Positivity and sparsity in time-frequency distributions
(with the benefit of hindsight)

David Gross
Coogee (yeah!)
Jan '15
Outline

- Social science & math of phase spaces
- Why grown-ups should care
- Positivity & sparsity via uncertainty relations
The social science of phase spaces
The story as told by a quantum optician

- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution
 - sums to one, marginal distributions, symplectic covariance, except...
The story as told by a quantum optician

- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution
 - sums to one, marginal distributions, symplectic covariance, except...
- ...it may take on negative values.
When does the analogy hold perfectly?

Natural question: which states give rise to non-negative Wigner distributions?

Theorem [Hudson, ’74]
The only *pure states* to possess a non-negative Wigner functions are *Gaussian states*.

\[\psi(x) \propto e^{i(x \theta x + v x)}. \]
How negative is that?
Common exchange at quantum optics conference

- 0.8
Common exchange at quantum optics conference

Wow! That's so non-classical!
Common exchange at quantum optics conference
The quantum information lense

Goals of this program:

▶ “De-mystify” negativity,
▶ build a proper q’info resource theory of negativity,
▶ and pass to discrete systems along the way.

(Bonus: Connections to learnability of low-rank operators)
The math of quantum phase spaces.

(Bear with me).
Canonical position / momentum operators:

\[[\hat{Q}, \hat{P}] = i\hbar \mathbb{1}. \]

That's a Lie algebra. Exponentiate...
CCR – Weyl – Heisenberg – characteristic function

- Canonical position / momentum operators:

\[[\hat{Q}, \hat{P}] = i\hbar \mathbb{1}. \]

That's a Lie algebra. Exponentiate...

- ...to get the Weyl operators:

\[w(p, q) \propto e^{ip\hat{Q}} e^{iq\hat{P}} \]

for \((p, q) \in \mathbb{R}^2\).

\[
\begin{align*}
w(p, 0) & \approx \begin{bmatrix} e^{ipx} \end{bmatrix} \\
w(0, q) & \approx \begin{bmatrix} e^{iqy} \end{bmatrix}
\end{align*}
\]
Weyl operators form a group (up to phases)

\[w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) \exp\{\pi i(p_1 q_2 - q_1 p_2)\\} \]
CCR – Weyl – Heisenberg – characteristic function

Weyl operators form a group (up to phases)

\[w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) \exp\{\pi i(p_1 q_2 - q_1 p_2)\} \]

Fun facts:

- The phase factor is symplectic inner product of parameters.
- The group is the Heisenberg group over \(\mathbb{R} \).
- It acts irreducibly on \(\mathcal{H} = L^2(\mathbb{R}) \).
Fix a density operator ρ.

Def. The *characteristic function* of ρ

$$\chi_{\rho}(p, q) = \text{tr} \, \rho w(p, q)$$

maps phase-space points (p, q) to the expectation value of associated Weyl operator.
Fix a density operator \(\rho \).

Def. The *characteristic function* of \(\rho \)

\[
\chi_{\rho}(p, q) = \text{tr} \, \rho w(p, q)
\]

maps phase-space points \((p, q)\) to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense *if* “expanding in Weyl terms of Weyl ops” is some kind of FT...
Fix a density operator ρ.

Def. The *characteristic function* of ρ

$$\chi_\rho(p, q) = \text{tr} \, \rho w(p, q)$$

maps phase-space points (p, q) to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense *if* “expanding in Weyl terms of Weyl ops” is some kind of FT . . .
- . . . but it *is*. E.g. it’s the non-commutative FT over the Heisenberg group.
Fix a density operator \(\rho \).

Def. The **characteristic function** of \(\rho \):

\[
\chi_{\rho}(p, q) = \text{tr} \rho w(p, q).
\]

Def. The **Wigner function** of \(\rho \)

\[
W_{\rho}(p, q) = \mathcal{F}_{(p', q') \rightarrow (p, q)} \chi_{\rho}(p', q')
\]

is the (usual 2D) FT of the characteristic function.
Fix a density operator ρ.

Def. The *characteristic function* of ρ:

$$\chi_\rho(p, q) = \text{tr} \, \rho w(p, q).$$

Def. The *Wigner function* of ρ

$$W_\rho(p, q) = \mathcal{F}(p', q') \to (p, q) \chi_\rho(p', q')$$

is the (usual 2D) FT of the characteristic function.

Philosophical point:
Let’s go discrete.
<table>
<thead>
<tr>
<th>Dictionary 1</th>
<th>Continuous</th>
<th>Discrete – d-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration space</td>
<td>\mathbb{R}^n</td>
<td>$\mathbb{Z}_d^n = {0, \ldots, d - 1}^n$
Arithmetic is modulo d</td>
</tr>
<tr>
<td>Hilbert space</td>
<td>$L^2(\mathbb{R}^n)$</td>
<td>$\mathbb{C}^d \cong L^2(\mathbb{Z}_d^n)$</td>
</tr>
<tr>
<td>Phase space</td>
<td>\mathbb{R}^{2n}</td>
<td>\mathbb{Z}_d^{2n}</td>
</tr>
<tr>
<td>Weyl ops $w(p, q)$</td>
<td>$e^{ip\hat{Q}}e^{iq\hat{P}}$</td>
<td>??</td>
</tr>
<tr>
<td>$p, q \in \mathbb{R}^n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weyl operators

Continuous:

\[w(p, 0) \equiv \begin{bmatrix} e^{ipx} \end{bmatrix} \quad w(0, q) \equiv \begin{bmatrix} \frac{\omega}{2} \end{bmatrix} \]

\[w(p_1, q_1) w(p_2, q_2) = w(p_1 + p_2, q_1 + q_2) e^{\pi i (p_1 q_2 - q_1 p_2)} \]
Weyl operators

Continuous:

\[\omega(p, 0) = \begin{bmatrix} e^{ipx} \\ \vdots \\ \vdots \end{bmatrix} \]

\[\omega(0, q) = \begin{bmatrix} e^{iqy} \\ \vdots \\ \vdots \end{bmatrix} \]

\[\omega(p_1, q_1) \omega(p_2, q_2) = \omega(p_1 + p_2, q_1 + q_2) e^{\pi i (p_1 q_2 - q_1 p_2)} \]

Discrete – for odd \(d \) – and with \(\omega = e^{2\pi i / d} \):

\[\omega(p, q) \triangleq \begin{bmatrix} \omega^p \\ \omega^{2p} \\ \vdots \\ \omega^{(d-1)p} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{bmatrix} \]

\[\Rightarrow \omega(p_1, q_1) \omega(p_2, q_2) = \omega(p_1 + p_2, q_1 + q_2) \omega^{p_1 q_2 - q_1 p_2}. \]
Weyl operators

Continuous:

\[
\omega(p, q) = \begin{bmatrix}
\omega^p & 0 \\
0 & \omega^{-p}
\end{bmatrix}
\]

\[
\omega(0, q) = \begin{bmatrix}
\omega^q & 0 \\
0 & \omega^{-q}
\end{bmatrix}
\]

\[\omega(p_1, q_1) \omega(p_2, q_2) = \omega(p_1 + p_2, q_1 + q_2)e^{\pi i (p_1 q_2 - q_1 p_2)}\]

Discrete – for odd \(d\) – and with \(\omega = e^{2\pi i / d}\):

\[
\omega(p, q) \propto \begin{bmatrix}
\omega^p & 0 & \cdots & 0 \\
0 & \omega^p & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \omega^p
\end{bmatrix}
\]

\[\Rightarrow \omega(p_1, q_1) \omega(p_2, q_2) = \omega(p_1 + p_2, q_1 + q_2)\omega^{p_1 q_2 - q_1 p_2} \]

Discrete Heisenberg group = generalized Paulis.
Dictionary 2

<table>
<thead>
<tr>
<th>Configuration space</th>
<th>Continuous \mathbb{R}^n</th>
<th>Discrete – d-dimensional $\mathbb{Z}_d^n = {0, \ldots, d - 1}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilbert space</td>
<td>$L^2(\mathbb{R}^n)$</td>
<td>$\mathbb{C}^d \cong L^2(\mathbb{Z}_d^n)$</td>
</tr>
<tr>
<td>Phase space</td>
<td>\mathbb{R}^{2n}</td>
<td>\mathbb{Z}_d^{2n}</td>
</tr>
<tr>
<td>Weyl ops $w(p, q)$</td>
<td>$e^{ip\hat{Q}}e^{iq\hat{P}}$</td>
<td>$\hat{p}\hat{q}$</td>
</tr>
<tr>
<td></td>
<td>$p, q \in \mathbb{R}^n$</td>
<td>$p, q \in \mathbb{Z}_d^n$</td>
</tr>
</tbody>
</table>
Dictionary 2

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Discrete – (d)-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration space</td>
<td>(\mathbb{R}^n)</td>
<td>(\mathbb{Z}_d^n = {0, \ldots, d-1}^n)</td>
</tr>
<tr>
<td>Hilbert space</td>
<td>(L^2(\mathbb{R}^n))</td>
<td>(\mathbb{C}^d \cong L^2(\mathbb{Z}_d^n))</td>
</tr>
<tr>
<td>Phase space</td>
<td>(\mathbb{R}^{2n})</td>
<td>(\mathbb{Z}_d^{2n})</td>
</tr>
<tr>
<td>Weyl ops</td>
<td>(e^{ip\hat{Q}} e^{iq\hat{P}})</td>
<td>(\hat{p}\hat{q})</td>
</tr>
<tr>
<td>(w(p, q))</td>
<td>(p, q \in \mathbb{R}^n)</td>
<td>(p, q \in \mathbb{Z}_d^n)</td>
</tr>
<tr>
<td>Charact. func.</td>
<td>(\text{tr}(\rho w(p, q)))</td>
<td>(\text{tr}(\rho w(p, q)))</td>
</tr>
<tr>
<td>Wigner func.</td>
<td>real FT of c.f.</td>
<td>DFT of c.f.</td>
</tr>
</tbody>
</table>
Approach very satisfactory. Some shared properties:

- Normalization
 \[\sum_{p,q} W_\rho(p, q) = 1, \]

- Inner products
 \[\text{tr} \rho A = \sum_{p,q} W_\rho(p, q) W_A(p, q) \]
Shared properties

Approach very satisfactory. Some shared properties:

- Normalization
 \[\sum_{p,q} W_\rho(p, q) = 1, \]

- Inner products
 \[\text{tr } \rho A = \sum_{p,q} W_\rho(p, q) W_A(p, q) \]

...and also (next slides)...

- symplectic covariance,
- positivity exactly for “Gaussians”,
- described by “displaced parity operators”.
Recall continuous case:

Thm. [Hudson, ’74] If \(\rho = |\psi\rangle\langle \psi| \), then \(W_\rho \) non-negative iff \(\psi \) is a Gaussian state:

\[
\psi(x) \propto e^{i(x\theta + vx)} \quad (x \in \mathbb{R}^n).
\]

My source of early pride:

Thm. ("Discrete Hudson") [DG, ’06] If \(\rho = |\psi\rangle\langle \psi| \), then \(W_\rho \) non-negative iff \(\psi \) is a stabilizer state. What is more, stabilizer states are those of the form

\[
\psi(x) \propto e^{i2\pi/d(x\theta + vx)} \quad (x \in \mathbb{Z}^n_d) \quad \text{(at least when restricted to their support)}.
\]
Recall continuous case:

Thm. [Hudson, ’74] If $\rho = |\psi\rangle\langle\psi|$, then W_{ρ} non-negative iff ψ is a Gaussian state:

$$\psi(x) \propto e^{i(x\theta x + vx)} \quad (x \in \mathbb{R}^n).$$

My source of early pride:

Thm. (“Discrete Hudson”) [DG, ’06] If $\rho = |\psi\rangle\langle\psi|$, then W_{ρ} non-negative iff ψ is a stabilizer state. What is more, stabilizer states are those of the form

$$\psi(x) \propto e^{i2\pi/d(x\theta x + vx)} \quad (x \in \mathbb{Z}_d^n)$$

(at least when restricted to their support).
Let S be a symplectic phase space transformation. (i.e. det-1 matrix for one system). Then there is a unitary U such that

$$W_{U\rho U^\dagger}(p, q) = W_\rho(S(p, q)).$$
Let S be a symplectic phase space transformation. (I.e. \det^{-1} matrix for one system).
Then there is a unitary U such that

$$W_{U\rho}U^\dagger(p, q) = W_\rho(S(p, q)).$$

Remarks:

- In quantum optics, these are the ops of linear optics
- In math-phys U is the metaplectic representation of S
- In q’info, these Us are the Clifford group
Let S be a symplectic phase space transformation. (I.e. det-1 matrix for one system).
Then there is a unitary U such that

$$W_{U\rho}U^\dagger(p, q) = W_\rho(S(p, q)).$$

Remarks:

- In quantum optics, these are the ops of *linear optics*
- In math-phys U is the *metaplectic representation* of S
- In q’info, these Us are the *Clifford group*
- The ops preserve positivity \Rightarrow map Gaussians to Gaussians and stabs to stabs.
Parity operators

For every p, q, the map $\rho \mapsto W_\rho(p, q)$ is linear in ρ, i.e. there is a phase space point operator $A(p, q)$ such that

$$W_\rho(p, q) = \text{tr} \rho A(p, q).$$

Short calculation:

$$A(p, q) = w(p, q) A(0, 0) w(p, q)^\dagger,$$

with $(A(0, 0) \psi)(x) = \psi(-x)$. In particular, the $A(p, q)$'s are unitary (and hermitian).
For every p, q, the map $\rho \mapsto W_\rho(p, q)$ is linear in ρ, i.e. there is a phase space point operator $A(p, q)$ such that

$$W_\rho(p, q) = \text{tr} \rho A(p, q).$$

Short calculation:

$$A(p, q) = w(p, q)A(0, 0)w(p, q)^\dagger,$$

with

$$(A(0, 0)\psi)(x) = \psi(-x)$$

the parity operator.
Parity operators

For every p, q, the map $\rho \mapsto W_\rho(p, q)$ is linear in ρ, i.e. there is a phase space point operator $A(p, q)$ such that

$$W_\rho(p, q) = \text{tr} \rho A(p, q).$$

Short calculation:

$$A(p, q) = w(p, q)A(0, 0)w(p, q)\dagger,$$

with

$$(A(0, 0)\psi)(x) = \psi(-x)$$

the parity operator.

In particular, the $A(p, q)$’s are unitary (and hermitian).
Summary

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{R}^n</th>
<th>$\mathbb{Z}_d^n = {0, \ldots, d-1}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration space</td>
<td>\mathbb{R}^n</td>
<td>$\mathbb{Z}_d^n = {0, \ldots, d-1}^n$</td>
</tr>
<tr>
<td>Hilbert space</td>
<td>$L^2(\mathbb{R}^n)$</td>
<td>$L^2(\mathbb{Z}_d^n)$</td>
</tr>
<tr>
<td>Phase space</td>
<td>\mathbb{R}^{2n}</td>
<td>\mathbb{Z}_d^{2n}</td>
</tr>
<tr>
<td>Weyl operators</td>
<td>$e^{i(p\hat{Q} - q\hat{P})}$</td>
<td>$\hat{z}(p)\hat{x}(q)$</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$\text{tr}(\rho \ w(p, q))$</td>
<td>$\text{tr}(\rho \ w(p, q))$</td>
</tr>
<tr>
<td>Wigner function</td>
<td>FT of char. function</td>
<td>FT of char. function</td>
</tr>
<tr>
<td></td>
<td>= exp. of disp. parity</td>
<td>= exp. of disp. parity</td>
</tr>
<tr>
<td>Non-negative</td>
<td>$\psi(x) = e^{2\pi i (x\theta x + vx)}$</td>
<td>$\psi(x) = e^{\frac{2\pi}{d} i (x\theta x + vx)}$</td>
</tr>
<tr>
<td>Symmetries</td>
<td>$\text{Sp}(\mathbb{R}^{2n})$</td>
<td>$\text{Sp}(\mathbb{Z}_d^{2n})$</td>
</tr>
</tbody>
</table>
Nice’ish. But looks like a kiddo-project ending up undercited in J. Phys. A. Which grown-up problems does it solve?

A few:

- Shows that Spekken’s episodic toy theory is actually stabilizer QM represented as Wigner functions
- Lead to some simulability results for mixed many-body dynamics [U Sydney, ongoing]
- Featured in construction of certain quantum expanders [DG, Eisert ’07]

But the real deal is...
Nice’ish. But looks like a kiddo-project ending up undercited in J. Phys. A. Which grown-up problems does it solve?

A few:

▶ Shows that Spekken’s *episdemic toy theory* is actually stabilizer QM represented as Wigner functions
▶ Lead to some *simulability* results for mixed many-body dynamics [U Sydney, ongoing]
▶ Featured in construction of certain *quantum expanders* [DG, Eisert ’07]
▶ But the real deal is...
The Resource Theory of Stabilizer Computation

[Veitch, Housavin, Gottesman, Emerson ’13
Some of the above + Ferrie, DG ’12]
Magic State Model

Recall that Clifford operations on stabilizer states

▶ Are efficiently simulable
▶ Cheap to implement fault-tolerantly.
Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes *universal* if augmented by occasional injection of non-stab “magic states”.
Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes *universal* if augmented by occasional injection of non-stab “magic states”.

![Diagram of magic state model](image-url)

Practically: Error-correction thresholds

For mixed states?
Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes *universal* if augmented by occasional injection of non-stab “magic states”.

Of interest

- Practically: Error-correction thresholds
- Conceptually: “What drives putative QC speedup?” – in part. for mixed states?
Which states qualify as magic resources?

- Call ρ *muggle* if it is the convex combination of stabs.
- Otherwise, ρ is *magic*.
<table>
<thead>
<tr>
<th></th>
<th>Stabilizer comp</th>
<th>entanglement</th>
</tr>
</thead>
<tbody>
<tr>
<td>free operations</td>
<td>Clifford</td>
<td>LOCC</td>
</tr>
<tr>
<td>free states</td>
<td>muggle</td>
<td>separable</td>
</tr>
<tr>
<td>non-free states</td>
<td>magic</td>
<td>entangled</td>
</tr>
<tr>
<td>tractable approx.</td>
<td>???</td>
<td>pos. partial transp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tight for pure states)</td>
</tr>
<tr>
<td>bound states</td>
<td>???</td>
<td>PPT</td>
</tr>
<tr>
<td>quantitative meas.</td>
<td>???</td>
<td>log negativity</td>
</tr>
</tbody>
</table>
Re-Visit magic state circuit

Looking at computation in Wigner rep...

... it’s plain that

▶ Inputs are positively represented,
▶ Cliffords preserve that (symplectic covariance),
▶ Measurements are contractions with positive functions...
Re-Visit magic state circuit

Looking at computation in Wigner rep...

\[\begin{array}{c}
\text{Inputs are positively represented,} \\
\text{Cliffords preserve that (symplectic covariance),} \\
\text{Measurements are contractions with positive functions...} \\
\end{array} \]

Hence...

\[\begin{array}{c}
\text{...entire scheme \textit{efficiently simulable} unless resource states introduce negativity!} \\
\end{array} \]
Negativity in mixed states

For mixed states: positive Wigner /muggle

- Continuous case [Brocker, Werner ’95]
- Discrete case [DG ’06]
Negativity in mixed states

For mixed states: positive Wigner / muggle

- Continuous case [Brocker, Werner ’95]
- Discrete case [DG ’06]

But nicest argument by [Waterloo gang]:

\[\text{muggle} \]
Negativity in mixed states

For mixed states: positive Wigner $\not\equiv$ muggle

- Continuous case [Brocker, Werner ’95]
- Discrete case [DG ’06]

But nicest argument by [Waterloo gang]:

Pos-Wig is simplicial outer approx. of muggle
Resource Theory 2

<table>
<thead>
<tr>
<th></th>
<th>Stabilizer comp</th>
<th>entanglement</th>
</tr>
</thead>
<tbody>
<tr>
<td>free operations</td>
<td>Clifford</td>
<td>LOCC</td>
</tr>
<tr>
<td>free states</td>
<td>muggle</td>
<td>separable</td>
</tr>
<tr>
<td>non-free states</td>
<td>magic</td>
<td>entangled</td>
</tr>
<tr>
<td>tractable approx.</td>
<td>pos. Wigner (tight for pure states)</td>
<td>pos. partial transp. (tight for pure states)</td>
</tr>
<tr>
<td>bound states</td>
<td>poswig</td>
<td>PPT</td>
</tr>
<tr>
<td>distillable</td>
<td>negwig?</td>
<td>NPT?</td>
</tr>
<tr>
<td>quantitative meas.</td>
<td>log negativity</td>
<td>log negativity</td>
</tr>
</tbody>
</table>
Proof sketch of discrete Hudson

... via phase-space uncertainty relations
Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$’s are ONB matrix space:

$$
\text{tr} \left(\frac{1}{\sqrt{d}} A(p, q) \right) \left(\frac{1}{\sqrt{d}} A(p', q') \right) = \delta_{p, p'} \delta_{q, q'}.
$$
Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$’s are ONB matrix space:

$$\text{tr} \left(\frac{1}{\sqrt{d}} A(p, q) \right) \left(\frac{1}{\sqrt{d}} A(p', q') \right) = \delta_{p,p'} \delta_{q,q'}.$$

Hence

$$\| \rho \|_2^2 = \sum_{i,j} |\rho_{i,j}|^2 = \frac{1}{d} \sum_{p,q} |W_{\rho}(p, q)|^2 = \left\| \frac{1}{\sqrt{d}} W_{\rho} \right\|_2^2.$$

So ρ and $\frac{1}{\sqrt{d}} W_{\rho}$ have “same energy”.
Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$'s are ONB matrix space:

$$\text{tr} \left(\frac{1}{\sqrt{d}} A(p, q) \right) \left(\frac{1}{\sqrt{d}} A(p', q') \right) = \delta_{p,p'} \delta_{q,q'}.$$

Hence

$$\|\rho\|_2^2 = \sum_{i,j} |\rho_{i,j}|^2 = \frac{1}{d} \sum_{p,q} |W_\rho(p, q)|^2 = \left\| \frac{1}{\sqrt{d}} W_\rho \right\|_2^2.$$

So ρ and $\frac{1}{\sqrt{d}} W_\rho =: W'_\rho$ have “same energy”.
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.

- Assume $\rho = |\psi\rangle \langle \psi|$ pure $\iff \|\rho\|_2^2 = 1$,
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.

- Assume $\rho = |\psi\rangle\langle\psi|$ pure $\Leftrightarrow \|\rho\|^2_2 = 1$,
- and use ℓ_1-norm as measure of de-localization:

$$\|\chi'_\rho\|_1 = \sum_{p,q} |W'_\rho(p, q)| \in [1, d]$$
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.

- Assume $\rho = |\psi\rangle \langle \psi|$ pure $\iff \|\rho\|^2_2 = 1$,
- and use ℓ_1-norm as measure of de-localization:

$$\|\chi'_\rho\|_1 = \sum_{p, q} |W'_\rho(p, q)| \in [1, d]$$

By matrix Hölder inequality,

$$|W'_\rho(p, q)| \leq \frac{1}{\sqrt{d}} \|A(p, q)\|_\infty \|\rho\|_{tr} \leq \frac{1}{\sqrt{d}},$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

Fact: This characterizes stabilizer states.
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.

- Assume $\rho = |\psi\rangle \langle \psi| \text{ pure } \iff \|\rho\|_2^2 = 1$,
- and use ℓ_1-norm as measure of de-localization:

$$\|\chi'_\rho\|_1 = \sum_{p,q} |W'_\rho(p, q)| \in [1, d]$$

By matrix Hölder inequality,

$$|W'_\rho(p, q)| \leq \frac{1}{\sqrt{d}} \|A(p, q)\|_\infty \|\rho\|_{\text{tr}} \leq \frac{1}{\sqrt{d}},$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

- There must be at least d non-zero coefficients of W_ρ,
- it follows that $\|W'_\rho\|_1 \geq \sqrt{d}$,
- ...tight iff ψ an eigenvector of all $A(p, q)$ in support of W_ρ.
Step 2: Uncertainty Relation

Ingredient 2: The energy can’t be highly localized in phase space.

- Assume $\rho = |\psi\rangle \langle \psi| \text{ pure } \iff \|\rho\|_2^2 = 1$,
- and use ℓ_1-norm as measure of de-localization:

$$\|\chi'_\rho\|_1 = \sum_{p,q} |W'_\rho(p, q)| \in [1, d]$$

By matrix Hölder inequality,

$$|W'_\rho(p, q)| \leq \frac{1}{\sqrt{d}} \|A(p, q)\|_\infty \|\rho\|_{\text{tr}} \leq \frac{1}{\sqrt{d}},$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

- There must be at least d non-zero coefficients of W_ρ,
- it follows that $\|W'_\rho\|_1 \geq \sqrt{d}$,
- ... tight iff ψ an eigenvector of all $A(p, q)$ in support of W_ρ,
- Fact: This characterizes stabilizer states.
Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).
Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:
Minimal uncertainty states are exactly the stabilizers.
(Gaussians in continuous case).
Simple and general fact:

A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm. (Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:

Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty.
Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm. (Basis of work on *compressed sensing* for low-rank matrices).

Another fact about Wigner functions:
Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty

\[
\sqrt{d} = \sum_{p,q} W'_\rho(p, q) = \sum_{p,q} |W'_\rho(p, q)| = \|W'_\rho\|_1 = \min.
\]

and we are done.
Outlook

Message: *uncertainty relations* more fundamental than positivity.
Outlook

Message: *uncertainty relations* more fundamental than positivity.

Strong versions can be be proved for *characteristic function*:

\[\| \chi'_{\rho} \|_1 \geq \text{tr} \, \rho^2 \]

with equality if \(\rho \) is a stabilizer *code*.
Message: *uncertainty relations* more fundamental than positivity. Strong versions can be be proved for *characteristic function*:

\[\| \chi'_\rho \|_1 \geq \text{tr} \rho^2 \]

with equality if \(\rho \) is a stabilizer *code*.

Advantages:

- Non-trivial also for mixed states,
- works for qubits, too.

Q: Measures of magic based on char. function uncertainties?
Thanks for your attention.