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Conservation laws

• Charge conservation

• Energy-momentum conservation



Noether’s theorem

Noether’s theorem asserts that a continuous symmetry gives rise to
conservation laws.

• Conservation laws from symmetry

• It does not matter how complicated the action/Hamiltonian
looks like.

• However, the theorem only goes one way; symmetry implies
conservation laws, but the converse statement may not be
true.



Emergent symmetry

For quantum mechanical many-body systems, physicists have
developed a notion of emergent symmetry over the past few
decades.

• Topologically ordered system(e.g., toric code) is a canonical
example.

• At this point, we do not have an analogue of Noether’s
theorem for emergent conservation laws.

• One might argue that all we need to do is to identify the
emergent symmetry and apply Noether’s theorem, but this is
not satisfactory.

• Any consistent fusion rules for boson/fermion must be
equivalent to the multiplication rules of some irrep of some
compact group. (Doplicher, Roberts)

• For some anyon models, e.g., Fibonacci anyon model, their
fusion rules are not described by a group.
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Narrowing down the problem: algebraic theory of anyons

• The near-term goal of this program is to derive a general
theory of anyons from plausible assumptions which do not
invoke any symmetries.

• No reference to the Hamiltonian either!
• There exists a body of work in the algebraic quantum field

theory literature, but I do not want to assume
translational/Lorentz invariance.

• Kitaev has ironed out such a theory, but he still starts with
some axioms.(cond-mat/0506438, Appendix E) Our goal is to
derive

1. the axioms of this theory from a property of a single state,
2. and identify the abstract objects in Kitaev’s theory to the

physical degrees of freedom.
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In relation to Jeongwan’s result

S(A|B) + S(A|C ) ≈ 0 everywhere

A

B

C
→

D E

Πa
D ∼ Πa

E

where Πa
D(Πa

E ) is a fundamental projector for a topological charge
a over an annulus D(E ).

Physical meaning: Superselection sectors are globally consistent.
More concretely: There is an isomorphism between the logical
algebras over different annuli.
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Plan

1. Defining the charge sectors

2. Why charge sectors are globally well-defined

3. Consistency equations



Charge sectors : sets of quantum states
Let’s suppose we have a state P = |ψ〉 〈ψ|. Consider the following
sets.

S = {ρ|Supp(ρ) = , ρ = Tr¯P}

S = {Tr ρ|ρ ∈ S }



Charge sectors : convex set

S = {Tr ρ|ρ ∈ S }
* S is a convex set, but convex sets come in different sizes and
shapes.



Charge sectors: simplex assumption

This is the main weakness of our work at this point. I will need to
assume the following statement.

Assumption:

S = {ρ|ρ =
∑
i

piρi},

where
∑

i pi = 1 and ρi ⊥ ρj ∀i 6= j .
* We call ρi as the extreme points of the set.
* This implies that there exists a set of orthogonal projectors {Πi}
which project onto the support of ρi .
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Charge sectors: justifications

Assumption:

S = {ρ|ρ =
∑
i

piρi},

where
∑

i pi = 1 and ρi ⊥ ρj ∀i 6= j .
* This implies that there exists a set of orthogonal projectors {Πi}
which project onto the support of ρi .

• {Πi} coincides with the fundamental projectors in Jeongwan’s
work for exactly solvable models.

• Holevo information of the set is bounded by 2γ (γ <∞ :
topological entanglement entropy).

• Perhaps it is possible to derive this from some condition.



Poké Ball condition



Poké Ball condition

S(A|B) + S(A|C ) ≈ 0

A

B

C

* S(A|B) = S(AB)− S(B).



Why we expect Poké Ball condition to hold

A

B

C

S(A) ≈ α|∂A| − γ

(Kitaev and Preskill 2006, Levin and Wen 2006) gives
S(A|B) + S(A|C ) ≈ 0.



A brief recap in the middle

All the things discussed in the remaining slides(starting from the
next one) follow from these three assumptions.
1. ε, δ → 0.
2. Simplex assumption

S = {ρ|ρ =
∑
i

piρi},

where
∑

i pi = 1 and ρi ⊥ ρj
∀i 6= j .

3. Poké Ball condition

S(A|B) + S(A|C ) ≈ 0

A

B

C

*I actually suspect that 3 implies 2, but I do not know how to
show that.



Poké Ball condition → Global consistency of charge sectors

First consider a state, |ψ〉 , which satisfies the Poké Ball condition
everywhere:
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Poké Ball condition → Global consistency of charge sectors

S = {ρ|Supp(ρ) = , ρ = Tr¯P}

S = {Tr ρ|ρ ∈ S }
Poké Ball condition implies that S for all are isomorphic to
each other.



Consistency of the charge sectors: contraction lemma

Lemma
(Contraction lemma): If an annulus A is contained in A′,
∀ρ, σ ∈ SA′ ,

‖ρ− σ‖1 ≥ ‖TrA′\A(ρ)− TrA′\A(σ)‖1.

Proof.
Trivial



Consistency of the charge sectors: expansion lemma

Lemma
(Expansion lemma): If an annulus A is contained in A′, and the
Poké Ball condition is satisfied near A′, ∀ρ, σ ∈ SA′ ,

‖TrA′\A(ρ)− TrA′\A(σ)‖1 ≥ ‖ρ− σ‖1 − o(1).

Proof.
Nontrivial. Uses 1405.0137.



More on expansion lemma, colloquially

Suppose we have two states, |ψ1〉 and |ψ2〉, such that

• They are close in trace distance over a subsystem A.

• They are close in trace distance over a set of (bounded) balls
{Bi} in the neighborhood of A.

• In the balls, the Poké Ball condition is satisfied.

Expansion lemma says that, if A ∪ Bi has the same shape as A,
then |ψ1〉 and |ψ2〉 are close in trace distance over A ∪ Bi .

A Bi & A Bi → A Bi



Consistency of the charge sectors: an intermediate
conclusion
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Consistency of the charge sectors: an intermediate
conclusion

What we want to show: ∀i , ∃j such that Π
,i
∼ Π

,j
. Now let’s

see why.



Consistency of the charge sectors: localized excitations
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Consistency of the charge sectors: localized excitations

WLOG, choose ρ
,i

to be one of the

extreme points of S . For

ρ
,⊥ =

∑
j 6=i

1
N ρ ,j

,

‖ρ
,i
− ρ

,⊥‖1 ≤ ‖ρ ,i
− ρ

,⊥‖1
≤ ‖ρ

,i
− ρ

,⊥‖1 + o(1).

This means that
‖ρ

,i
− ρ

,⊥‖1 ≈ ‖ρ ,i
− ρ

,⊥‖1 ≈ 2.
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Consistency of the charge sectors: localized excitations

WLOG, choose ρ
,i

to be one of the

extreme points of S . For

ρ
,⊥ =

∑
j 6=i

1
N ρ ,j

,

‖ρ
,i
− ρ

,⊥‖1 = 2 = ‖ρ
,i
− ρ

,⊥‖1 + ε.

* The projector onto the positive
eigenvalue subspace of ρ

,i
− ρ

,⊥ picks

out ρ
,i

and annihilates all ρ
,j 6=i

with

error O(Nε). (Same for .)

* We declare these projectors to be
Π

,i
∼ Π

,j
.



Consistency of the charge sectors: localized excitations

WLOG, choose ρ
,i

to be one of the

extreme points of S . For

ρ
,⊥ =

∑
j 6=i

1
N ρ ,j

,

‖ρ
,i
− ρ

,⊥‖1 = 2 = ‖ρ
,i
− ρ

,⊥‖1 + ε.

* The projector onto the positive
eigenvalue subspace of ρ

,i
− ρ

,⊥ picks

out ρ
,i

and annihilates all ρ
,j 6=i

with

error O(Nε). (Same for .)

* We declare these projectors to be
Π

,i
∼ Π

,j
.



Poké Ball condition → Global consistency of charge sectors

* We can now unambiguously label all the charges lying inside an
annulus by some fixed universal set, as long as the annuli can be
deformed into one another without encountering .



Existence of the trivial charge

We learned that all the annuli have a canonical set of (almost)
orthogonal projectors {Πi |i = 1, · · · ,N}. The index set,
{i = 1, · · · ,N}, is universal for all annuli. These indices represent
the charge sectors.

* Let’s first recall the expansion lemma.

A Bi & A Bi → A Bi
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Existence of the trivial charge

We learned that all the annuli have a canonical set of (almost)
orthogonal projectors {Πi |i = 1, · · · ,N}. The index set,
{i = 1, · · · ,N}, is universal for all annuli. These indices represent
the charge sectors.

For , pick Πi such that Πiρ Πi ≈ ρ .
* You are guaranteed to have only one such Πi !
* We denote this charge as 1.



Charge of a single localized excitation is trivial (on a
sphere)



Consistency equations

Playing the same game, one can show that

• All the charges have their own unique antiparticles.

• Charges can be transported unitarily.

We are almost at the cusp of deriving the anyon theory!

We only
need to prove the following list.

• Pentagon equation

• Hexagon equation

• Triangle equation
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Consistency equations(flavor of the argument)

The projectors on and may not commute with each other.
* This is reminiscent to an observation that the eigenvalues of
(L2, Lz) as well as (L2, Lx) forms a set of good quantum numbers,
but the eigenvalues of (L2, Lz , Lx) do not.



Summary

We are at the cusp of deriving all the axioms of cond-mat/0506438
(Appendix E) from the following set of assumptions:
1. ε, δ → 0.
2. Simplex assumption

S = {ρ|ρ =
∑
i

piρi},

where
∑

i pi = 1 and ρi ⊥ ρj
∀i 6= j .

3. Poké Ball condition

S(A|B) + S(A|C ) ≈ 0

A

B

C



Future directions

• We are still forcefully injecting the notion of charge from the
very beginning.(Simplex assumption) I would like to be able to
prove the simplex assumption from the Poké Ball condition.

• Now we can mechanically derive the axioms of the effective
theory that describe interesting classes of quantum
many-body systems at low energy.

• I expect this machinery to be applicable in the presence of
open boundary condition/higher dimensions.

• Classification of phases?

• A more general framework to derive conservation laws from
entanglement analysis?

Thank you!
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