sparse codes from quantum circuits

arXiv:1411.3334

Dave Bacon Steve Flammia Aram Harrow Jonathan Shi

> Coogee 23 Jan 2015

QECC

[n,k,d] code: encode k logical qubits in n physical qubits and correct errors on <d/2 positions.</p>

[n,k,d,w]: ...using a decoding procedure that requires measurements of $\leq w$ qubits at a time.

w=O(1) "LDPC" (low-density parity check) Classically, possible with k, d = $\Omega(n)$.

WWSD principle \rightarrow qLDPC

main results

More general theorem: Given an [n,k,d] stabilizer code with a size-S Fault-Tolerant Error-Detecting Circuit we can construct an [n'=O(S), k, d, w'=O(1)] subsystem code.

Main Theorem: Given an [n,k,d] stabilizer code with stabilizer weights $w_{1,}$..., w_{n-k} , we can construct an [n', k, d, w'=O(1)] subsystem code with n' = O(n + Σ_i w_i).

Subsystem codes exist with k=1, w=O(1), $d \sim n^{1-\frac{c}{\sqrt{\log n}}}$

Also needed: New F-T E-D circuit for measuring a weight-w stabilizer using O(w) gates.

stabilizer codes

- $S = subgroup of \pm \{I, X, XZ, Z\}^n$
- codespace $\vee = \{ |\psi\rangle : s |\psi\rangle = |\psi\rangle$ for all $s \in S \}$
- Paulis anticommuting with some $s \in S$ are detected
- logical operators commute with all of S

3-bit repetition code
S = <ZZI, IZZ> = <I © Z © Z, Z © Z © I>
V = span{|000>, |111>}
logical operators <XXX, ZII>

4-qubit code, distance 2

stabilizer		log	ical	logical	
generators		qub	bit 1	qubit 2	
XX	ZZ	ZI	XX	IZ	I I
XX	ZZ	ZI	I I	IZ	XX

subsystem/gauge codes

- Replace some logical qubits with "gauge" qubits:
 - Like logical qubits: Commute with stabilizers and errors. Contents can be arbitrary for logical code states.
 - Like stabilizer qubits: Don't care about preserving.
 Can (and should) measure during decoding.
- Advantages: sparsity, simpler decoding, (sometimes) better thresholds

4-qubit code, distance 2							
stabiliz	zer ge	nerators. lo	ogica	l qu	bit. gauge	qubi	† .
XX	ZZ		ZI	XX	ZZ	XI	
XX	ZZ	•	ZI	ΙI	ΙI	XI	

structure of subsystem codes

Gauge group $G \le \pm\{I, X, XZ, Z\}^n$. Center is stabilizer group: $S \cong Z(G)/\{\pm 1\}$ Normalizer is logical group: $L \cong N(G)/S$

<u>4-qubit code</u>				
gauge generators	XI XI	IX IX	ZZ I I	I I ZZ
stabilizer subgrou generated by	Ρ	XX XX	ZZ ZZ	
logical group generated by		ZI ZI	XX I I	

<u>Paulis</u>

X_1	Z ₁
X ₂	Z ₂
•••	•••
X _n	Z _n

stabilizers	errors
logical X	logical Z
operators	operators
gauge X	gauge Z
operators	operators

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits
- Add gauge generators
 via Pauli circuit
 identities.

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits
- Add gauge generators
 via Pauli circuit
 identities.

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits
- Add gauge generators
 via Pauli circuit
 identities.

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits
- Add gauge generators
 via Pauli circuit
 identities.

- Begin with a stabilizer
 code of your choice
- Write a quantum circuit for measuring the stabilizers of this code.
- Turn the circuit
 elements into input/
 output qubits
- Add gauge generators
 via Pauli circuit identities
- This defines the code

Properties of this Construction

Circuits as linear
 operators preserving
 the code space

$$V = |00\rangle\!\langle 00| + |11\rangle\!\langle 11|$$

 $C = \operatorname{span}(\{|00\rangle, |11\rangle\})$ V is an error-detecting circuit General condition: V is E-D iff $V^{\dagger}V = \Pi_{C}$

Properties of this Construction

- Circuits as linear
 operators preserving
 the code space
- * Gauge equivalence of errors: $V_E = \pm V_{GE}$

Apply gauge operators...

Properties of this Construction

- Circuits as linear
 operators preserving
 the code space
- * Gauge equivalence of errors: $V_E = \pm V_{GE}$
- Squeegee lemma: using gauge operations, we can localize errors to the initial data qubits

Stabilizer and Logical Operators

- Spackling: like squeegee,
 but you leave a residue
- Spackling of logical
 operators gives the new
 logical operators
- Spackling of stabilizers on the inputs and ancillas are the new stabilizers
- Everything else is gauge
 or detectable error
- * ...what about distance?

	X	X	X		Z	Z	Z
$L_X =$	X	X	X	$L_Z =$	Ι	Ι	Ι
	Ι	X	Ι		Ι	Ι	Ι
	Z	Z	Z		Z	Z	Ι
S =	Z	Z	Z	$S_a =$	Z	Ι	Ι
	Ι	Ι	Ι		Z	Z	Z

*even/odd effect means that circuits wires must have odd length

Code Distance and Fault Tolerance

- For most error-detecting circuits, the new code is uninteresting (i.e. has bad distance).
- Theorem: If we use a fault-tolerant circuit then we preserve the code distance
- Fault tolerance definition: for every error pattern E, either V_E = 0 or there exists E' on inputs s.t. V E'=V_E and |E'|≤|E|.
- Idiosyncratic constraints:
 - « Circuit must be Clifford (so no majority vote)
 - No classical feedback or post-processing allowed
 - However, we only need to detect errors

Fault-Tolerant Gadgets

- Use modified Shor/ DiVincenzo cat states
- Build a cat, and postselect ...not fault tolerant
- Redeem this idea by coupling to expanders
- constant-degree
 expanders exist with
 sufficient edge
 expansion to make this
 fault tolerant

expander gadgets

- Recipe: multiple-CNOT from each v to corresponding data qubit and all incident edges.
- Requirement: Edge expansion ≥ 1 means X errors on cat qubits cause more errors on ancillas.
- Corresponds to classical ECC with "energy barrier".

Wake Up!

Theorem 1. Given any $[n_0, k_0, d_0]$ quantum stabilizer code with stabilizer generators of weight $w_1, \ldots, w_{n_0-k_0}$, there is an associated [n, k, d] quantum subsystem code whose gauge generators have weight O(1) and where $k = k_0$, $d = d_0$, and $n = O(n_0 + \sum_i w_i)$. This mapping is constructive given the stabilizer generators of the base code.

- Created sparse subsystem codes with the same k and d parameters as the base code
- Sed fault-tolerant circuits in a new way, via expanders
- * Extra ancillas are required according to the circuit size

Almost "Good" Sparse Subsystem Codes

- * Start with an $[n_0, 1, d_0]$ random stabilizer code (so that $d_0=O(n_0)$ with high probability)
- * Concatenate this *m* times to get an $[n_0^m, 1, d_0^m]$ code
- Stabilizers: n₀^j of weight ≤n₀^{m-j+1}.
 Total weight m·n₀^{m+1}
- * Apply Theorem 1 with $m = (\log n)^{1/2}$

Sparse subsystem codes exist with $d = O(n^{1-\varepsilon})$ and $\varepsilon = O(1/\sqrt{\log n})$.

Best previous distance for sparse codes was $d = O(\sqrt{n \log n})$ by Freedman, Meyer, Luo 2002

*Thank you Sergei Bravyi!

Spatially Local Subsystem Codes Without Strings

- Take the circuit construction from the previous result
- Using SWAP gates and wires, spread the circuit over the vertices of a cubic lattice in D dimensions
- * Let $n=L^{D}$ be the total number of qubits

Local subsystem codes exist with $d = O(L^{D-1-\varepsilon})$ and $\varepsilon = O(1/\sqrt{\log n})$.

Compared to Known Bounds

- * Local subsystem codes in D dimensions $d \le O(L^{D-1})$
 - * Our code: $d = \Omega(L^{D-1-\varepsilon})$
- * Best known local stabilizer codes: $d=O(L^{D/2})$
- * Local commuting projector codes $kd^{2/(D-1)} \le O(n)$
 - * Our codes: $kd^{2/(D-1)} = \Omega(n)$ (use the hypergraph product codes and our main theorem)

Bravyi & Terhal 2009; Bravyi, Poulin, Terhal 2010; Tillich & Zémor 2009 $\mathcal{E} = O((\log n)^{-1/2})$

Conclusion & Open Questions

- Showed a generic way to turn stabilizer codes into sparse subsystem codes
- New connection between quantum error correction & fault-tolerant quantum circuits
- What are the limits for sparse stabilizer codes?
- Self-correcting memory from the gauge Hamiltonian?
- * Efficient, fault-tolerant decoding for these codes?
- Improve the rate? (Bravyi & Hastings 2013)
- Extend these results to allow for subsystem codes?
- Holography? ???
- See arxiv:1411.3334 for more details!

The Best Sparse Codes

Code	k	d	Subsystem?	Decoder?
Z ₂ -systolic codes (Freedman, Meyer, Luo 2002)	O(1)	O(√ <i>n</i> log <i>n</i>)		
4D Hyperbolic (Hastings 2013)	O(<i>n</i>)	O(log n)		
4D Arithmetic Hyperbolic (Guth & Lubotzky 2013)	O(<i>n</i>)	O(n ^{0.3})		
Hypergraph Product (Tillich & Zémor 2009)	O(<i>n</i>)	O(n ^{0.5})		
BFHS 2014 (this talk)*	O(1)	O(n ^{1-ε})	yes	
Homological Product [†] (Bravyi & Hastings 2013)	O(n)	O(n)		

The Best (Euclidean) Local Codes

n=L^D

Code	D	k	d	Subsystem?	Decoder?
Toric Code (Kitaev 1996)	≥2	O(1)	O(√ <i>n</i>)		
Generalized Bacon-Shor (Bravyi 2011)	2	O(L)	O(L)	yes	
Welded Code (Michnicki 2012)	3	1	O(L ^{4/3})		
Embedded Fractal (Brell 2014)	3'ish	O(<i>n</i>)	O(n ^{0.5})		
Gauge Color Codes (Bombin 2013)	3	O(<i>n</i>)	O(<i>n</i>)	yes	
Gauge Color Codes (Bombin 2013)	3	O(<i>n</i>)	O(<i>n</i>)	yes	
BFHS 2014 (this talk)*	≥2	O(1)	$O(L^{D-1-\varepsilon})$	yes	
*subsystem code, $\varepsilon = O(1/\sqrt{\log n});$					

'sparsity s = $O(\sqrt{n})$;

Local Subsystem Codes Without Strings

- * Specialize to D=3
- * Sparse subsystem code on a lattice with $[L^3,O(1),L^{2-\varepsilon}]$
- No strings, either for bare or dressed logical operators
 - * cf. Bombin's gauge color codes
- …on the other hand it's a subsystem code
- How does this compare to other candidate selfcorrecting quantum memories?

Comparing Candidate Self-Correcting Memories

Code	Self-correcting?	Comments
3D Bacon-Shor (Bacon 2005)	no	No threshold, so no self- correction (Pastawski <i>et al</i> . 2009)
Welded Code (Michnicki 2014)	no	See Brown <i>et al</i> . 2014 review article for discussion
Cubic Code (Haah 2011)	marginal	poly(L) memory lifetime for L< e ^{β/3} (Bravyi & Haah 2013)
Embedded Fractal Product Codes (Brell 2014)	maybe	very large ground-state degeneracy?
Gauge Color Codes (Bombin 2013)	???	Does have a threshold, also has string-like dressed operators
This talk (BFHS 2014)	???	No strings, concatenated codes have a threshold

Not depicted: Codes with long-range couplings (e.g. several works by the Loss group) or Hamma *et al.* 2009 See the talk by Olivier Landon-Cardinal on Friday for more discussion of these types of codes.

Challenges with Gauge Hamiltonians

- Gauge Hamiltonians are sometimes gapped:
 (Kitaev 2005; Brell *et al.* 2011; Bravyi *et al.* 2013)
- ...but sometimes not:
 (Bacon 2005; Dorier, Becca, & Mila 2005)
- The simplest example of our code (a wire) reduces to Kitaev's quantum wire, which is gapped as long as the couplings aren't equal in magnitude
- Our codes are a vast generalization of Kitaev's wire to arbitrary circuits!
- This undoubtedly has a rich phase diagram... might there be a gapped self-correcting phase, or something more?

Kitaev 2001; Lieb, Schultz, & Mattis 1961