What is quantum field theory? A quantum information theorist's journey

Cedric Beny and Tobias J. Osborne

Leibniz Universität Hannover

-

QFT in 45 minutes!

√2 =

1 1.4 1.41 1.414 1.4142 1.41421 1.414214 1.4142136 1.41421356 1.414213562

where $x_n \in \mathbb{Q}$

$d(x, y) \equiv |x - y|$

Cauchy sequence:

$(x_n)_{n\in\mathbb{N}}$

such that

 $\forall \epsilon \exists N(\epsilon), \forall m, n > N(\epsilon), d(x_m, x_n) < \epsilon$

$(x_n)_{n\in\mathbb{N}}\sim (y_n)_{n\in\mathbb{N}}$

 $\lim_{n\to\infty}(x_n-y_n)=0$

Classical fields

Field theory is **hard**

Classical approach: calculus

Pure field states are continuous functions

Physical states are solutions to DEs

Physical states are differentiable

Lagrangian is a **data structure** for equations of motion

$\mathcal{L} = \partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2$

Physicist: put on hats!

Path integral

 $\mathcal{L} \mapsto \int \mathcal{D} \phi \, e^{i S[\phi]}$

tuckern, Cartwright, and Govindinaju mation of the local ridge orientations, dusis. The probability of a given r value block) is computed as the marginal den where $p(r,\theta) = \frac{|F(r,\theta)|}{\int |F(r,\theta)| dr d\theta}$

the block is estimat

Problem 1: quantisation is **not** a functor, it's an **inverse problem**

Quantisation: quantum theory with desired classical limit

$\mathcal{D} \circ \mathcal{Q}(\rho_{cl}) \equiv \rho_{cl}$

Problem 2: superpositions

$|\phi_1\rangle + |\phi_2\rangle + \cdots$

Principle to identify **physical states**?

Many attempts to deal with this:

CQFT, AQFT,

Wilson: QFT is effective, not fundamental!

Wilsonian view of QFT

"space" of **all** theories (parametrised by lagrangians \mathcal{L})

Task: find "submanifold" of QFTs

Space of regulated theories S_{Λ}

But S_{Λ} aren't QFTs

Change cutoff: $\Lambda' \geq \Lambda$

$f_{\Lambda,\Lambda'}$: require **large-scale** *n*-pt correlation functions to be the **same**

Costello, K. (2011), Renormalization and effective field theory.

Fixed points are QFTs

Continuous limit:

Let $\Lambda \rightarrow \infty$ while keeping large-scale *n*-pt correlation functions constant

Zoom out = fewer observables

Pinch to zoom

Fewer observables = simpler hypothesis

Wilsonian formulation

- 1. Space of regulated theories
- 2. Distance measure
- 3. Large-scale observables

Heisenberg picture

observables/effects:

(ordered unit space)

Quantum states are preparations:

$\omega:\mathcal{A}\to\mathbb{C}$

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} \lambda \phi^4$

1. Space of regulated theories \mathcal{A}_a

1. Space of regulated theories \mathcal{A}_{pre}

1. Space of regulated theories \mathcal{A}_{pre}

Can measure at resolution 1/2^N **or** at resolution 1/2^{N+1}

or

etc

 $\widehat{X}_{j,\frac{1}{2^N}} \sim \frac{1}{\sqrt{2}} \left(\widehat{X}_{2j,\frac{1}{2^{N+1}}} + \widehat{X}_{2j+1,\frac{1}{2^{N+1}}} \right)$

1. Space of regulated theories

$\mathcal{A}_{\rm reg} \equiv \left(\bigoplus_{N=0}^{\infty} \mathcal{A}_{\frac{1}{2^N}} \right) \Big/ \sim$

2. Distance measure

$D(\rho_1, \rho_2)^2 = 2(1 - \sqrt{F(\rho_1, \rho_2)})$

3. Large-scale observables

Too many observables!

 $\mathcal{E}_{\sigma}: \mathcal{A}_{\mathrm{reg}} \to \mathcal{A}_{\mathrm{reg}}$

\mathcal{E}_{σ} : convolve with gaussian

$\mathcal{A}_{\sigma} \equiv \mathcal{E}_{\sigma}(\mathcal{A}_{\mathrm{reg}})$

Observables at scale σ

$D_{\sigma}(\rho_1,\rho_2) \equiv D(\mathcal{E}_{\sigma}^*(\rho_1),\mathcal{E}_{\sigma}^*(\rho_2))$

Large-scale distinguishability metric

$\mathcal{S}(\mathcal{A}_{\mathrm{reg}}) \equiv \{f : \mathcal{A}_{\mathrm{reg}} \to \mathbb{C} \mid f(\mathcal{A}_{\mathrm{reg}}^+) \geq 0\}$

Regulated QFT states

$S(A_{reg})$ is full of holes!

We don't have a quantum field state yet

Quantum field state: Cauchy sequence of regulated field states

$\rho_{\text{field}} \equiv (\rho_{\Lambda_1}, \rho_{\Lambda_2}, \rho_{\Lambda_3}, \ldots)$

$\forall \epsilon, \exists N(\epsilon), \forall j, k > N(\epsilon)$

 $D_{\sigma}(\rho_{\Lambda_j},\rho_{\Lambda_k})<\epsilon$

Quantum field state: J *, ∕* ∕ ∧, 0 ->1/2 K Pr ပ Pfield $\int h_{3}$ Such that $D_{\sigma}(P_{N_{5}}, P_{n_{h}}) \xrightarrow{"} 0$

Building Cauchy sequences

$$\widehat{H}_{N}(\mu_{N},\lambda_{N}) = a_{N} \sum_{j \in \mathbb{Z}} \frac{\widehat{p}_{j}^{2}}{2a_{N}^{2}} + \frac{(\widehat{x}_{j} - \widehat{x}_{j+1})^{2}}{2a_{N}^{2}} + \frac{\mu_{N}^{2}}{2}\widehat{x}_{j}^{2} + \frac{\lambda_{N}}{4!}\widehat{x}_{j}^{4}$$

$$a_N = \frac{1}{2^N}$$

How must μ_N , λ_N , β_N **run** with *N* to make

 $\mathcal{E}_{\sigma}^{*}(\rho_{N})$

a Cauchy sequence?

Nobody knows

CLOSE ENOUGH

$\rho_N = \rho_N^{(0)} + \rho_N^{(1)} \lambda_N + \rho_N^{(1)} \frac{\lambda_N^2}{2!} + \cdots$

RG flow equation: recipe to construct Cauchy sequences of states

