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QECC

[n,k,d] code: encode k logical qubits in n physical���

qubits and correct errors on <d/2 positions.


[n,k,d,w]: ...using a decoding procedure that ���
requires measurements of ≤w qubits at a time.


w=O(1) “LDPC” (low-density parity check)���
Classically, possible with k, d = Ω(n).


WWSD principle à qLDPC




qLDPC?


d


k
 random ���
w» n


O(n)


O((n log(n))1/2)


O(1)


O(n1/2)


toric 
code


hyperbolic���
FML’02


O(n0.3)


TZ’09
 BH’14

w»n1/2


O(n)
O(n1-1/D-ε)


us
D 
dim


O(n1-ε)


2-d 
gauge

B‘10


d ≤ n1-1/D

in D-dim


kd2/(D-1) ≤ n ���
for stabilizer


TZ
+us


hyper
bolic ���
GL’14




main results


Main Theorem: Given an [n,k,d] stabilizer code with 
stabilizer weights w1, ..., wn-k, we can construct an ���

[n’, k, d, w’=O(1)] subsystem code with n’ = O(n + ∑i wi).


More general theorem: Given an [n,k,d] stabilizer code 
with a size-S Fault-Tolerant Error-Detecting Circuit we 
can construct an [n’=O(S), k, d, w’=O(1)] subsystem code.


Also needed: New F-T E-D 
circuit for measuring a 

weight-w stabilizer using 
O(w) gates.


Subsystem codes exist with ���
k=1, w=O(1),
 d ⇠ n1� cp

log n



stabilizer codes

•  S = subgroup of ±{I, X, XZ, Z}n

•  codespace V = {|ψ⟩ : s|ψ⟩=|ψ⟩ for all s∈S}

•  Paulis anticommuting with some s∈S are detected

•  logical operators commute with all of S


3-bit repetition code

 S = <ZZI, IZZ> = <I⊗Z⊗Z, Z⊗Z⊗I>


V = span{|000>, |111>}

logical operators <XXX, ZII>
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4-qubit code, distance 2




subsystem/gauge codes

•  Replace some logical qubits with “gauge” qubits:

–  Like logical qubits: Commute with stabilizers and 

errors. Contents can be arbitrary for logical code 
states.


–  Like stabilizer qubits: Don’t care about preserving.���
Can (and should) measure during decoding.


•  Advantages: sparsity, simpler decoding, ���
(sometimes) better thresholds


4-qubit code, distance 2

stabilizer generators. logical qubit. gauge qubit.




 


XX

XX


ZZ

ZZ


ZI

ZI


XX ���
I I


ZZ ���
I I


XI ���
XI




structure of subsystem codes

Gauge group G ≤ ±{I, X, XZ, Z}n.


Center is stabilizer group: S ≅ Z(G)/{±1}

Normalizer is logical group: L ≅ N(G)/S


4-qubit code
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From Codes to Circuits to Codes Again…


  Begin with a stabilizer 
code of your choice


  Write a quantum circuit 
for measuring the 
stabilizers of this code.
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From Codes to Circuits to Codes Again…


  Begin with a stabilizer 
code of your choice


  Write a quantum circuit 
for measuring the 
stabilizers of this code.


  Turn the circuit 
elements into input/
output qubits 


  Add gauge generators 
via Pauli circuit identities


  This defines the code


Bravyi 2011 does something similar with “generalized Bacon-Shor” codes 



Properties of this Construction


  Circuits as linear 
operators preserving 
the code space


V is an error-detecting 
circuit

General condition:

V is E-D iff 




Properties of this Construction


  Circuits as linear 
operators preserving 
the code space


  Gauge equivalence of 
errors: 


E

Apply gauge operators…




Properties of this Construction


  Circuits as linear 
operators preserving 
the code space


  Gauge equivalence of 
errors: 


  Squeegee lemma: using 
gauge operations, we 
can localize errors to 
the initial data qubits




Stabilizer and Logical Operators


  Spackling: like squeegee, 
but you leave a residue


  Spackling of logical 
operators gives the new 
logical operators


  Spackling of stabilizers on 
the inputs and ancillas are 
the new stabilizers


  Everything else is gauge 
or detectable error 


  …what about distance?

*even/odd effect means that

circuits wires must have odd length




Code Distance and Fault Tolerance


  For most error-detecting circuits, the new code is 
uninteresting (i.e. has bad distance).


  Theorem: If we use a fault-tolerant circuit then we 
preserve the code distance


  Fault tolerance definition: for every error pattern E, 
either VE = 0 or there exists E’ on inputs s.t. V E’=VE 
and |E’ |≤|E|.


  Idiosyncratic constraints:

  Circuit must be Clifford (so no majority vote)

  No classical feedback or post-processing allowed

  However, we only need to detect errors




Fault-Tolerant Gadgets


  Use modified Shor/
DiVincenzo cat states

  Build a cat, and 
postselect …not fault 
tolerant


  Redeem this idea by 
coupling to expanders 


  constant-degree 
expanders exist with 
sufficient edge 
expansion to make this 
fault tolerant


data	  	  

cat	  

ancilla	  



expander gadgets

data	  qubits	  ≅	  {1,	  ...,	  n}	  

cat	  qubits	  ≅	  V,	  |V|=n	  

ancilla	  qubits	  ≅	  E	  

•  Recipe:	  mul;ple-‐CNOT	  from	  each	  v	  to	  
corresponding	  data	  qubit	  and	  all	  incident	  edges.	  

•  Requirement:	  Edge	  expansion	  ≥	  1	  means	  X	  errors	  
on	  cat	  qubits	  cause	  more	  errors	  on	  ancillas.	  

•  Corresponds	  to	  classical	  ECC	  with	  “energy	  barrier”.	  



Wake Up!


  Created sparse subsystem codes with the same k and d 
parameters as the base code


  Used fault-tolerant circuits in a new way, via expanders

  Extra ancillas are required according to the circuit size




Almost “Good” Sparse Subsystem Codes


  Start with an [n0,1,d0] random stabilizer code ���
(so that d0=O(n0) with high probability)


  Concatenate this m times to get an [n0
m,1,d0

m] code

  Stabilizers: n0

j of weight ≤n0
m-j+1.���

Total weight m∙n0
m+1


  Apply Theorem 1 with m = (log n)1/2


Sparse subsystem codes exist with ���
d = O(n1-ε) and ε = O(1/√log n).


____


Best previous distance for sparse codes was  
d = O(√n log n ) by Freedman, Meyer, Luo 2002

______
*Thank you 
 Sergei Bravyi!



Spatially Local Subsystem Codes Without Strings


  Take the circuit construction from the previous 
result


  Using SWAP gates and wires, spread the circuit over 
the vertices of a cubic lattice in D dimensions


  Let n=LD be the total number of qubits���
���
���
���



Local subsystem codes exist with ���
d = O(LD-1-ε) and ε = O(1/√log n).


____




Compared to Known Bounds


  Local subsystem codes in D dimensions ���
     d ≤ O(LD-1)


  Our code: d=Ω(LD-1-ε)

  Best known local stabilizer codes: d=O(LD/2)���



  Local commuting projector codes ���
    kd2/(D-1)≤O(n)


  Our codes: kd2/(D-1)=Ω(n) ���
(use the hypergraph product codes and our main theorem)


*ε = O((log n)-1/2)
 Tillich & Zémor 2009Bravyi, Poulin, Terhal 2010;Bravyi & Terhal 2009;



Conclusion & Open Questions

  Showed a generic way to turn stabilizer codes into 
sparse subsystem codes


  New connection between quantum error correction & 
fault-tolerant quantum circuits


  What are the limits for sparse stabilizer codes?

  Self-correcting memory from the gauge Hamiltonian?

  Efficient, fault-tolerant decoding for these codes?

  Improve the rate? (Bravyi & Hastings 2013)

  Extend these results to allow for subsystem codes?

  Holography? ???

  See arxiv:1411.3334 for more details!




The Best Sparse Codes


Code k d Subsystem? Decoder?

Z2-systolic codes
(Freedman, Meyer, Luo 2002) O(1) O(√n log n)

4D Hyperbolic 
(Hastings 2013) O(n) O(log n)

4D Arithmetic Hyperbolic 
(Guth & Lubotzky 2013) O(n) O(n0.3)

Hypergraph Product
(Tillich & Zémor 2009) O(n) O(n0.5)

BFHS 2014 (this talk)* O(1) O(n1-ε) yes

Homological Product† 
(Bravyi & Hastings 2013) O(n) O(n)

*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n);                      .




The Best (Euclidean) Local Codes


Code D k d Subsystem? Decoder?

Toric Code (Kitaev 1996) ≥2 O(1) O(√n)

Generalized Bacon-Shor 
(Bravyi 2011) 2 O(L) O(L) yes

Welded Code 
(Michnicki 2012) 3 1 O(L4/3)

Embedded Fractal 
(Brell 2014) 3’ish O(n) O(n0.5)

Gauge Color Codes 
(Bombin 2013) 3 O(n) O(n) yes

Gauge Color Codes 
(Bombin 2013) 3 O(n) O(n) yes

BFHS 2014 (this talk)* ≥2 O(1) O(LD-1-ε) yes

*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n);                      .


n=LD	  



Local Subsystem Codes Without Strings


  Specialize to D=3

  Sparse subsystem code on a lattice with [L3,O(1),L2-ε] 

  No strings, either for bare or dressed logical 
operators


  cf. Bombin’s gauge color codes

  …on the other hand it’s a subsystem code

  How does this compare to other candidate self-
correcting quantum memories?���
���
���





Comparing Candidate Self-Correcting 
Memories


Code Self-correcting? Comments

3D Bacon-Shor
(Bacon 2005) no No threshold, so no self-

correction (Pastawski et al. 2009)

Welded Code
(Michnicki 2014) no See Brown et al. 2014  

review article for discussion

Cubic Code
(Haah 2011) marginal poly(L) memory lifetime for L< eβ/3

(Bravyi & Haah 2013)

Embedded Fractal Product Codes
(Brell 2014) maybe very large ground-state 

degeneracy?

Gauge Color Codes
(Bombin 2013) ??? Does have a threshold, also has 

string-like dressed operators

This talk 
(BFHS 2014) ??? No strings, concatenated codes 

have a threshold 

Not depicted: Codes with long-range couplings (e.g. several works by the Loss group) or Hamma et al. 2009

See the talk by Olivier Landon-Cardinal on Friday for more discussion of these types of codes.




Challenges with Gauge Hamiltonians


  Gauge Hamiltonians are sometimes gapped: ���
(Kitaev 2005; Brell et al. 2011; Bravyi et al. 2013)


  …but sometimes not: ���
(Bacon 2005; Dorier, Becca, & Mila 2005)


  The simplest example of our code (a wire) reduces to 
Kitaev’s quantum wire, which is gapped as long as the 
couplings aren’t equal in magnitude


  Our codes are a vast generalization of Kitaev’s wire to 
arbitrary circuits!


  This undoubtedly has a rich phase diagram… might 
there be a gapped self-correcting phase, or 
something more?


Kitaev 2001;   Lieb, Schultz, & Mattis 1961


