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Many-body Entanglement

=

❖ Local entanglement can be washed away by local unitaries.

❖ Equivalence relation among states:

|01001 · · · 011i

Transitivity:
If A=B and B=C, then A=C

Many-body Entanglement 
is an equivalence class 

under 
Small-depth Quantum Circuits



Many-body Entanglement

❖ “Topological order is long-range entanglement pattern.”

❖ “Topological order is the coarsest structure of the state.”

❖ Should be easy to detect…

❖ How would we recognize the pattern?



Guiding Problem

❖ How deep a quantum circuit must be in order to 
transform a state to another?

❖ Can an invariant answer this question by a significant 
bound?

❖ Strength or fineness (opp. coarseness) of the invariant.



0. Long-range order



Quantum circuits

V = V

❖ It takes a linear depth-circuit  
to build up any long-range correlation.

O1 O2

Cor| i(O1, O2) ⇠ 0

,CorW | i(O1, O2) ⇠ 0



Finite correlation length
❖ Long-range Entanglement ? Long-range correlation

❖ Many exactly solvable models have commuting 
Hamiltonian

❖ Quantum double models, Levin-Wen model,  
any Pauli stabilizer code state.

⇢AB � ⇢A ⌦ ⇢B = 0

NOT TOO GOOD



0. Long-range order 
1. Local Indistinguishability



Hardness of Generation

The local indistinguishability is invariant of a pair of states. 

|01001 · · · 011i Any orthogonal state is locally distinguishable.

=If

[Wolfram MathWorld]

| 0i The pair is locally distinguishable.

| 1i| 0i

Bravyi, Hastings, Verstraete (2006)

Deep Entanglement

A locally indistinguishable partner is an entanglement witness.



Toric code on a sphere

What is the complexity of generation?
Is there “deep entanglement”?

H = �
X

e2⇤
�z

e

�
X

e3v

�x

e

No correlation of local observables.
No pair of locally indistinguishable states.

NOT TOO GOOD



0. Long-range order 
1. Local Indistinguishability 
2. Topological 
Entanglement Entropy



Topological Entanglement Entropy

A

SA = ↵L� �

total quantum dimension

� = log

sX

a

d2a

Kitaev, Preskill; Levin, Wen (2006)

Kitaev-Preskill Argument

A B

C
SA + SB + SC � SAB � SBC � SCA + SABC



Topological Entanglement Entropy

❖ (Simply) Computable in the bulk

❖ Quantitative Many-body entanglement witness

❖ Connected to abstract anyon theory

❖ Specific to 2D

SA = ↵L� �



AntiFerroHeisenberg on Kagome

Yan, Huse, White (2011)

Jiang, Wang, Balents (2012)Found no ordering under perturbations
Computed topological entanglement entropy

Strong evidence of topological order.



Bravyi’s Counterexample
From his talk in 2008

H = �
X

i

Zi�1XiZi+1

H = �
X

i

Xi

QC of depth 2

Seven = L/2� 1

A B

C

SKitaev-Preskill = � log 2



2D cluster state on triangular lattice

Can we say that TEE is an evidence for topological order?

❖ S = L - 1

❖ Sub-leading term of 
E.Entropy can be 
contaminated.

❖ It can even fluctuate.

❖ Consequence of 1D SPT 
under a product group

[Zou, Haah, Senthil, in preparation]

S(L) = L� gcd(L, n)

NOT TOO GOOD



0. Long-range order 
1. Local Indistinguishability 
2. Topological Entanglement Entropy 
3. Small-depth stabilizers



Small-depth Stabilizers
❖ They are locally invisible.

Did you 
apply it?

Z Z ZZ ZZ Z Z

Z Z ZZ ZZ Z Z

looks 
the 

same

looks 
the 

same



Locally invisible operator
A ⇢ B

❖ Def.: O is (A,B)-locally invisible with respect to | i

TrBc [|�ih�|] = TrBc [| ih |
)TrAc [O|�ih�|O†] / TrAc [| ih |]

Small-depth stabilizing quantum circuit is (A,A+r)-locally invisible.



Twist product

P Q P Q

P Q

Ordinary product PQ Ordinary product QP

Twist Product

Well-defined as long as intersection is separated.

X

ij

P (i)
up

Q(j)
up

⌦Q(j)
down

P (i)
down



For product states

P Q

h |P1Q| i = h |P | ih |Q| i

❖ Any pair of locally invisible operators whose twist 
pairing is nontrivial, is a witness of deep entanglement.



Examples

H = �
X

e2⇤
�z

e

�
X

e3v

�x

e

Far-separated Bell pair

Toric Code state

Z

Z

X

X

Optimal bound  
on generating circuits!



Witness, nice!



0. Long-range order 
1. Local Indistinguishability 
2. Topological Entanglement Entropy 
3. Small-depth stabilizers 
4. Topological Charges



Topological S-matrix
Quantum amplitude of braiding process

Invariant of Hamiltonian or state?

a b

h |�a | i = da
Sab =

1

D

D2 =
X

a

d2a



Minimally Entangled States
Zhang, Grover, Oshikawa, Vishwanath (2012)

Zhang, Grover, Vishwanath (1412.0677)

❖ Start with full ground space.

❖ Compute minimal ent. states.

❖ Compute overlap.

Sab = h H
a | V

b i

Can we do it in the bulk?



Goal

❖ Find a quantity such that

❖ It is defined by a state.

❖ It is independent of boundary conditions.

❖ It is invariant under local unitary transformations.

❖ (It can be computed given a wave function.)



What is anyon?
❖ It is a superselection sector.

❖ A set of states related by local operators,  
not necessarily unitary.

❖ No symmetry constraint.

Irrelevant to define particle type in the disk

Arbitrary operator

Looks identical to ground state.



Recall: Total spin

[J
x

, J
y

] = iJ
z

J2
x

+ J2
y

+ J2
z

= j(j + 1)

❖ Allowed operators,

❖ Find an operator in the 
center of the operator 
algebra.

❖ Eigenvalue of the 
central operator  
= Particle type (spin)  
= Conservation



To define particle types

Arbitrary operator

Looks identical to ground state.

Mat(D)⌦A
❖ Allowed operators,

❖ Find an operator in the 
center of the operator 
algebra.

❖ Eigenvalue of the 
central operator = 
particle type (spin)

Any local term of H should commute



Null operators

Arbitrary operator

Looks identical to ground state.

❖ If any operator on grey 
annihilates the state, it’s 
like multiplying by 0.

❖ Factor them out.

Mat(D)⌦A/N

Any local term of H should commute
Operator on grey that annihilates the state



C*-algebra

❖ Algebra over complex numbers (finite dimensional)

❖ Enough to think of matrix algebra closed under dagger.

❖ Completely decomposes into (a direct sum of) full 
matrix algebras

❖ Projections onto components generate the center.



Structure of C*-algebra

UCU† =

2

6666664

⇤ ⇤
⇤ ⇤

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
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3

7777775

⇡1 =

✓
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0 0

◆
, ⇡2 =

✓
0 0
0 I4

◆
.

8
><

>:

⇡1 + ⇡2 = I

⇡2
j = ⇡j = ⇡†

j

⇡1⇡2 = 0



❖ form the canonical basis of the center of

❖ The center lives on the annulus.

Particle type projectors

Mat(D)⌦A/N

Arbitrary operator

Looks identical to ground state.
Structure theorem 

of C*-algebra



My S-matrix

P Q

S̃PQ =h | | i
Particle type projectors

❖ Input: (commuting) Hamiltonian (ground state)

❖ No special boundary; just some large disk.

❖ No phase ambiguity.

❖ The trivial particle (“1”) projector is distinguished.



Relation to ord. S-matrix

⇡a =
da
D

X

b

Sab�b

S̃ab =
dadb
D

Sab

Proof:
It contains the same data!



Invariance under local unitaries

P Q

h | | i
Particle type projectors

W †W W †W

V
W (P1Q)W † = (WPW †)1(WQW †)

as long as the depth of W is smaller than the separation of the intersection.

So, invariance is proved if                is remains isomorphic under W.     A/N

This is nontrivial, so I had to assume further.



Assumptions

1. Local topological order

❖ Local ground state matches the global one

2. Stable logical algebra

❖ logical algebra does not depend on the size of the 
support

❖ violated when there are infinitely many particle types.



Local Topological Order

⇢A



Stable Logical Algebra

A/N
Isomorphic

Regardless of the thickness



Finiteness of particle types

Stable logical algebra is nontrivial assumption in general.

Infinite stack of 2D layers

Side View

A particle is separated by a sphere with thick wall.



Consequences

A/N is in fact independent of Hamiltonian

is invariant under small-depth Q. circuit.

❖ Therefore, my S-matrix is an invariant of state.

H

H 0

UHU † U | i

| i
S



❖ Any transformation between states with distinct S-
matrices requires a deep (linear in diameter) circuit.

❖ In view of quasi-adiabatic evolution,  
the energy gap must close at some point in any path 
between Hamiltonians with distinct S-matrices.

Complexity of transformation

H0

| 0i U | 0i = | 1i

UH0U
† 6= H1



Sketch of independence proof

❖ Locally invisible operators to 
logical algebra

• “Symmetrize” so locally 
invisible operators is 
dressed to commute with 
the Hamiltonian

❖ Logical algebra to locally 
invisible operators

• They are naturally invisible 
thanks to local topological 
order condition.

At/Nt ! It/Mt ! At+w/Nt+w

AH1
t /NH1

t ! It/Mt ! AH2
t+w/N

H2
t+w



Toric code state

❖ Two assumptions are satisfied, as verified by direct computation.

❖ Rows and columns unsorted except for the distinguished “1”.

❖ Verlinde formula recovers the fusion (group) rules.

A/N is diagonal matrix algebra of dimension d2

S̃(d)
(a

x

a
z

),(a0
x

a0
z

) =
1

d2
!
a
z

a0
x

+a
x

a0
z

d .

Abelian discrete gauge theory



Row-column matching

P Q

❖ If projectors jointly stabilize some state, they are matched.



0. Long-range order 
1. Local Indistinguishability 
2. Topological Entanglement Entropy 
3. Small-depth stabilizers 
4. Topological Charges



Many-body Entanglement Witness

P Q

S̃PQ =h | | i
❖ We have given a class of ground states, for which S-matrix can be 

defined.

❖ Only a patch of a ground state is needed; insensitive to boundary.

❖ Indeed invariant under perturbations.

❖ 2D is not particularly used.

❖ Any heuristic algorithm would be interesting.

❖ Perhaps, in 2D stable logical algebra assumption is redundant.


