Conservation laws from entanglement

Isaac H. Kim

Perimeter Institute for Theoretical Physics Waterloo, ON N2L 2Y5, Canada

January 22th, 2015

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

*Powered by TikZ

Conservation laws

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Charge conservation
- Energy-momentum conservation

Noether's theorem

Noether's theorem asserts that a continuous symmetry gives rise to conservation laws.

- Conservation laws from symmetry
- It does not matter how complicated the action/Hamiltonian looks like.
- However, the theorem only goes one way; symmetry implies conservation laws, but the converse statement may not be true.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Emergent symmetry

For quantum mechanical many-body systems, physicists have developed a notion of emergent symmetry over the past few decades.

• Topologically ordered system(e.g., toric code) is a canonical example.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• At this point, we do not have an analogue of Noether's theorem for emergent conservation laws.

Emergent symmetry

For quantum mechanical many-body systems, physicists have developed a notion of emergent symmetry over the past few decades.

- Topologically ordered system(e.g., toric code) is a canonical example.
- At this point, we do not have an analogue of Noether's theorem for emergent conservation laws.
 - One might argue that all we need to do is to identify the emergent symmetry and apply Noether's theorem, but this is not satisfactory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Emergent symmetry

For quantum mechanical many-body systems, physicists have developed a notion of emergent symmetry over the past few decades.

- Topologically ordered system(e.g., toric code) is a canonical example.
- At this point, we do not have an analogue of Noether's theorem for emergent conservation laws.
 - One might argue that all we need to do is to identify the emergent symmetry and apply Noether's theorem, but this is not satisfactory.
 - Any consistent fusion rules for boson/fermion must be equivalent to the multiplication rules of some irrep of some compact group. (Doplicher, Roberts)
 - For some anyon models, e.g., Fibonacci anyon model, their fusion rules are not described by a group.

Narrowing down the problem: algebraic theory of anyons

• The near-term goal of this program is to derive a general theory of anyons from plausible assumptions which do not invoke any symmetries.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Narrowing down the problem: algebraic theory of anyons

- The near-term goal of this program is to derive a general theory of anyons from plausible assumptions which do not invoke any symmetries.
 - No reference to the Hamiltonian either!
 - There exists a body of work in the algebraic quantum field theory literature, but I do not want to assume translational/Lorentz invariance.

Narrowing down the problem: algebraic theory of anyons

- The near-term goal of this program is to derive a general theory of anyons from plausible assumptions which do not invoke any symmetries.
 - No reference to the Hamiltonian either!
 - There exists a body of work in the algebraic quantum field theory literature, but I do not want to assume translational/Lorentz invariance.
 - Kitaev has ironed out such a theory, but he still starts with some axioms.(cond-mat/0506438, Appendix E) Our goal is to derive
 - 1. the axioms of this theory from a property of a single state,
 - 2. and identify the abstract objects in Kitaev's theory to the physical degrees of freedom.

In relation to Jeongwan's result

where $\Pi_D^a(\Pi_E^a)$ is a fundamental projector for a topological charge *a* over an annulus D(E).

In relation to Jeongwan's result

where $\Pi_D^a(\Pi_E^a)$ is a fundamental projector for a topological charge *a* over an annulus D(E).

Physical meaning: Superselection sectors are globally consistent.

In relation to Jeongwan's result

where $\Pi_D^a(\Pi_E^a)$ is a fundamental projector for a topological charge *a* over an annulus D(E).

Physical meaning: Superselection sectors are globally consistent. More concretely: There is an isomorphism between the logical algebras over different annuli.

Plan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Defining the charge sectors
- 2. Why charge sectors are globally well-defined
- 3. Consistency equations

Charge sectors : sets of quantum states Let's suppose we have a state $P = |\psi\rangle \langle \psi|$. Consider the following sets.

$S_{\bigcirc} = \{\rho | \mathsf{Supp}(\rho) = \bigcirc, \rho_{\bullet} = \mathrm{Tr}_{\bar{\bullet}}P\}$

 $S_{O} = \{ \operatorname{Tr}_{O} \rho | \rho \in S_{O} \}$

・ロト ・聞 ト ・ヨト ・ヨト

э

Charge sectors : convex set

 $S_{O} = \{ \operatorname{Tr}_{O} \rho | \rho \in S_{O} \}$

* So is a convex set, but convex sets come in different sizes and shapes.

Charge sectors: simplex assumption

This is the main weakness of our work at this point. I will need to assume the following statement.

Assumption:

$$S_{\mathbf{O}} = \{\rho | \rho = \sum_{i} p_{i} \rho_{i} \},$$

where $\sum_{i} p_{i} = 1$ and $\rho_{i} \perp \rho_{j} \forall i \neq j$.

* We call ρ_i as the extreme points of the set.

* This implies that there exists a set of orthogonal projectors $\{\Pi_i\}$ which project onto the support of ρ_i .

Charge sectors: simplex assumption

This is the main weakness of our work at this point. I will need to assume the following statement.

Assumption:

$$S_{\mathbf{O}} = \{\rho | \rho = \sum_{i} p_{i} \rho_{i} \},$$

where $\sum_{i} p_{i} = 1$ and $\rho_{i} \perp \rho_{j} \forall i \neq j$.

* We call ρ_i as the extreme points of the set.

* This implies that there exists a set of orthogonal projectors $\{\Pi_i\}$ which project onto the support of ρ_i .

Charge sectors: justifications

Assumption:

$$S_{\mathbf{O}} = \{\rho | \rho = \sum_{i} p_{i} \rho_{i} \},$$

where $\sum_{i} p_{i} = 1$ and $\rho_{i} \perp \rho_{j} \ \forall i \neq j$.

* This implies that there exists a set of orthogonal projectors $\{\Pi_i\}$ which project onto the support of ρ_i .

- {Π_i} coincides with the fundamental projectors in Jeongwan's work for exactly solvable models.
- Holevo information of the set is bounded by 2γ ($\gamma < \infty$: topological entanglement entropy).
- Perhaps it is possible to derive this from some condition.

Poké Ball condition

イロト イ団ト イヨト イヨト 二日

Poké Ball condition

* S(A|B) = S(AB) - S(B).

Why we expect Poké Ball condition to hold

$$S(A) \approx \alpha |\partial A| - \gamma$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

(Kitaev and Preskill 2006, Levin and Wen 2006) gives $S(A|B) + S(A|C) \approx 0$.

A brief recap in the middle

All the things discussed in the remaining slides(starting from the next one) follow from these three assumptions. 1. $\epsilon, \delta \rightarrow 0$.

2. Simplex assumption

$$S_{\bigcirc} = \{\rho | \rho = \sum_{i} p_{i} \rho_{i} \},$$

where $\sum_{i} p_{i} = 1$ and $\rho_{i} \perp \rho_{j}$ $\forall i \neq j$.

*I actually suspect that 3 implies 2, but I do not know how to show that.

First consider a state, $\left|\psi\right\rangle,$ which satisfies the Poké Ball condition everywhere:

 $S(A|B) + S(A|C) \approx 0$

First consider a state, $\left|\psi\right\rangle,$ which satisfies the Poké Ball condition everywhere:

 $S(A|B) + S(A|C) \approx 0$

First consider a state, $\left|\psi\right\rangle,$ which satisfies the Poké Ball condition everywhere:

 $S(A|B) + S(A|C) \approx 0$

$$S_{\bigcirc} = \{\rho | \mathsf{Supp}(\rho) = \bigcirc, \rho_{\bullet} = \mathrm{Tr}_{\bar{\bullet}}P \}$$

$$S_{\mathbf{O}} = \{ \mathrm{Tr}_{\mathbf{O}} \rho | \rho \in S_{\mathbf{O}} \}$$

Poké Ball condition implies that S_{\bigcirc} for all \bigcirc are isomorphic to each other.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consistency of the charge sectors: contraction lemma

Lemma

(Contraction lemma): If an annulus A is contained in A', $\forall \rho, \sigma \in S_{A'}$,

$$\|\rho - \sigma\|_1 \ge \|\operatorname{Tr}_{\mathcal{A}' \setminus \mathcal{A}}(\rho) - \operatorname{Tr}_{\mathcal{A}' \setminus \mathcal{A}}(\sigma)\|_1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof. Trivial

Consistency of the charge sectors: expansion lemma

Lemma

(Expansion lemma): If an annulus A is contained in A', and the Poké Ball condition is satisfied near A', $\forall \rho, \sigma \in S_{A'}$,

$$\|\operatorname{Tr}_{\mathcal{A}'\setminus\mathcal{A}}(\rho)-\operatorname{Tr}_{\mathcal{A}'\setminus\mathcal{A}}(\sigma)\|_1\geq \|\rho-\sigma\|_1-o(1).$$

Proof. Nontrivial. Uses 1405.0137.

More on expansion lemma, colloquially

Suppose we have two states, $|\psi_1
angle$ and $|\psi_2
angle$, such that

- They are close in trace distance over a subsystem A.
- They are close in trace distance over a set of (bounded) balls {*B_i*} in the neighborhood of *A*.
- In the balls, the Poké Ball condition is satisfied.

Expansion lemma says that, if $A \cup B_i$ has the same shape as A, then $|\psi_1\rangle$ and $|\psi_2\rangle$ are close in trace distance over $A \cup B_i$.

 $S(A|B) + S(A|C) \approx 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 $S(A|B) + S(A|C) \approx 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $S(A|B) + S(A|C) \approx 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What we want to show: $\forall i, \exists j \text{ such that } \Pi_{O,i} \sim \Pi_{O,j}$. Now let's see why.

イロト イポト イヨト イヨト

э

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

WLOG, choose $\rho_{\mathbf{0},i}$ to be one of the extreme points of $S_{\mathbf{0}}$. For $\rho_{\mathbf{0},\perp} = \sum_{j \neq i} \frac{1}{N} \rho_{\mathbf{0},j}$, $\|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 \le \|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 \le \|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 + o(1).$

WLOG, choose $\rho_{\mathbf{0},i}$ to be one of the extreme points of $S_{\mathbf{0}}$. For $\rho_{\mathbf{0},\perp} = \sum_{j \neq i} \frac{1}{N} \rho_{\mathbf{0},j}$, $\|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 = 2 = \|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 + \epsilon$. * The projector onto the positive eigenvalue subspace of $\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}$ picks out $\rho_{\mathbf{0},i}$ and annihilates all $\rho_{\mathbf{0},j\neq i}$ with error $O(N\epsilon)$. (Same for $\mathbf{0}$.)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

WLOG, choose $\rho_{\mathbf{0},i}$ to be one of the extreme points of $S_{\mathbf{0}}$. For $\rho_{\mathbf{0},\perp} = \sum_{j \neq i} \frac{1}{N} \rho_{\mathbf{0},j}$, $\|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 = 2 = \|\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}\|_1 + \epsilon$. * The projector onto the positive eigenvalue subspace of $\rho_{\mathbf{0},i} - \rho_{\mathbf{0},\perp}$ picks out $\rho_{\mathbf{0},i}$ and annihilates all $\rho_{\mathbf{0},j\neq i}$ with error $O(N\epsilon)$. (Same for $\mathbf{0}$.)

* We declare these projectors to be $\Pi_{\mathbf{O},i} \sim \Pi_{\mathbf{O},j}$.

* We can now unambiguously label all the charges lying inside an annulus by some *fixed universal set*, as long as the annuli can be deformed into one another without encountering \bigcirc .

Existence of the trivial charge

We learned that all the annuli have a canonical set of (almost) orthogonal projectors $\{\Pi_i | i = 1, \dots, N\}$. The index set, $\{i = 1, \dots, N\}$, is universal for all annuli. These indices represent the charge sectors.

Existence of the trivial charge

We learned that all the annuli have a canonical set of (almost) orthogonal projectors $\{\Pi_i | i = 1, \dots, N\}$. The index set, $\{i = 1, \dots, N\}$, is universal for all annuli. These indices represent the charge sectors.

* Let's first recall the expansion lemma.

Existence of the trivial charge

We learned that all the annuli have a canonical set of (almost) orthogonal projectors $\{\Pi_i | i = 1, \dots, N\}$. The index set, $\{i = 1, \dots, N\}$, is universal for all annuli. These indices represent the charge sectors.

For **O**, pick Π_i such that $\Pi_i \rho_{\mathbf{O}} \Pi_i \approx \rho_{\mathbf{O}}$. * You are guaranteed to have only one such Π_i ! * We denote this charge as 1.

Charge of a single localized excitation is trivial (on a sphere)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Consistency equations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Playing the same game, one can show that

- All the charges have their own unique antiparticles.
- Charges can be transported unitarily.

We are almost at the cusp of deriving the anyon theory!

Consistency equations

Playing the same game, one can show that

- All the charges have their own unique antiparticles.
- Charges can be transported unitarily.

We are almost at the cusp of deriving the anyon theory! We only need to prove the following list.

- Pentagon equation
- Hexagon equation
- Triangle equation

・ロト・雪ト・雪ト・雪・ 今日・

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

The projectors on \bigcirc and \bigcirc may not commute with each other. * This is reminiscent to an observation that the eigenvalues of (L^2, L_z) as well as (L^2, L_x) forms a set of good quantum numbers, but the eigenvalues of (L^2, L_z, L_x) do not.

Summary

We are at the cusp of deriving all the axioms of cond-mat/0506438(Appendix E) from the following set of assumptions: 1. $\epsilon, \delta \rightarrow 0$.

2. Simplex assumption

$$S_{\bigcirc} = \{\rho | \rho = \sum_{i} p_{i} \rho_{i} \},\$$

where $\sum_i p_i = 1$ and $\rho_i \perp \rho_j$ $\forall i \neq j$.

3. Poké Ball condition

 $S(A|B) + S(A|C) \approx 0$

Future directions

- We are still forcefully injecting the notion of charge from the very beginning.(Simplex assumption) I would like to be able to prove the simplex assumption from the Poké Ball condition.
- Now we can mechanically derive the axioms of the effective theory that describe interesting classes of quantum many-body systems at low energy.
 - I expect this machinery to be applicable in the presence of open boundary condition/higher dimensions.
- Classification of phases?
- A more general framework to derive conservation laws from entanglement analysis?

Future directions

- We are still forcefully injecting the notion of charge from the very beginning.(Simplex assumption) I would like to be able to prove the simplex assumption from the Poké Ball condition.
- Now we can mechanically derive the axioms of the effective theory that describe interesting classes of quantum many-body systems at low energy.
 - I expect this machinery to be applicable in the presence of open boundary condition/higher dimensions.
- Classification of phases?
- A more general framework to derive conservation laws from entanglement analysis?

Thank you!