
sparse codes from quantum circuits

Dave Bacon ���
Steve Flammia���
Aram Harrow ���
Jonathan Shi

arXiv:1411.3334

Coogee���
23 Jan 2015

QECC

[n,k,d] code: encode k logical qubits in n physical���

qubits and correct errors on <d/2 positions.

[n,k,d,w]: ...using a decoding procedure that ���
requires measurements of ≤w qubits at a time.

w=O(1) “LDPC” (low-density parity check)���
Classically, possible with k, d = Ω(n).

WWSD principle à qLDPC

qLDPC?

d

k
 random ���
w» n

O(n)

O((n log(n))1/2)

O(1)

O(n1/2)

toric
code

hyperbolic���
FML’02

O(n0.3)

TZ’09
 BH’14

w»n1/2

O(n)
O(n1-1/D-ε)

us
D
dim

O(n1-ε)

2-d
gauge

B‘10

d ≤ n1-1/D

in D-dim

kd2/(D-1) ≤ n ���
for stabilizer

TZ
+us

hyper
bolic ���
GL’14

main results

Main Theorem: Given an [n,k,d] stabilizer code with
stabilizer weights w1, ..., wn-k, we can construct an ���

[n’, k, d, w’=O(1)] subsystem code with n’ = O(n + ∑i wi).

More general theorem: Given an [n,k,d] stabilizer code
with a size-S Fault-Tolerant Error-Detecting Circuit we
can construct an [n’=O(S), k, d, w’=O(1)] subsystem code.

Also needed: New F-T E-D
circuit for measuring a

weight-w stabilizer using
O(w) gates.

Subsystem codes exist with ���
k=1, w=O(1),
 d ⇠ n1� cp

log n

stabilizer codes

•  S = subgroup of ±{I, X, XZ, Z}n

•  codespace V = {|ψ⟩ : s|ψ⟩=|ψ⟩ for all s∈S}

•  Paulis anticommuting with some s∈S are detected

•  logical operators commute with all of S

3-bit repetition code

 S = <ZZI, IZZ> = <I⊗Z⊗Z, Z⊗Z⊗I>

V = span{|000>, |111>}

logical operators <XXX, ZII>

stabilizer

generators

logical

qubit 1

logical

qubit 2

XX

XX

ZZ

ZZ

ZI

ZI

XX

I I

IZ

IZ

I I

XX

4-qubit code, distance 2

subsystem/gauge codes

•  Replace some logical qubits with “gauge” qubits:

–  Like logical qubits: Commute with stabilizers and

errors. Contents can be arbitrary for logical code
states.

–  Like stabilizer qubits: Don’t care about preserving.���
Can (and should) measure during decoding.

•  Advantages: sparsity, simpler decoding, ���
(sometimes) better thresholds

4-qubit code, distance 2

stabilizer generators. logical qubit. gauge qubit.

XX

XX

ZZ

ZZ

ZI

ZI

XX ���
I I

ZZ ���
I I

XI ���
XI

structure of subsystem codes

Gauge group G ≤ ±{I, X, XZ, Z}n.

Center is stabilizer group: S ≅ Z(G)/{±1}

Normalizer is logical group: L ≅ N(G)/S

4-qubit code

ZZ ���
I I

XI ���
XI

gauge generators
 IX

IX

I I ���
ZZ

XX

XX

ZZ

ZZ

stabilizer subgroup ���
generated by

ZI

ZI

XX ���
I I

logical group ���
generated by

Paulis���

X1
 Z1

X2
 Z2

...
 ...

Xn
 Zn

stabilizers
 errors

logical X

operators

logical Z

operators

gauge X

operators

gauge Z

operators

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

11 1

00 0

time

ancilla 
preparation

postselected 
measurement

data  
input

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

11 1

00 0

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

  Add gauge generators
via Pauli circuit
identities.

11 1

00 0

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

  Add gauge generators
via Pauli circuit
identities.

11 1

00 0

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

  Add gauge generators
via Pauli circuit
identities.

11 1

00 0

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

  Add gauge generators
via Pauli circuit
identities.

11 1

00 0

From Codes to Circuits to Codes Again…

  Begin with a stabilizer
code of your choice

  Write a quantum circuit
for measuring the
stabilizers of this code.

  Turn the circuit
elements into input/
output qubits

  Add gauge generators
via Pauli circuit identities

  This defines the code

Bravyi 2011 does something similar with “generalized Bacon-Shor” codes

Properties of this Construction

  Circuits as linear
operators preserving
the code space

V is an error-detecting 
circuit

General condition:

V is E-D iff

Properties of this Construction

  Circuits as linear
operators preserving
the code space

  Gauge equivalence of
errors:

E

Apply gauge operators…

Properties of this Construction

  Circuits as linear
operators preserving
the code space

  Gauge equivalence of
errors:

  Squeegee lemma: using
gauge operations, we
can localize errors to
the initial data qubits

Stabilizer and Logical Operators

  Spackling: like squeegee,
but you leave a residue

  Spackling of logical
operators gives the new
logical operators

  Spackling of stabilizers on
the inputs and ancillas are
the new stabilizers

  Everything else is gauge
or detectable error

  …what about distance?

*even/odd effect means that

circuits wires must have odd length

Code Distance and Fault Tolerance

  For most error-detecting circuits, the new code is
uninteresting (i.e. has bad distance).

  Theorem: If we use a fault-tolerant circuit then we
preserve the code distance

  Fault tolerance definition: for every error pattern E,
either VE = 0 or there exists E’ on inputs s.t. V E’=VE
and |E’ |≤|E|.

  Idiosyncratic constraints:

  Circuit must be Clifford (so no majority vote)

  No classical feedback or post-processing allowed

  However, we only need to detect errors

Fault-Tolerant Gadgets

  Use modified Shor/
DiVincenzo cat states

  Build a cat, and
postselect …not fault
tolerant

  Redeem this idea by
coupling to expanders

  constant-degree
expanders exist with
sufficient edge
expansion to make this
fault tolerant

data	 	

cat	

ancilla	

expander gadgets

data	 qubits	 ≅	 {1,	 ...,	 n}	

cat	 qubits	 ≅	 V,	 |V|=n	

ancilla	 qubits	 ≅	 E	

•  Recipe:	 mul;ple-‐CNOT	 from	 each	 v	 to	
corresponding	 data	 qubit	 and	 all	 incident	 edges.	

•  Requirement:	 Edge	 expansion	 ≥	 1	 means	 X	 errors	
on	 cat	 qubits	 cause	 more	 errors	 on	 ancillas.	

•  Corresponds	 to	 classical	 ECC	 with	 “energy	 barrier”.	

Wake Up!

  Created sparse subsystem codes with the same k and d
parameters as the base code

  Used fault-tolerant circuits in a new way, via expanders

  Extra ancillas are required according to the circuit size

Almost “Good” Sparse Subsystem Codes

  Start with an [n0,1,d0] random stabilizer code ���
(so that d0=O(n0) with high probability)

  Concatenate this m times to get an [n0
m,1,d0

m] code

  Stabilizers: n0

j of weight ≤n0
m-j+1.���

Total weight m∙n0
m+1

  Apply Theorem 1 with m = (log n)1/2

Sparse subsystem codes exist with ���
d = O(n1-ε) and ε = O(1/√log n).

Best previous distance for sparse codes was  
d = O(√n log n) by Freedman, Meyer, Luo 2002

*Thank you
 Sergei Bravyi!

Spatially Local Subsystem Codes Without Strings

  Take the circuit construction from the previous
result

  Using SWAP gates and wires, spread the circuit over
the vertices of a cubic lattice in D dimensions

  Let n=LD be the total number of qubits���
���
���
���

Local subsystem codes exist with ���
d = O(LD-1-ε) and ε = O(1/√log n).

Compared to Known Bounds

  Local subsystem codes in D dimensions ���
 d ≤ O(LD-1)

  Our code: d=Ω(LD-1-ε)

  Best known local stabilizer codes: d=O(LD/2)���

  Local commuting projector codes ���
 kd2/(D-1)≤O(n)

  Our codes: kd2/(D-1)=Ω(n) ���
(use the hypergraph product codes and our main theorem)

*ε = O((log n)-1/2)
 Tillich & Zémor 2009Bravyi, Poulin, Terhal 2010;Bravyi & Terhal 2009;

Conclusion & Open Questions

  Showed a generic way to turn stabilizer codes into
sparse subsystem codes

  New connection between quantum error correction &
fault-tolerant quantum circuits

  What are the limits for sparse stabilizer codes?

  Self-correcting memory from the gauge Hamiltonian?

  Efficient, fault-tolerant decoding for these codes?

  Improve the rate? (Bravyi & Hastings 2013)

  Extend these results to allow for subsystem codes?

  Holography? ???

  See arxiv:1411.3334 for more details!

The Best Sparse Codes

Code k d Subsystem? Decoder?

Z2-systolic codes
(Freedman, Meyer, Luo 2002) O(1) O(√n log n)

4D Hyperbolic 
(Hastings 2013) O(n) O(log n)

4D Arithmetic Hyperbolic 
(Guth & Lubotzky 2013) O(n) O(n0.3)

Hypergraph Product
(Tillich & Zémor 2009) O(n) O(n0.5)

BFHS 2014 (this talk)* O(1) O(n1-ε) yes

Homological Product† 
(Bravyi & Hastings 2013) O(n) O(n)

*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n); .

The Best (Euclidean) Local Codes

Code D k d Subsystem? Decoder?

Toric Code (Kitaev 1996) ≥2 O(1) O(√n)

Generalized Bacon-Shor 
(Bravyi 2011) 2 O(L) O(L) yes

Welded Code 
(Michnicki 2012) 3 1 O(L4/3)

Embedded Fractal 
(Brell 2014) 3’ish O(n) O(n0.5)

Gauge Color Codes
(Bombin 2013) 3 O(n) O(n) yes

Gauge Color Codes
(Bombin 2013) 3 O(n) O(n) yes

BFHS 2014 (this talk)* ≥2 O(1) O(LD-1-ε) yes

*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n); .

n=LD	

Local Subsystem Codes Without Strings

  Specialize to D=3

  Sparse subsystem code on a lattice with [L3,O(1),L2-ε]

  No strings, either for bare or dressed logical
operators

  cf. Bombin’s gauge color codes

  …on the other hand it’s a subsystem code

  How does this compare to other candidate self-
correcting quantum memories?���
���
���

Comparing Candidate Self-Correcting
Memories

Code Self-correcting? Comments

3D Bacon-Shor
(Bacon 2005) no No threshold, so no self-

correction (Pastawski et al. 2009)

Welded Code
(Michnicki 2014) no See Brown et al. 2014  

review article for discussion

Cubic Code
(Haah 2011) marginal poly(L) memory lifetime for L< eβ/3

(Bravyi & Haah 2013)

Embedded Fractal Product Codes
(Brell 2014) maybe very large ground-state

degeneracy?

Gauge Color Codes
(Bombin 2013) ??? Does have a threshold, also has

string-like dressed operators

This talk 
(BFHS 2014) ??? No strings, concatenated codes

have a threshold

Not depicted: Codes with long-range couplings (e.g. several works by the Loss group) or Hamma et al. 2009

See the talk by Olivier Landon-Cardinal on Friday for more discussion of these types of codes.

Challenges with Gauge Hamiltonians

  Gauge Hamiltonians are sometimes gapped: ���
(Kitaev 2005; Brell et al. 2011; Bravyi et al. 2013)

  …but sometimes not: ���
(Bacon 2005; Dorier, Becca, & Mila 2005)

  The simplest example of our code (a wire) reduces to
Kitaev’s quantum wire, which is gapped as long as the
couplings aren’t equal in magnitude

  Our codes are a vast generalization of Kitaev’s wire to
arbitrary circuits!

  This undoubtedly has a rich phase diagram… might
there be a gapped self-correcting phase, or
something more?

Kitaev 2001; Lieb, Schultz, & Mattis 1961

