsymbol{p},oldsymbol{q})\|_\infty\,\|
ho\|_{ ext{tr}}\leq rac{1}{\sqrt{d}},$$

which is tight iff  $|\psi\rangle$  is an eigenvector of A(p,q).

Ingredient 2: The energy can't be highly localized in phase space.

- Assume 
$$ho = |\psi\rangle\langle\psi|$$
 pure  $\Leftrightarrow \|\rho\|_2^2 = 1$ ,

► and use ℓ<sub>1</sub>-norm as measure of de-localization:

$$\|\chi'_
ho\|_1 = \sum_{p,q} |W'_
ho(p,q)| \in [1,d]$$

By matrix Hölder inequality,

$$ert W_
ho'(oldsymbol{p},oldsymbol{q}) ert \leq rac{1}{\sqrt{d}} ert A(oldsymbol{p},oldsymbol{q}) ert_\infty ert 
ho ert_{
m tr} \leq rac{1}{\sqrt{d}},$$

which is tight iff  $|\psi\rangle$  is an eigenvector of A(p,q).

- There must be at least d non-zero coefficients of  $W_{\rho}$ ,
- it follows that  $\|W'_{\rho}\|_1 \ge \sqrt{d}$ ,
- ... tight iff  $\psi$  an eigenvector of all A(p,q) in support of  $W_{\rho}$ .

Ingredient 2: The energy can't be highly localized in phase space.

- Assume 
$$ho = |\psi\rangle\langle\psi|$$
 pure  $\Leftrightarrow \|\rho\|_2^2 = 1$ ,

► and use ℓ<sub>1</sub>-norm as measure of de-localization:

$$\|\chi'_
ho\|_1 = \sum_{p,q} |W'_
ho(p,q)| \in [1,d]$$

By matrix Hölder inequality,

$$ert W_
ho'(oldsymbol{p},oldsymbol{q}) ert \leq rac{1}{\sqrt{d}} ert A(oldsymbol{p},oldsymbol{q}) ert_\infty ert 
ho ert_{
m tr} \leq rac{1}{\sqrt{d}},$$

which is tight iff  $|\psi\rangle$  is an eigenvector of A(p,q).

- There must be at least d non-zero coefficients of W<sub>ρ</sub>,
- it follows that  $\|W'_{\rho}\|_1 \ge \sqrt{d}$ ,
- ... tight iff  $\psi$  an eigenvector of all A(p,q) in support of  $W_{\rho}$ .
- Fact: This characterizes stabilizer states.

Simple and general fact:

A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.

(Basis of work on *compressed sensing* for low-rank matrices).

Simple and general fact:

A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.

(Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:

Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Simple and general fact:

A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.

(Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:

Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty

Simple and general fact:

A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.

(Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:

Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty

$$\sqrt{d} = \sum_{p,q} W'_{
ho}(p,q) = \sum_{p,q} |W'_{
ho}(p,q)| = \|W'_{
ho}\|_1 = \min.$$

and we are done.

#### Outlook

Message: uncertaintly relations more fundamental than positivity.

#### Outlook

Message: *uncertaintly relations* more fundamental than positivity. Strong versions can be be proved for *characteristic function*:

$$\|\chi_{\rho}'\|_1 \ge \operatorname{tr} \rho^2$$

with equality if  $\rho$  is a stablizer *code*.

#### Outlook

Message: *uncertaintly relations* more fundamental than positivity. Strong versions can be be proved for *characteristic function*:

$$\|\chi_{\rho}'\|_1 \ge \operatorname{tr} \rho^2$$

with equality if  $\rho$  is a stablizer *code*.

Advantages:

- Non-trivial also for mixed states,
- works for qubits, too.

Q: Measures of magic based on char. function uncertainties?

Thanks for your attention.