

UNIVERSITY OF COPENHAGEN

NON-EQUILIBRIUM PHASE TRANSITIONS

Michael J. Kastoryano

Coogee 2015

VILLUM FONDEN

OUTLINE

Part I: i) Some notions of non-equilibrium phase transitions ii) Directed percolation universality class iii) Self-organized criticality iv) connections to QIT

Part 2: A topological dynamical phase transition

SETTING

Lindblad master equation:

$$\mathcal{L}(\rho) = -i[H,\rho] + \sum_{j} K_{j}\rho K_{j}^{\dagger} - \frac{1}{2} \{K_{j}^{\dagger}K_{j},\rho\}_{+}$$

We will mostly focus on classical systems

Asynchronous cellular Pick a site a random, and update automata

Detailed balance
$$P(x, y)\pi(y) = P(y, x)\pi(x)$$

Examples:

Gibbs samplers, conways game of life, etc

SETTING

Lindblad master equation:

$$\mathcal{L}(\rho) = -i[H,\rho] + \sum_{j} K_{j}\rho K_{j}^{\dagger} - \frac{1}{2} \{K_{j}^{\dagger}K_{j},\rho\}_{+}$$

We will mostly focus on classical systems

A non-equilibrium phase transition, is a sudden change in the steady state properties of a non-reversible markovian dissipative system

 $P(x, y)\pi(y) = P(y, x)\pi(x)$

e

Gibbs samplers, conways game of life, etc

The contact process:

inspired by population dynamics (ID)

trivial phase $\kappa < \kappa_c$

one stationary state (all 0)

O(log(N)) mixing

"symmetry broken" phase $\kappa > \kappa_c$

two stationary states in the thermodynamic limit

one stable one unstable

mixing time O(N) to the metastable state

critical phase $\kappa = \kappa_c$

one stationary state for finite systems

polynomial mixing time

long range correlations (poly scaling)

CRITICAL EXPONENTS

scale invariance at criticality

Equilibrium phase transitions

$$|m| \sim (T_c - T)^{\beta}$$
$$\xi \sim |T_c - T|^{-\nu}$$

order parameter: magnetization

correlation length

Non-equilibrium phase transitions: two correlation lengths

$$\rho \sim (\kappa - \kappa_c)^{\alpha}$$
$$\xi_{\perp} \sim |\kappa - \kappa_c|^{-\nu_{\perp}}$$
$$\xi_{||} \sim |\kappa - \kappa_c|^{-\nu_{||}}$$

order parameter: density of active sites

spacial correlation length

temporal correlation length

SELF-ORGANIZED CRITICALITY

The sandpile model:

drop a grain of sand at random on one of N sites

if the number of sand grains exceeds a given threshold (>d), then distribute one sand grain to each neighbor

continue until there is no more hopping in the system

No fine tuned parameter

SELF-ORGANIZED CRITICALITY

The evolution model:

each site takes values between [0,1]

pick the site with the lowest value

replace its value with a random number between [0,1], do the same with its neighbors

No fine tuned parameter

SELF-ORGANIZED CRITICALITY

	Gapped	Bounded	local
Critical DP	X		
Sandpile		X	
Evolution			X

AREA LAW CONJECTURE

What I want:

local

well defined in thermo limit

gapped

Why we should expect a counterexample:

unique ground state with mutual info growing as volume

intuition: gapped liouvillians can take time N to relax to equilibrium

enough time to drag correlations across the system

characteristic "Lieb-Robinson velocity"

provides an easy counter-example to the stability conjecture for gapped liouvillians

Counter-example to the generalized area-law conjecture

Counter-example to the generalized area-law conjecture

INTERESTING QUESTIONS

Open system area law violation

Does the area law hold with detailed balance?

Understand the role of reversibility better

Topological non-equilibrium phase transitions?

Anything really quantum (or useful) here?

PART II

A topological dynamical phase transition

Mark Rudner

Transition insensitive to:

hopping disorder

even time dependent

y independent

PHYSICS BEHIND IT

m=2 m=3

Perform trials: start at a given block, and keep track of what block you exit at.

m = 1

 $A \quad u \quad B \quad v$

Note: you always exit!

Estimate the average exit distance:

$$\langle \Delta m \rangle = \sum_m m P_m$$

$$\langle \Delta m \rangle = \begin{cases} 1, & u < v \\ 0, & u > v \end{cases}$$

TOPOLOGICALTRANSITION

The transition is **topological**, average distance travelled can be reduced to an integral over the Brillouin zone: just gives a winding number

TOPOLOGICALTRANSITION

m = 1 m = 2 m = 3

Current ~ average distance (in cells) travelled per run over survival time

 $A \ u \ B \ v$

 $J \approx \frac{\langle \Delta m \rangle}{\tau}$

 $\tau \to \infty$, as

 $u \approx v$

RESULTS

TAKE HOME MESSAGES

Dissipation can cause exotic behavior

Very unexplored territory

New type of topological phenomena?

Can provide insight into close system problems?

Thank you for your attention!

PhD and post-doc positions

Summer school on Quantum Mathematics May 16-30

> Michael Friedman Robert Seiringer Bruno Nachtergaele Spiros Michalakis

Tuesday, February 10, 15

11 11

H H