Positivity and sparsity in time-frequency distributions (with the benefit of hindsight)


## David Gross

Coogee (yeah!)
Jan '15

## Outline

- Social science \& math of phase spaces
- Why grown-ups should care
- Positivity \& sparsity via uncertainty relations



## The social science of phase spaces

## The story as told by a quantum optician



- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution
- sums to one, marginal distributions, symplectic covariance, except...


## The story as told by a quantum optician



- Maps density operators to pseudo-probability distribution on phase space (position-momentum plane).
- Displays most properties of a probability distribution
- sums to one, marginal distributions, symplectic covariance, except...
- ...it may take on negative values.


## When does the analogy hold perfectly?

Natural question: which states give rise to non-negative Wigner distributions?
Theorem [Hudson, '74]
The only pure states to possess a nonnegative Wigner functions are Gaussian states.

$$
\psi(x) \propto e^{i(x \theta x+v x)}
$$

Common exchange at quantum optics conference



## Common exchange at quantum optics conference




Common exchange at quantum optics conference



## Common exchange at quantum optics conference




## The quantum information lense

Goals of this program:

- "De-mystify" negativity,
- build a proper q'info resource theory of negativity,
- and pass to discrete systems along the way.
(Bonus: Connections to learnability of low-rank operators)


## The math of quantum phase spaces.

(Bear with me).

## CCR - Weyl - Heisenberg - characteristic function

- Canonical position / momentum operators:

$$
[\hat{Q}, \hat{P}]=i \hbar \mathbb{1}
$$

That's a Lie algebra. Exponentiate...

## CCR - Weyl - Heisenberg - characteristic function

- Canonical position / momentum operators:

$$
[\hat{Q}, \hat{P}]=i \hbar \mathbb{1} .
$$

That's a Lie algebra. Exponentiate...

- ...to get the Weyl operators:

$$
w(p, q) \propto e^{i p \hat{Q}} e^{i q \hat{P}}
$$

for $(p, q) \in \mathbb{R}^{2}$.

$$
w(p, 0) \equiv\left[\begin{array}{llll}
\ddots & & & \\
& \ddots & & \\
& & e^{i p x} & \\
& & \ddots
\end{array}\right] \quad w(0, q) \equiv{ }^{i}\left[\begin{array}{llll} 
& & & \\
& & & \\
& & & \\
& & \ddots & \\
& & \ddots
\end{array}\right]
$$

## CCR - Weyl - Heisenberg - characteristic function

Weyl operators form a group (up to phases)

$$
\begin{aligned}
w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)= & w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \\
& \exp \left\{\pi i\left(p_{1} q_{2}-q_{1} p_{2}\right)\right\}
\end{aligned}
$$

## CCR - Weyl - Heisenberg - characteristic function

$$
w(p, 0) \equiv\left[\begin{array}{llll}
\ddots & & & \\
& \ddots & & \\
& & e^{i p x} & \\
\\
& & & \\
& & & \\
& & & \\
& & \\
i & & & \\
\ddots & & & \\
{ }^{1} & & & \\
& & & \\
& & \ddots & \\
& & &
\end{array}\right]
$$

Weyl operators form a group (up to phases)

$$
\begin{aligned}
w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)= & w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \\
& \exp \left\{\pi i\left(p_{1} q_{2}-q_{1} p_{2}\right)\right\}
\end{aligned}
$$

Fun facts:

- The phase factor is symplectic inner product of parameters.
- The group is the Heisenberg group over $\mathbb{R}$.
- It acts irreducibly on $\mathcal{H}=L^{2}(\mathbb{R})$.


## CCR - Weyl - Heisenberg - characteristic function

Fix a density operator $\rho$.
Def. The characteristic function of $\rho$

$$
\chi_{\rho}(p, q)=\operatorname{tr} \rho w(p, q)
$$

maps phase-space points $(p, q)$ to the expectation value of associated Weyl operator.

## CCR - Weyl - Heisenberg - characteristic function

Fix a density operator $\rho$.
Def. The characteristic function of $\rho$

$$
\chi_{\rho}(p, q)=\operatorname{tr} \rho w(p, q)
$$

maps phase-space points $(p, q)$ to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense if "expanding in Weyl terms of Weyl ops" is some kind of FT...


## CCR - Weyl - Heisenberg - characteristic function

Fix a density operator $\rho$.
Def. The characteristic function of $\rho$

$$
\chi_{\rho}(p, q)=\operatorname{tr} \rho w(p, q)
$$

maps phase-space points $(p, q)$ to the expectation value of associated Weyl operator.

Philosophical point:

- Classically, the char. function is the Fourier transform of the probability density.
- So name makes sense if "expanding in Weyl terms of Weyl ops" is some kind of FT...
- ... but it is. E.g. it's the non-commutative FT over the Heisenberg group.


## CCR - Weyl - Heisenberg - characteristic function

Fix a density operator $\rho$.
Def. The characteristic function of $\rho$ :

$$
\chi_{\rho}(p, q)=\operatorname{tr} \rho w(p, q)
$$

Def. The Wigner function of $\rho$

$$
W_{\rho}(p, q)=\mathcal{F}_{\left(p^{\prime}, q^{\prime}\right) \rightarrow(p, q)} \chi_{\rho}\left(p^{\prime}, q^{\prime}\right)
$$

is the (usual 2D) FT of the characteristic function.

## CCR - Weyl - Heisenberg - characteristic function

Fix a density operator $\rho$.
Def. The characteristic function of $\rho$ :

$$
\chi_{\rho}(p, q)=\operatorname{tr} \rho w(p, q)
$$

Def. The Wigner function of $\rho$

$$
W_{\rho}(p, q)=\mathcal{F}_{\left(p^{\prime}, q^{\prime}\right) \rightarrow(p, q)} \chi_{\rho}\left(p^{\prime}, q^{\prime}\right)
$$

is the (usual 2D) FT of the characteristic function.

Philosophical point:


## Let's go discrete.



## Dictionary 1

|  | Continuous | Discrete $-d$-dimensional |
| :--- | :--- | :--- |
| Configuration space | $\mathbb{R}^{n}$ | $\mathbb{Z}_{d}^{n}=\{0, \ldots, d-1\}^{n}$ <br> Arithmetic is modulo $d$ |
| Hilbert space | $L^{2}\left(\mathbb{R}^{n}\right)$ | $\mathbb{C}^{d} \simeq L^{2}\left(\mathbb{Z}_{d}^{n}\right)$ |
| Phase space | $\mathbb{R}^{2 n}$ | $\mathbb{Z}_{d}^{2 n}$ |
| Weyl ops <br> $w(p, q)$ | $e^{i p \hat{Q}} e^{i q \hat{P}}$ | $? ?$ |
| $p, q \in \mathbb{R}^{n}$ |  |  |



## Weyl operators

Continuous:

$$
\begin{aligned}
& w(p, 0) \equiv\left[\begin{array}{llll}
\ddots & & & \\
& \ddots & & \\
& & e^{i p x} & \\
& & \ddots
\end{array}\right] \quad w(0, q) \equiv \begin{array}{lll}
i
\end{array}\left[\begin{array}{llll}
\ddots & & & \\
& & & \\
& & & \\
& & \ddots
\end{array}\right] \\
& w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)=w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) e^{\pi i\left(p_{1} q_{2}-q_{1} p_{2}\right)}
\end{aligned}
$$

## Weyl operators

Continuous:

$$
\begin{aligned}
& w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)=w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) e^{\pi i\left(p_{1} q_{2}-q_{1} p_{2}\right)}
\end{aligned}
$$

Discrete - for odd $d$ - and with $\omega=e^{2 \pi i / d}$ :

$$
\begin{aligned}
& W(p, \eta) \propto\left[\begin{array}{llll}
\omega^{\prime} p & & & \\
& \omega^{2} p & & \\
& & \ddots & \\
& & & \omega^{(\alpha-1) p}
\end{array}\right]\left[\begin{array}{llll} 
& & & \ddots \\
1 & & & \ddots \\
& \ddots & & \\
& & & \\
& & &
\end{array}\right] \in 1 \\
& \Rightarrow w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)=w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \omega^{p_{1} q_{2}-q_{1} p_{2}} .
\end{aligned}
$$

## Weyl operators

Continuous:

$$
\begin{aligned}
& w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)=w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) e^{\pi i\left(p_{1} q_{2}-q_{1} p_{2}\right)}
\end{aligned}
$$

Discrete - for odd $d$ - and with $\omega=e^{2 \pi i / d}$ :

$$
\begin{aligned}
& W(p, q) \propto\left[\begin{array}{llll}
\omega^{1 p} & & & \\
& \omega^{2} p & & \\
& & \ddots & \\
& & & \omega^{(\gamma-1) p}
\end{array}\right]\left[\begin{array}{lllll} 
& & & \ddots & \\
1 & & & \ddots \\
& \ddots & & \\
& & & & \\
& & & &
\end{array}\right]+1 \\
& \Rightarrow w\left(p_{1}, q_{1}\right) w\left(p_{2}, q_{2}\right)=w\left(p_{1}+p_{2}, q_{1}+q_{2}\right) \omega^{p_{1} q_{2}-q_{1} p_{2}} .
\end{aligned}
$$

Discrete Heisenberg group $=$ generalized Paulis.

## Dictionary 2

|  | Continuous | Discrete -d-dimensional |
| :--- | :--- | :--- |
| Configuration space | $\mathbb{R}^{n}$ | $\mathbb{Z}_{d}^{n}=\{0, \ldots, d-1\}^{n}$ |
| Hilbert space | $L^{2}\left(\mathbb{R}^{n}\right)$ | $\mathbb{C}^{d} \simeq L^{2}\left(\mathbb{Z}_{d}^{n}\right)$ |
| Phase space | $\mathbb{R}^{2 n}$ | $\mathbb{Z}_{d}^{2 n}$ |
| Weyl ops | $e^{i p \hat{Q}} e^{i q \hat{P}}$ | $\hat{z}^{p} \hat{x}^{q}$ |
| $w(p, q)$ | $p, q \in \mathbb{R}^{n}$ | $p, q \in \mathbb{Z}_{d}^{n}$ |

## Dictionary 2

|  | Continuous | Discrete $-d$-dimensional |
| :--- | :--- | :--- |
| Configuration space | $\mathbb{R}^{n}$ | $\mathbb{Z}_{d}^{n}=\{0, \ldots, d-1\}^{n}$ |
| Hilbert space | $L^{2}\left(\mathbb{R}^{n}\right)$ | $\mathbb{C}^{d} \simeq L^{2}\left(\mathbb{Z}_{d}^{n}\right)$ |
| Phase space | $\mathbb{R}^{2 n}$ | $\mathbb{Z}_{d}^{2 n}$ |
| Weyl ops | $e^{i p \hat{Q}} e^{i q \hat{P}}$ | $\hat{z}^{p} \hat{x}^{q}$ |
| $w(p, q)$ | $p, q \in \mathbb{R}^{n}$ | $p, q \in \mathbb{Z}_{d}^{n}$ |
| Charact. func. | $\operatorname{tr}(\rho w(p, q))$ | $\operatorname{tr}(\rho w(p, q))$ |
| Wigner func. | $\operatorname{real}$ FT of c.f. | DFT of c.f. |

## Shared properties



Approach very satisfactory. Some shared properties:

- Normalization

$$
\sum_{p, q} W_{\rho}(p, q)=1
$$

- Inner products

$$
\operatorname{tr} \rho A=\sum_{p, q} W_{\rho}(p, q) W_{A}(p, q)
$$

## Shared properties



Approach very satisfactory. Some shared properties:

- Normalization

$$
\sum_{p, q} W_{\rho}(p, q)=1
$$

- Inner products

$$
\operatorname{tr} \rho A=\sum_{p, q} W_{\rho}(p, q) W_{A}(p, q)
$$

... and also (next slides)...

- symplectic covariance,
- positivity exactly for "Gaussians",
- described by "displaced parity operators".


## Positivity

Recall continuous case:
Thm. [Hudson, '74] If $\rho=|\psi\rangle\langle\psi|$, then $W_{\rho}$ non-negative iff $\psi$ is a Gaussian state:

$$
\psi(x) \propto e^{i(x \theta x+v x)} \quad\left(x \in \mathbb{R}^{n}\right)
$$

## Positivity

Recall continuous case:
Thm. [Hudson, '74] If $\rho=|\psi\rangle\langle\psi|$, then $W_{\rho}$ non-negative iff $\psi$ is a Gaussian state:

$$
\psi(x) \propto e^{i(x \theta x+v x)} \quad\left(x \in \mathbb{R}^{n}\right)
$$

My source of early pride:
Thm. ("Discrete Hudson") [DG, '06] If $\rho=|\psi\rangle\langle\psi|$, then $W_{\rho}$ non-negative iff $\psi$ is a stabilizer state. What is more, stabilizer states are those of the form

$$
\psi(x) \propto e^{i 2 \pi / d(x \theta x+v x)} \quad\left(x \in \mathbb{Z}_{d}^{n}\right)
$$

(at least when restricted to their support).

## Symplectic Covariance



Let $S$ be a symplectic phase space transformation. (I.e. det- 1 matrix for one system).
Then there is a unitary $U$ such that

$$
W_{U \rho U^{\dagger}}(p, q)=W_{\rho}(S(p, q))
$$

## Symplectic Covariance

Let $S$ be a symplectic phase space transformation. (I.e. det- 1 matrix for one system).
Then there is a unitary $U$ such that

$$
W_{U \rho U^{\dagger}}(p, q)=W_{\rho}(S(p, q))
$$

Remarks:

- In quantum optics, these are the ops of linear optics
- In math-phys $U$ is the metaplectic representation of $S$
- In q'info, these Us are the Clifford group


## Symplectic Covariance

Let $S$ be a symplectic phase space transformation. (I.e. det- 1 matrix for one system).
Then there is a unitary $U$ such that

$$
W_{U_{\rho} U^{\dagger}}(p, q)=W_{\rho}(S(p, q))
$$

Remarks:

- In quantum optics, these are the ops of linear optics
- In math-phys $U$ is the metaplectic representation of $S$
- In q'info, these Us are the Clifford group
- The ops preserve positivity $\Rightarrow$ map Gaussians to Gaussians and stabs to stabs.


## Parity operators

For every $p, q$, the map $\rho \mapsto W_{\rho}(p, q)$ is linear in $\rho$, i.e. there is a phase space point operator $A(p, q)$ such that

$$
W_{\rho}(p, q)=\operatorname{tr} \rho A(p, q)
$$

## Parity operators

For every $p, q$, the map $\rho \mapsto W_{\rho}(p, q)$ is linear in $\rho$, i.e. there is a phase space point operator $A(p, q)$ such that

$$
W_{\rho}(p, q)=\operatorname{tr} \rho A(p, q)
$$

Short calculation:

$$
A(p, q)=w(p, q) A(0,0) w(p, q)^{\dagger}
$$

with

$$
(A(0,0) \psi)(x)=\psi(-x)
$$

the parity operator.

## Parity operators

For every $p, q$, the map $\rho \mapsto W_{\rho}(p, q)$ is linear in $\rho$, i.e. there is a phase space point operator $A(p, q)$ such that

$$
W_{\rho}(p, q)=\operatorname{tr} \rho A(p, q)
$$

Short calculation:

$$
A(p, q)=w(p, q) A(0,0) w(p, q)^{\dagger}
$$

with

$$
(A(0,0) \psi)(x)=\psi(-x)
$$

the parity operator.
In particular, the $A(p, q)$ 's are unitary (and hermitian).

## Summary

| Configuration space | $\mathbb{R}^{n}$ | $\mathbb{Z}_{d}^{n}=\{0, \ldots, d-1\}^{n}$ |
| :---: | :---: | :---: |
| Hilbert space | $L^{2}\left(\mathbb{R}^{n}\right)$ | $\mathrm{L}^{2}\left(\mathbb{Z}_{d}^{n}\right)$ |
| Phase space | $\mathbb{R}^{2 n}$ | $\mathbb{Z}_{d}^{2 n}$ |
| Weyl operators | $e^{i(p \hat{Q}-q \hat{P})}$ | $\hat{z}(p) \hat{x}(q)$ |
| Characteristic function | $\operatorname{tr}(\rho w(p, q))$ | $\operatorname{tr}(\rho w(p, q))$ |
| Wigner function | FT of char. function $=$ exp. of disp. parity | FT of char. function $=$ exp. of disp. parity |
| Non-negative | $\psi(x)=e^{2 \pi i(x \theta x+v x)}$ | $\psi(x)=e^{\frac{2 \pi}{d} i(x \theta x+v x)}$ |
| Symmetries | $S p\left(\mathbb{R}^{2 n}\right)$ | $S p\left(\mathbb{Z}_{d}^{2 n}\right)$ |




A few:

- Shows that Spekken's episdemic toy theory is actually stabilizer QM represented as Wigner functions
- Lead to some simulability results for mixed many-body dynamics [U Sydney, ongoing]
- Featured in construction of certain quantum expanders [DG, Eisert '07]
- But the real deal is...


# The Resource Theory of Stabilizer Computation 

[Veitch, Housavin, Gottesman, Emerson '13
Some of the above + Ferrie, DG '12]


## Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.


## Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".


## Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".



## Magic State Model

Recall that Clifford operations on stabilizer states

- Are efficiently simulable
- Cheap to implement fault-tolerantly.
- However, scheme becomes universal if augmented by occassional injection of non-stab "magic states".


Of interest

- Practically: Error-correction thresholds
- Conceptually: "What drives putative QC speedup?" - in part. for mixed states?


## Which states qualify as magic resources?

- Call $\rho$ muggle if it is the convex combination of stabs
- Otherwise, $\rho$ is magic.



## Resource Theory 1

|  | Stabilizer comp | entanglement |
| :--- | :--- | :--- |
| free operations | Clifford | LOCC |
| free states | muggle | separable |
| non-free states | magic | entangled |
| tractable approx. | ??? | pos. partial transp. <br> (tight for pure states) |
| bound states | ??? | PPT |
| quantitative meas. | ??? | log negativity |

## Re-Visit magic state circuit

Looking at computation in Wigner rep...

... it's plain that

- Inputs are positively represented,
- Cliffords preserve that (symplectic covariance),
- Measurements are contractions with positive functions...


## Re-Visit magic state circuit

Looking at computation in Wigner rep...

... it's plain that

- Inputs are positively represented,
- Cliffords preserve that (symplectic covariance),
- Measurements are contractions with positive functions...

Hence. . .

- ...entire scheme efficiently simulable unless resource states introduce negativity!


## Negativity in mixed states

For mixed states: positive Wigner pmuggle

- Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]


## Negativity in mixed states

For mixed states: positive Wigner pmuggle

- Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]

But nicest argument by [Waterloo gang]:


## Negativity in mixed states

For mixed states: positive Wigner pmuggle

- Continuous case [Brocker, Werner '95]
- Discrete case [DG '06]

But nicest argument by [Waterloo gang]:


Pos-Wig is simplicial outer approx. of muggle

## Resource Theory 2

|  | Stabilizer comp | entanglement |
| :--- | :--- | :--- |
| free operations | Clifford | LOCC |
| free states | muggle | separable |
| non-free states | magic | entangled |
| tractable approx. | pos. Wigner <br> (tight for pure states) | pos. partial transp. <br> (tight for pure states) |
| bound states | poswig | PPT |
| distillable | negwig? | NPT? |
| quantitative meas. | log negativity | log negativity |

## Proof sketch of discrete Hudson

... via phase-space uncertainty relations


## Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$ 's are ONB matrix space:

$$
\operatorname{tr}\left(\frac{1}{\sqrt{d}} A(p, q)\right)\left(\frac{1}{\sqrt{d}} A\left(p^{\prime}, q^{\prime}\right)\right)=\delta_{p, p^{\prime}} \delta_{q, q^{\prime}}
$$

## Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$ 's are ONB matrix space:

$$
\operatorname{tr}\left(\frac{1}{\sqrt{d}} A(p, q)\right)\left(\frac{1}{\sqrt{d}} A\left(p^{\prime}, q^{\prime}\right)\right)=\delta_{p, p^{\prime}} \delta_{q, q^{\prime}}
$$

Hence

$$
\begin{aligned}
\|\rho\|_{2}^{2} & =\sum_{i, j}\left|\rho_{i, j}\right|^{2} \\
& =\frac{1}{d} \sum_{p, q}\left|W_{\rho}(p, q)\right|^{2} \\
& =\left\|\frac{1}{\sqrt{d}} W_{\rho}\right\|_{2}^{2} .
\end{aligned}
$$

## Step 1: Parseval

Ingredient 1: Re-scaled $A(p, q)$ 's are ONB matrix space:

$$
\operatorname{tr}\left(\frac{1}{\sqrt{d}} A(p, q)\right)\left(\frac{1}{\sqrt{d}} A\left(p^{\prime}, q^{\prime}\right)\right)=\delta_{p, p^{\prime}} \delta_{q, q^{\prime}}
$$

Hence

$$
\begin{aligned}
\|\rho\|_{2}^{2} & =\sum_{i, j}\left|\rho_{i, j}\right|^{2} \\
& =\frac{1}{d} \sum_{p, q}\left|W_{\rho}(p, q)\right|^{2} \\
& =\left\|\frac{1}{\sqrt{d}} W_{\rho}\right\|_{2}^{2}
\end{aligned}
$$

So $\rho$ and $\frac{1}{\sqrt{d}} W_{\rho}=: W_{\rho}^{\prime}$ have "same energy".

## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

- Assume $\rho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow\|\rho\|_{2}^{2}=1$,


## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

- Assume $\rho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow\|\rho\|_{2}^{2}=1$,
- and use $\ell_{1}$-norm as measure of de-localization:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1}=\sum_{p, q}\left|W_{\rho}^{\prime}(p, q)\right| \in[1, d]
$$

## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

- Assume $\rho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow\|\rho\|_{2}^{2}=1$,
- and use $\ell_{1}$-norm as measure of de-localization:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1}=\sum_{p, q}\left|W_{\rho}^{\prime}(p, q)\right| \in[1, d]
$$

By matrix Hölder inequality,

$$
\left|W_{\rho}^{\prime}(p, q)\right| \leq \frac{1}{\sqrt{d}}\|A(p, q)\|_{\infty}\|\rho\|_{\mathrm{tr}} \leq \frac{1}{\sqrt{d}}
$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

- Assume $\rho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow\|\rho\|_{2}^{2}=1$,
- and use $\ell_{1}$-norm as measure of de-localization:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1}=\sum_{p, q}\left|W_{\rho}^{\prime}(p, q)\right| \in[1, d]
$$

By matrix Hölder inequality,

$$
\left|W_{\rho}^{\prime}(p, q)\right| \leq \frac{1}{\sqrt{d}}\|A(p, q)\|_{\infty}\|\rho\|_{\mathrm{tr}} \leq \frac{1}{\sqrt{d}}
$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

- There must be at least $d$ non-zero coefficients of $W_{\rho}$,
- it follows that $\left\|W_{\rho}^{\prime}\right\|_{1} \geq \sqrt{d}$,
- ... tight iff $\psi$ an eigenvector of all $A(p, q)$ in support of $W_{\rho}$.


## Step 2: Uncertainty Relation

Ingredient 2: The energy can't be highly localized in phase space.

- Assume $\rho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow\|\rho\|_{2}^{2}=1$,
- and use $\ell_{1}$-norm as measure of de-localization:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1}=\sum_{p, q}\left|W_{\rho}^{\prime}(p, q)\right| \in[1, d]
$$

By matrix Hölder inequality,

$$
\left|W_{\rho}^{\prime}(p, q)\right| \leq \frac{1}{\sqrt{d}}\|A(p, q)\|_{\infty}\|\rho\|_{\mathrm{tr}} \leq \frac{1}{\sqrt{d}}
$$

which is tight iff $|\psi\rangle$ is an eigenvector of $A(p, q)$.

- There must be at least $d$ non-zero coefficients of $W_{\rho}$,
- it follows that $\left\|W_{\rho}^{\prime}\right\|_{1} \geq \sqrt{d}$,
- ... tight iff $\psi$ an eigenvector of all $A(p, q)$ in support of $W_{\rho}$.
- Fact: This characterizes stabilizer states.


## Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).

## Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).
Another fact about Wigner functions:
Minimal uncertainty states are exactly the stabilizers.
(Gaussians in continuous case).

## Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).
Another fact about Wigner functions:
Minimal uncertainty states are exactly the stabilizers. (Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty

## Uncertainty Relation: Two facts to remember

Simple and general fact:
A low-rank matrix cannot have a sparse representation in a matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).
Another fact about Wigner functions:
Minimal uncertainty states are exactly the stabilizers.
(Gaussians in continuous case).
Final step: Non-negativity implies minimal uncertainty

$$
\sqrt{d}=\sum_{p, q} W_{\rho}^{\prime}(p, q)=\sum_{p, q}\left|W_{\rho}^{\prime}(p, q)\right|=\left\|W_{\rho}^{\prime}\right\|_{1}=\min .
$$

and we are done.

## Outlook

Message: uncertaintly relations more fundamental than positivity.

## Outlook

Message: uncertaintly relations more fundamental than positivity.
Strong versions can be be proved for characteristic function:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1} \geq \operatorname{tr} \rho^{2}
$$

with equality if $\rho$ is a stablizer code.

## Outlook

Message: uncertaintly relations more fundamental than positivity.
Strong versions can be be proved for characteristic function:

$$
\left\|\chi_{\rho}^{\prime}\right\|_{1} \geq \operatorname{tr} \rho^{2}
$$

with equality if $\rho$ is a stablizer code.
Advantages:

- Non-trivial also for mixed states,
- works for qubits, too.

Q: Measures of magic based on char. function uncertainties?

Thanks for your attention.

