Quantum Deep Learning

Nathan Wiebe, Ashish Kapoor and Krysta Svore
Microsoft Research

Coogee Workshop 2015
Coogee Bay, Australia

1412.3489

The problem in artificial intelligence

* How do we make computers that see, listen, and understand?

* Goal: Learn complex representations for tough Al problems

-j-—- I p;—\-' NP P e —
* Challenges a .15--—' S B i P ¢
"' = w5 of limited data

. Terabyte
© No “silve™ F= I 2=y A i o ..‘L,
© Good neliA \, ¥ 15-10 years
,) ST IS
- Can we autEh By | S WSS WS W R k27 Nand high levels?

-
© DoesquanfaiaE T g " & S T

Microsoft Proprietary

An item (sample) in a data set can be represented as a vector.
Each component of the vector is called a feature.

Example:
An image is represented as a vector of gray-scale pixel values

A /[

Each pixel is a feature

Supervised:
Each training sample has a “gold-standard” label

3‘

Label: “2” or “Even” Label: “1” or “Odd”

Unsupervised:
Labels are not provided for the data

p——

-

Deep networks learn complex
representations

Desired outputs object recognition

/
!

H High-level features object properties

Mid-level features textures

Low-level features edges

Input pixels

Associative memories

Training Samples Generated Samples

il JLEE R |

L || s x|«
AR AL S AR

Salakudinov and Hinton: Training a deep Boltzmann machine with 12,000 hidden units, 3 layers.

Deep learning has resulted in significant improvements in last 2-3
years

30% relative reduction in error rate on many vision and speech tasks

],cﬂ‘pprc))aching human performance in limited cases (e.g., matching 2
aces

New classical deep learning methods already used in:
Language models for speech
Web query understanding models
Machine translation
Deep image understanding (image to text representation)

Primary challenges in learning

Desire: learn a complex representation (e.g., ft can we learn a more complex

Intractable to learn fully connected graph = p representation on a quantum
Pretrain layers? computer?
Learn simpler graph with faster train time?

Desire: efficient computation of true gradient

Intractable to learn actual objective = [can we learn the actual objective (true
Approximate the gradient? ~gradient) on a quantum computer?

Desire: training time close to linear in number of training examples
Slow training time = slower speed of innovation

Build a big hamm Can we speedup model training on a
Look for algorithn guantum computer?

Microsoft Proprietary

Deep learning networks

High-level features object properties

Mid-level features textures
Low-level features edges
Input pixels
Visible units are observable (training vector) < Training involves changing the interaction
Hidden units are not directly observed strengths to minimize energy for training vectors
Both units take 0,1 values * Interactions set according to Gibbs distribution

Microsoft Proprietary

Restricted Boltzmann Machine

* Energy based model

Bl LD, T
VIILTUSUTL T'TUPTITLAI

Restricted Boltzmann Machine

Energy based model

1 1 0 Hidden units

Energy penalty applied
if connected bits have the

same value.
‘ a ‘ ° Visible units

Deep Restricted Boltzmann Machine

Hidden units

Higher-level features

Probability of a (v, h) configuration is given by the Gibbs distribution:

e—E(v,h)
P(v,h) = Z

Energy is given by
E(v,h)

0 R S I A
; j L 2

Equivalent to an Ising model on a bipartite graph

Defines a probability distribution based on an energy function over
binary vectors v € {0,1}" and h € {0,1}™

“Visible” units “Hidden” units
e—E(v,h)
P(v,h) = - P(v) = Z P(v, h)
he{0,1}™

“Weights” connecting
hidden and visible units

E(w,h) = —=bIv— b, h — AT Wv

“Partition” Function | —— 7 = E E e EWh)
(Exponential Sum)
ve{0,1}™ he{0,1}™m

Goal: find weights and biases for the edges such that the average
log-likelihood of obtaining the training data from the BM is
maximized

Oy = Ndlata z log (2}1: P(v, h))

VEdata

In practice, a regularization term Aw’w is added to 0,;; to
combat overfitting to the training data

(b7, b™, w) 1 Z 1 EQ_E(M)
,b™, w) = argmax 0
: Ndata £ A

vedata h
Perform gradient ascent to find the best weights and biases

20
ML

=< v;h; >, —
Easy: D(v, h) = P(h|v)D(v) alvvl’] | data odel

00, \

Hard: Requires exponential sum

Factorizes Trivial to sample Wi,j — Wi;j T
aWi’ j

Problem: there are an exponential number of configurations in the
model!

The expectation value over the data is easy for the RBM

The conditional probability of hidden units given visible units can
be efficiently calculated:

P(hj = 1‘1}) = sigmoid (2 Wh v bj>
v

Conty.
astj .
(Hinto . Ve Dj

Use contrastive divergence: perform/® Apor ?002)
the hidden units and then use those OXim

radi Oles ¢ .
Let v'~D(v) be a random training pq ® /i ;:;)eezt! b des’red
Compute P(h'|v"); Sample h'from Of an al, no
Compute P(v|h'); Sample v from
Compute P(h|v)
Return P(h|v)

The expectation over the model is exp

Training RBM - Classical

for each epoch //until convergence
for 1=1:N //each training vector
cD(V_1, W) //CD given sample V_1 and
parameter vector W
dLdw += dLdw //maintain running sum
end

W=w+ (A/N) dLdw //take avg step
end

CD Time: # Epochs x # Training vectors x # Parameters

ML Time: # Epochs x # Training vectors x (# Parameters)? x 21Vl +1hl

Training RBM - Quantum

//until convergence

//each training vector
//gML: Use Mean Field
Approx. to sample P(v,h)

dLdw += dLdw, B/ /magntain running sum

\
Sni W+ /N NO aRAY

for each epoch
for 1=1:N
gML(V_1, W)

e avg step
end

gML Time ~ # Epochs x # Training vectors x # Parameters | | |

gML Size (# qubits) for one call WikA

Directly prepare a coherent analog of the Gibbs state (a close
approximation) on a quantum computer

The required expectation values for the ML-objective gradient
can be found by sampling the output

Bwi’j

= < Vil >gqata — < Vilj Spodel

Classically compute a mean-field approximation to Gibbs state
Prepare the mean-field state on a quantum computer

Refine the mean-field state into the Gibbs state by using
measurement and post selection

Measure the state and infer the likelihood gradient from the
measurement statistic

Tora = /1

Mean-field approximation

(H,uz (1— j15)*)(Hu (1—v;)})

Assume the mean-field parameters and partition functions are a
priori known

K is provided such that

—FE(v,h)
P(v,h) < -

v, h
7 kQ(v, h)

The mean-field state can be prepared using a series of single-
gubit rotations

[YvE) HR (2arcsin(y/p:)) |0) HR (2 arcsin(y/v; Z|fu h) /Q(v, h).

J v,h

Using the value of k and Z,,r, the likelihood ratio can be
bounded
P(v, h) g e~ E@h)

Qw,h) — ZurQ(v, h)

Furthermore by dividing this through by k we guarantee that

P(v, h) B B (Ul
kQ(v, h) ZMFKQ(U h) —
Q(v, h)P(v,h) < P(v, h) Call this P (v, h)

<1

If we can prepare the state)., h\/Q(v h) |v)|h) and multiply it by
P (v, h) then the resulting state is proportional to P(v, h)

Add a quantum register to compute P (v, h)
Compute the likelihood ratio in superposition to efficiently prepare:

Z\/ v, h) vy |h) |P(v, h))|0) I—>Z\/ v, h) vy |h) |P(v, h)) (\/1— h)|0>+\/73(f07h)|1>>.

v, h

R,(2sin ! (P(v,h)))

v,h

If “1” is measured on last qubit then the resultant state is the Gibbs
state

Th‘ / Z In'l E-:—E (v.h) / Z
'Q(v,h)P(v,h) = 1/ = v) |h) =4/ v P(v,h)|v) |Rh)
am > _VQw.hP(v,h \ HZMF;\ ~ \ "“EZMI’E,Z: Vv P(v,h) |v) |h)

v.h

Entire algorithm: GEQS

Input: Initial model weights w, visible biases b, hidden biases d, edge set F' and k, a set of training vectors Ttrain, a regularization
term A, and a learning rate r.
Output: Three arrays containing gradients of weights, hidden biases and visible biases: gradMLw, gradMLb, gradMLd.
fori=1: N¢an do
success + 0
while success =0 do
|1)) <— qGenModelState(w, b, d, E, k)
success < result of measuring last qubit in [¢)
end while
modelVUnits[i] < result of measuring visible qubit register in |¢).
modelHUnits[i] <— result of measuring hidden unit register in [¢)) using amplitude amplification.
success + 0
while success =0 do
|1)) <~ qGenDataState(w, b, d, E, K, Ttrain[]).
success < result of measuring last qubit in |1)) using amplitude amplification.
end while
dataVUnits[i] <— result of measuring visible qubit register in [¢).
dataHUnits[i] ¢ result of measuring hidden unit register in |1)).
end for
for each visible unit 7 and hidden unit 7 do

gradMLw[z, j] < 7 (L Zf:;’f‘i“ (dataVUnits|k,:]dataHUnits[k, j] — modelVUnits[k, ijmodelHUnits[k, j|) —)\uri,j).

Ntrain

gradMLb[i] 7 (ﬁ g;rfi“ (dataVUnits|k, i| — modelVUnits|k, z]))

gradMLd[j] < r (; kN;rfi“ (dataHUnits|k, j| — modelHUnits[k,j])).

Ntrain
end for
Microsoft Proprietary

Our algorithm:

0, <Nu~amE \/ Kk -+ max H,,U)
v

Compared to contrastive divergence on a £-layer graph

P

0, (A'Tt rain FE)
Our method trains multi-layer graphs faster and allows intra-layer
connections 1
Qubits: O (nh +n, + log;)

Can be slow if k is large; can be overcome by adjusting units and
regularizer

The entire construction could potentially fail

If underestimated then the assumption
P(v, h) e E@h)

< <1
KQ (U, h) KZMFQ(U: h)

may be false

An upper bound of 1 is needed to ensure that you can perform
the rotation properly

The simplest solution is to clip the likelihood ratio P(v, h) to 1 if
a ratio greater than 1 is observed.

Z\/ v, h) vy |h) |P(v, h)) |0) |—>Z\/ v, h) vy |h) |P(v, h)) (\/1— v h)|0>+\/73(v,h,)|1>).

v, h v, h

This can be done in quantum superposition.

An estimate of k that minimizes the fraction of the probability

distribution that you reject can be found by statistical sampling
on a classical computer.

Amplitude estimation is just phase estimation using Grover’s
search oracle as a unitary.

The eigenvalues of the oracle depend on the overlap between
two states so phase estimation gives probability of overlap.

This can quadratically reduce the number of samples needed.

You can train without looking at the entire data set.

Oracle to access data: Uoli)ly) = |i)|y @ x3)

Prepare a uniform superposition over all the training vectors and
repeat the same algorithm

S o) >IF>(;1_;D{.p--?.__wm—\i..f"’P{.;-f_.w1>)

rain ;

Use amplitude estimation to learn the probability of measuring “1”.

Use amplitude estimation to learn the probability that a given hidden
or visible unit is “1” and the above qubitis “1”

P(v; = h; =1 (N success
P(vi = h; = 1|Success) = (l stuccess))

Entire algorithm: GEQAE

Input: Initial model weights w, visible biases b, hidden biases d, edge set F and k, a set of training vectors Itrain, a regularization

term A, 1/2 > A > 0, a learning rate r, and a specification of edge (7, 7).

901,

Output: r—_ > calculated to within error 2rA.
ij

Call Up once to prepare state |1) + \/ﬁ Y perpn IP) [T0)-

|1)) +— qGenDataState(w,b,d, E, k, |1)). > Apply Algorithm 2 using a superposition over x, rather than a single value.
Use amplitude estimation on state preparation process for [¢0) to learn P([xp]; = h; = success = 1) within error A/8.

Use amplitude estimation on state preparation process for |¢)) to learn P(success = 1) within error A/8.

e P([zp|i=hj=success=1)
<U@h‘3’ >da,ta. — P (success=1)

Use amplitude estimation in exact same fashion on qGenModelState(w,b.d, E, k) to learn (vih;) ...

a0
Whﬁ —r ((U%’hﬂdata - (i'}"—hﬁmc’del)

Microsoft Proprietary

The query complexity of estimating all the gradients within error
1/+/Nirain Using amplitude estimation is

()(Nirain B f%—m X /R)

The non-query complexity scales as

() (\af ‘\Ttrain E2 { R T 111;:‘.1?{ HI })

Quadratically worse scaling with the number of edges and k

May be more practical for problems that use extremely large
training sets.

Parallelization of learning

* Large amounts of training data imply parallelization is important
* May want to train in mini-batches
* Achieve improved depth over classical CD

CD-k O(ﬁa€2 log(M Nirain))
GEQS O (mg([ﬁ. + max H.m]ﬂmvtm))
GEQAE O (\/E\Ttmjn K+ max Ko log(ﬂ»-;ff?))

\ Microsoft Proprietary

How much advantage can we gain from avoiding CD
approximation?

How large does k tend to be in practice?
How badly does noise in the ML gradient affect the learning?

Are there advantages to using unrestricted Boltzmann
machines?

Standard datasets are too large to numerically investigate

Prepare synthetic data

(Vector 1) (Vector 3)

(Vector 2) (Vector 4)

Overlap with Gibbs state

1 — S 1 —= — _
0.9 / T 09| /) o
- -~ ! ~ - —
—. 08} y /j/ ~. 08}/ L7 L
Sy / ;/ / Sy / s T
- 07 ; o 07} / S
. | / 2 Ny
A, osf ' A, 06
o5’ / Sos/ /
s |1/ = /
'l
W04 / W opaf f,/
-E. ,."l.l -ﬁ.- .-";
= 03k = 03l
(A 02 A 02
0.1 0.1
10° 10' 107 10° 10° 10' 10° 10°
Iy Y

Figure 2: Probability mass such that P(v,h) < 1 vs x for RBMs trained on (22) with n;, = 8
and n,, = 6 (left) and n,, = 12 (right). Dashed lines give the mean value; solid lines give a 95%
confidence interval.

Microsoft Proprietary

CD-ML experiment: randomly choose weights and train system

«

\ //ML Optima

Initial model
CD Optima

What is the distance between optima?
What are the differences in their qualities?

Mean relative distance between ML and CD optima

CD and ML learn different parameters!

0.045¢ g 0.045¢+
....... nV=6 § nV=6
oo4t T nv=s o o004t T nv=_
— — — nv=10 O = e — — —nv=10
nv=12 2 T~ nv=12
0.035¢ © 0.035} R _
, = T~
003 — - — — 7 — = _ _ ® o0.03f P - T T - LTl
’ N o — E P —
- — = P
—_ 0
0.025¢ - Q 0.025}
c
S
[2]
0.02} T 0.02¢
(]
=
0.015} B 0.015}
o=
©
o}
001 1 1 1 1 1 2 001 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Noise in data Noise in data

Microsoft Proprietary

Significant differences between learning the objective function

with CD and ML for a 3-layer dRBM

Complex models

penefit from ML training!

Ny | Mh1 | Mp2 CD ML % Improvement
G | 2 2 | =2.7623 | —2.7125 1.80

G | 4 4 | —2.4585 | —2.3541 4.25

6 6 6 | =2.4180 | —=2.1968 9.15

8 | 2 2 | —=2.8503 | —3.5125 —23.23

8 4 4 | =2.8503 | —=2.6505 7.01

8 | 6 4 | =2.7656 | —2.4204 12.5

10| 2 2 | —3.8267 | —4.0625 —6.16

0] 4 4 | —3.3329 | —2.9537 11.38

0] 6 4 | —=2.9997 | —2.5978 13.40

We provide new quantum algorithms for learning using deep
Roltzmann machines.

Operations Qubits Exact
CD O(Nipuin(E) 0 N
GEQS O(Nigain E(V/K + max, /7)) O(np + ny, + log(1/€)) Y
GEQAE O(v/Newain E2(\/F + max, VEz)) O(ny +ny, +log(1/€)) Y
GEQAE (QRAM) (]{\/EEE(\/I + max, \/kz)) | O(Nirain + np + 1 + log(1/€)) Y

AVOIU greeay idyer-py-idayer udining

Generalize to full unrestricted Boltzmann machines

May lead to much smaller models or more accurate models

How can we take advantage of the “quantumness” of
Hamiltonians for learning?

Does quantum give us the ability to ask entirely new questions?

How can we approach the “input/output” problem in quantum
algorithms?

We give one algorithm that avoids QRAM

What other methods are there to deal with large data?

