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Background

An [n, k ,d ] binary linear codes

An (n − k)× n parity check matrix H with binary entries.
Codewords are the n-bit strings x which live in the kernel of H:

C =
{

x ∈ {0,1}n : Hx = 0
}

(arithmetic is binary throughout).
Assuming that the rows of H are linearly independent, there are
2k strings in C.

The code encodes k bits.

The shortest non-zero string in C has weight d , and this defines
the minimum distance of the code.
A bit flip error on codeword x produces y = x + e.
The syndrome of y is s ≡ Hy = H(x + e) = He.
The syndrome s = He gives us partial information about e and
decoding consists in inferring e from this partial information.
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Background

Tanner graphs

Repetition code [7,1,7]

H =



1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1


Is 6× 7 so k = 1
C = {0000000,1111111}.
We see that d = 7.

Check nodes
Bit nodes
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Background

Tanner graphs

Hamming code [7,4,3]

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


Is 3× 7 so k = 4
C =
span{1110000, 1001100, 0101010, 1101001}.

We see that d = 3.
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Background

Generating matrix

For the Hamming code, we had
C = span{1110000,1001100,0101010,1101001}.
We can arrange these into the columns of a generating matrix

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


The code C is the image of G:

For any z ∈ {0,1}k , Gz is a codeword.
HG = 0.
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Background

Sparse codes

A sparse code, or low density parity check (LDPC) code is one
whose parity check matrix is row and column sparse.

There are no more than λr nonzero entries per row.
There are no more than λc nonzero entries per colmn.

It’s easy to recognize an LDPC code from its Tanner graph.
In a quantum setting, where extracting a syndrome implies
actually measuring the corresponding checks, low weight is a
blessing!
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Background

Random codes

Define the binary entropy h(p) = −p log p − (1− p) log(1− p).
(Logarithm is base 2)
Pick the (n − k)× k binary entries of H at random.
With very high probability

The n − k rows of H are linearly independent, so the code encodes
k bits.
The code can ’correct’ typical bit-flip errors provided the bit-flip
probability p obeys k

n < 1− h(p).

By ’correct’, we mean that typical errors all have different
syndromes, so they can in principle be uniquely identified from
their syndrome.
It is not known how to do this decoding efficiently for random
codes.
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Fault tolerance

Syndrome errors

For the purpose of this talk, fault tolerance will refer to something
very simple:

The syndrome bits are not reliable.

Bits/qubits are subjected to errors with error-rate p.
The syndrome s is measured on the corrupted string.
The syndrome bits are subjected to a bit-flip noise with rate q.
We will consider the ’symmetric’ case p = q for simplicity.

This is ofter referred to as the ’phenomenological noise model’.
A more detailed noise model would consider how the syndrome
bits are measured and how errors in that measuring circuit
propagate.
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Fault tolerance

Repeated syndrome measurements

Repeated syndrome measurements is a good way to cope with
syndrome errors.
We can’t just naively take the majority vote among the syndrome
bits since additional errors can occur in between syndrome
measurements, so they are not meant to agree even in the
absence of syndrome errors.
For the toric code, this leads to a picture of flux tubes in a 3D bulk
with endpoints corresponding to a change of syndrome between
consecutive measurements.
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Single shot fault-tolerance?

Is it possible to do fault-tolerant quantum error correction without
repeating the syndrome measurements?
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Single shot fault-tolerance? Random codes

Extra Bits

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


H′ =

 1 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
0 0 1 0 0 0 1 1 1 1



In general, H → (I|H).
An [n, k ,d ] code→
An [2n − k ,n,d ′ ≤ d ] code.

⇳
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Single shot fault-tolerance? Random codes

Normal form

Every parity check matrix can be put in the form H = (I|A) for
some matrix A:

Since C is the kernel of H, it does not change when we do row
manipulations on H.
By row manipulations (Gaussian elimination) we can put any matrix
in normal form H = (I|A).

I can think of H ′ = (I|H) as a parity check matrix in normal form.
Suppose I start with a random (2n − k)× n binary matrix and put
it in normal form to get H ′ = (I|H).
The matrix H will also be randomly distributed.
But H ′ being a random code can correct typical errors provided
k ′

n′ =
n

2n−k < 1− h(p), or equivalently

R =
k
n
<

1− 2h(p)
1− h(p)
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Single shot fault-tolerance? Random codes

Optimality?

Another way of deriving this upper bound is to say that
the number of bits of information learned about the noise, which is
n − k , the number of syndrome bits
equals the entropy produced by the noise, which is h(p)× (number
of bits + number of syndromes) = h(p)(2n − k).

But this argument does not require the rows of H to be
independent, since the rows of H ′ = (I|H) are linearly
independent regardless.
Linear dependencies among the rows of H increases the rate
since some of the constraints are redundant.

To what extent can we increase the rate of the code by making rows
of H redundant while keeping H ′ a good code?
Does this count as single-shot? We would be making redundant
measurements.
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Single shot fault-tolerance? Random codes

Phenomenological noise?

In a random code, each check involves about n/2 bits.
When measuring such a high-weight operator, errors will build up.
It is not reasonable to assume that syndrome bits are accurate
with probability 1− p whit a small p.
This phenomenological noise model is only decent when check
operators are simple, i.e., for LDPC codes.
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Single shot fault-tolerance? Sparse codes
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Single shot fault-tolerance? Sparse codes

Sparse codes cannot be single-shot FT

The ’distance’ of the code H ′ = (I|H) is at most λc + 1
An error on a single bit along with an error on the ≤ λc connected
checks goes undetected.
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Single shot fault-tolerance? Sparse codes

Sparse codes cannot be single-shot FT

The generating matrix associated to H ′ is G′ =
(

H
I

)

H ′G′ = (I|H)

(
H
I

)
= H + H = 0.

If H is sparse, then so is G′, so the corresponding codes has
many low-weight codewords; it’s a bad code.
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Single shot fault-tolerance? Sparse codes

Relation to self correction

For typical errors, we need |s(E)| > |E |.
Self-correction requires |s(E)| > |E |δ for δ > 0?
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Single shot fault-tolerance? Weaker notion?
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Single shot fault-tolerance? Weaker notion?

Bounded error growth

Error correction has increased the size of the error.
Condition: |EC(E)| < |E |?
A decoder which takes into account the fact that syndrome can be
faulty would not have increased the error size.

Is the 1D Ising chain single-shot FT?
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Single shot fault-tolerance? Weaker notion?

Self-correction not enough?

2D Ising ferromagnet

Error correction has increased the error from E ∼ L to
EC(E) ∼ L2.
Again an informed decoder would not have done this.
Should the right condition be |EC(E)| < |E |c for c > 0?
An operational definition would be nice!
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Single shot fault-tolerance? Weaker notion?

Bombin’s definition

τ = Syndrome temperature, how much it’s confined.
ε = Logical error rate.
η = Syndrome error rate.

ECη ◦ Eτ,ε ∼ Eτ ′,ε+δ

η → 0 ⇒ τ ′ → 0 .
L→∞ ⇒ δ → 0.
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ε = Logical error rate.
η = Syndrome error rate.

ECη ◦ Eτ,ε ∼ Eτ ′,ε+δ

η → 0 ⇒ τ ′ → 0 .
L→∞ ⇒ δ → 0.

I need to sober up to think about that one!
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Conclusion

Summary

Strict single-shot error correction with a phenomenological noise
model is possible using random codes.

Derived a lower bound on achievable rate.
Upper bound depends on what counts as single-shot.
Phenomenological noise model not justified in this setting.

Strict single-shot error correction is not possible with sparse
codes, where the phenomenological noise model is justified.
What is the right notion of single-shot error-correction and what
does it imply operationally?
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