What is quantum field theory?

 quantun information theorist's journeyCedric Beny yand Tobias J.Osborne

$\frac{a^{2}}{4}+$

QFT in 45 minutes!

Q

$\left(x_{n}\right)_{n \in \mathbb{N}}$

where $\quad x_{n} \in \mathbb{Q}$

$$
d(x, y) \equiv|x-y|
$$

Cauchy sequence:

$$
\begin{aligned}
& \left(x_{n}\right)_{n \in \mathbb{N}} \\
& \text { such that }
\end{aligned}
$$

$\forall \epsilon \exists N(\epsilon), \forall m, n>N(\epsilon), d\left(x_{m}, x_{n}\right)<\epsilon$

= set of Cauchy sequences

$\left(x_{n}\right)_{n \in \mathbb{N}} \sim\left(y_{n}\right)_{n \in \mathbb{N}}$

 $\Leftrightarrow$$$
\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0
$$

\mathbb{R}

Classical fields

Field theory is hard

Classical approach: calculus

Pure field states are continuous functions

$\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$

Physical states are solutions to DEs

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}+m^{2} \phi=0
$$

Physical states are differentiable

Lagrangian is a data structure for equations of motion

$$
\mathcal{L}=\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}
$$

Physicist: put on hats!

$\phi \longmapsto \Phi$

Path integral

$\mathcal{L} \mapsto \int \mathcal{D} \phi e^{i S[\phi]}$

No Matter how Great and Destructive your Problems May Seem Now, Remember, You've Probabiy oniy Seen the Tip of Them.

Problem 1: quantisation is not a functor, it's an inverse problem

Quantisation: quantum theory with desired classical limit

$$
\mathcal{D} \circ \mathcal{Q}\left(\rho_{\mathrm{cl}}\right) \equiv \rho_{\mathrm{cl}}
$$

Problem 2: superpositions

$$
\left|\Phi_{1}\right\rangle+\left|\Phi_{2}\right\rangle+\cdots
$$

Principle to identify physical states?

Many attempts to deal with this:

CQFT, AQFT, ...

Wilson: QFT is effective, not fundamental!

Wilsonian view of QFT
"space" of all theories (parametrised by lagrangians \mathcal{L})

Task: find "submanifold" of QFTs

But \mathcal{S}_{\wedge} aren't QFTs

$\mathcal{S}_{\Lambda} \quad \mathcal{S}_{\Lambda^{\prime}}$ j_{Λ}
 $j_{\Lambda^{\prime}}$

Change cutoff: $\Lambda^{\prime} \geq \wedge$

$$
\mathcal{S}_{\Lambda} \xrightarrow[f_{\Lambda, \Lambda^{\prime}}]{ } \mathcal{S}_{\Lambda^{\prime}}
$$

$f_{\Lambda, \wedge^{\prime}}$: require large-scale n-pt correlation functions to be the same

Costello, K. (2011), Renormalization and effective field theory.

Fixed points are QFTs

Continuous limit:

Let $\Lambda \rightarrow \infty$ while keeping large-scale n-pt correlation functions constant

E
ξ_{0}

Zoom out

= fewer observables

Pinch to zoom

Fewer
 observables = simpler hypothesis

Wilsonian formulation

1. Space of regulated theories
2. Distance measure
3. Large-scale observables

Heisenberg picture

observables/effects:

(ordered unit space)

Quantum states are preparations:

$\omega: \mathcal{A} \rightarrow \mathbb{C}$

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4!} \lambda \phi^{4}
$$

1. Space of regulated theories \mathcal{A}_{a}

1. Space of regulated theories $\mathcal{A}_{\text {pre }}$

2. Space of regulated theories $\mathcal{A}_{\text {pre }}$

Can measure at resolution $1 / 2^{N}$

 or at resolution $1 / 2^{N+1}$
or

...
etc

$$
\widehat{x}_{j, \frac{1}{2^{N}}} \sim \frac{1}{\sqrt{2}}\left(\widehat{x}_{2 j, \frac{1}{2^{N+1}}}+\widehat{X}_{2 j+1, \frac{1}{2^{N+1}}}\right)
$$

1. Space of regulated theories

2. Distance measure

$$
D\left(\rho_{1}, \rho_{2}\right)^{2}=2\left(1-\sqrt{F\left(\rho_{1}, \rho_{2}\right)}\right)
$$

3. Large-scale observables

$$
\mathcal{E}_{\sigma}: \mathcal{A}_{\mathrm{reg}} \rightarrow \mathcal{A}_{\mathrm{reg}}
$$

$\mathcal{E}_{\sigma}:$ convolve with gaussian

$$
\mathcal{E}_{\sigma}\left(\widehat{x}_{j, a}\right)=\sum_{k, b} g_{j, k ; \sigma}(b-a) \widehat{x}_{k, b}
$$

$$
\mathcal{A}_{\sigma} \equiv \mathcal{E}_{\sigma}\left(\mathcal{A}_{\mathrm{reg}}\right)
$$

Observables at scale σ

 Large-scale distinguishability metric

Regulated QFT states
$\mathcal{S}\left(\mathcal{A}_{\text {reg }}\right)$ is full of holes!

We don't have a quantum field state yet

Quantum field state: Cauchy sequence of regulated field states

$\rho_{\text {field }} \equiv\left(\rho_{\Lambda_{1}}, \rho_{\wedge_{2}}, \rho_{\Lambda_{3}}, \ldots\right)$

$$
\forall \epsilon, \exists N(\epsilon), \forall j, k>N(\epsilon)
$$

$$
D_{\sigma}\left(\rho_{\wedge_{j}}, \rho_{\wedge_{k}}\right)<\epsilon
$$

Quantum field state:
such that

$$
D_{\sigma}\left(\rho_{\Lambda_{j}}, \rho_{\lambda u}\right) \rightarrow^{\prime \prime} 0
$$

$\mathcal{S}_{\text {field }} \equiv \widehat{\mathcal{S}}\left(\mathcal{A}_{\text {reg }}\right) / \sim$

Building Cauchy sequences

 $8{ }^{2} \mathrm{y}$$\widehat{H}_{N}\left(\mu_{N}, \lambda_{N}\right)=a_{N} \sum_{j \in \mathbb{Z}} \frac{\widehat{p}_{j}^{2}}{2 a_{N}^{2}}+\frac{\left(\widehat{x}_{j}-\widehat{x}_{j+1}\right)^{2}}{2 a_{N}^{2}}+\frac{\mu_{N}^{2}}{2} \widehat{x}_{j}^{2}+\frac{\lambda_{N}}{4!} \widehat{x}_{j}^{4}$

$$
a_{N}=\frac{1}{2^{N}}
$$

$\rho_{N} \sim \rho\left(\mu_{N}, \lambda_{N}, \beta_{N}\right) \equiv \frac{e^{-\beta_{N} \widehat{H}_{N}\left(\mu_{N}, \lambda_{N}\right)}}{\mathcal{Z}_{N}}$

How must $\mu_{N}, \lambda_{N}, \beta_{N}$ run with N to make

 $\mathcal{E}_{\sigma}^{*}\left(\rho_{N}\right)$a Cauchy sequence?

Nobody knows

CLOSE ENOUGH

$$
\rho_{N}=\rho_{N}^{(0)}+\rho_{N}^{(1)} \lambda_{N}+\rho_{N}^{(1)} \frac{\lambda_{N}^{2}}{2!}+\cdots
$$

$(3+1) D:$

$$
\lambda_{N+1}-\lambda_{N} \approx \frac{3}{16 \pi^{2}} \lambda_{N}^{2}
$$

RG flow equation:

 recipe to construct Cauchy sequences of states

