Quantum Deep Learning

Nathan Wiebe, Ashish Kapoor and Krysta Svore Microsoft Research

> Coogee Workshop 2015 Coogee Bay, Australia

> > 1412.3489

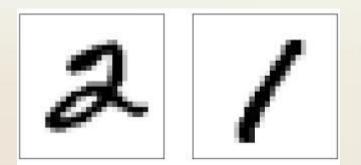
The problem in artificial intelligence

• How do we make computers that see, listen, and understand?

Goal: Learn <u>complex representations</u> for tough AI problems

Representing data with features

- An item (sample) in a data set can be represented as a vector.
- Each component of the vector is called a feature.
- Example:
 - An image is represented as a vector of gray-scale pixel values
 - Each pixel is a feature

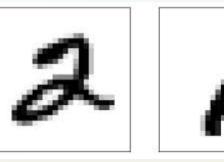


Microsoft Proprietary

Classes of machine learning

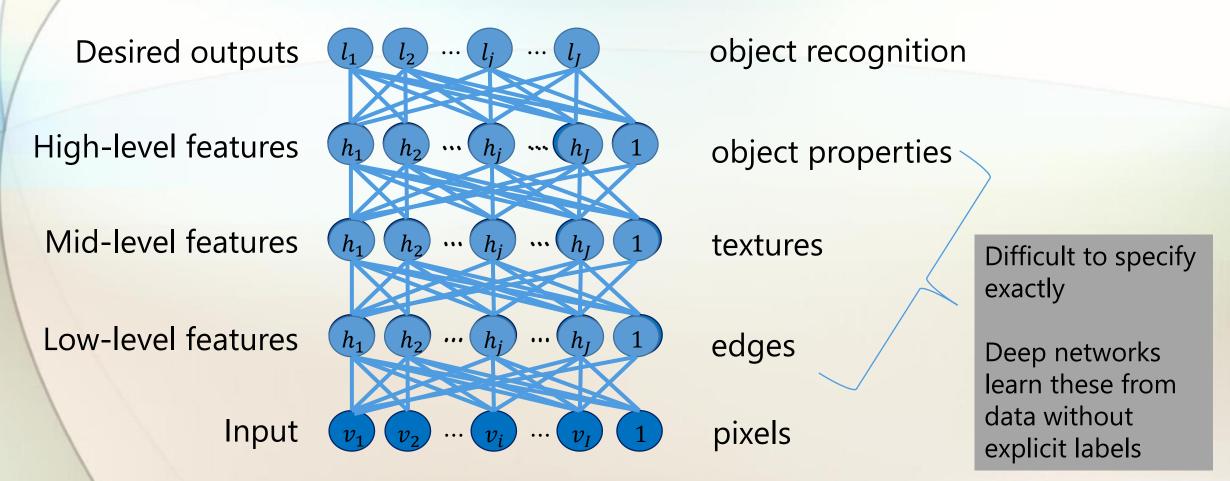
Supervised:

Each training sample has a "gold-standard" label



Label: "2" or "Even" Label: "1" or "Odd"

 Unsupervised: Labels are not provided for the data Deep networks learn complex representations

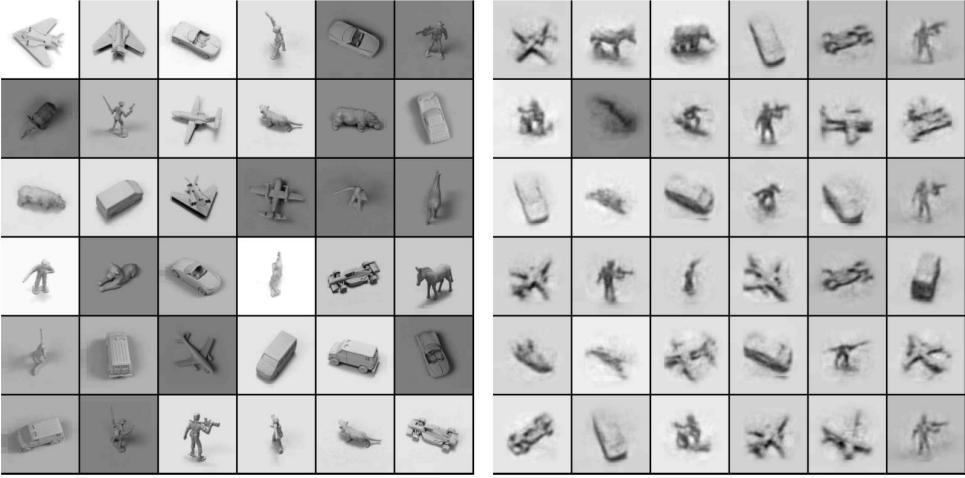


Analogy: layers of visual processing in the brain

Associative memories

Training Samples

Generated Samples



Salakudinov and Hinton: Training a deep Boltzmann machine with 12,000 hidden units, 3 layers.

Why is deep learning so important?

- Deep learning has resulted in significant improvements in last 2-3 years
 - 30% relative reduction in error rate on many vision and speech tasks
- Approaching human performance in limited cases (e.g., matching 2 faces)

 New classical deep learning methods already used in: Language models for speech Web query understanding models Machine translation Deep image understanding (image to text representation)

Primary challenges in learning

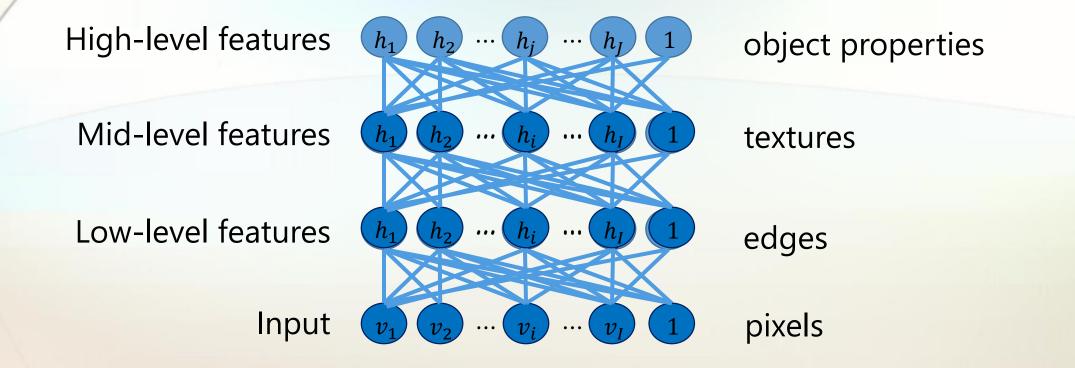
- Desire: learn a complex representation (e.g., fl Can we learn a more complex
- Intractable to learn fully connected graph \Rightarrow p representation on a quantum
 - Pretrain layers?
 - Learn simpler graph with faster train time?
- Desire: efficient computation of true gradient
- Intractable to learn actual objective \Rightarrow $\$ Can we learn the actual objective (true
 - Approximate the gradient?

Can we learn the actual objective (true gradient) on a quantum computer?

computer?

- Desire: training time close to linear in number of training examples
- Slow training time \Rightarrow slower speed of innovation
 - Build a big hamm Can we speedup model training on a
 - Look for algorithn quantum computer?

Deep learning networks

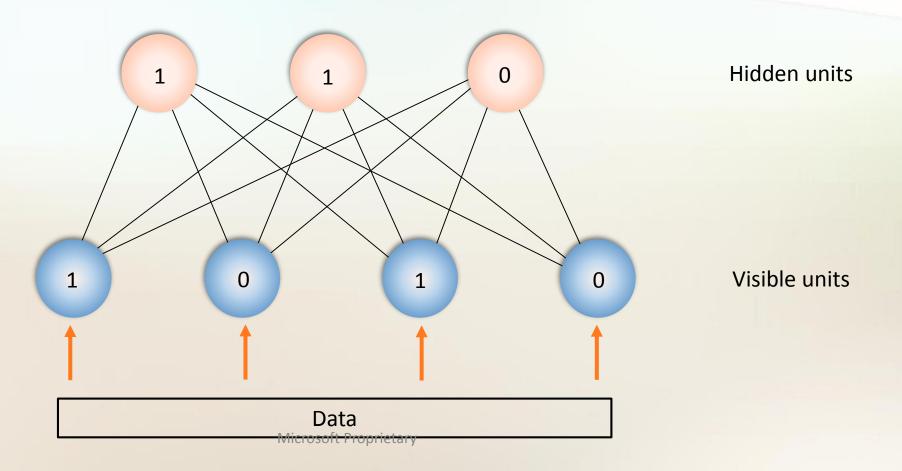


- Visible units are observable (training vector)
- Hidden units are not directly observed
- Both units take 0,1 values

- Training involves changing the interaction strengths to minimize energy for training vectors
- Interactions set according to Gibbs distribution

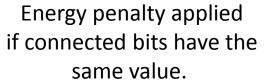
Restricted Boltzmann Machine

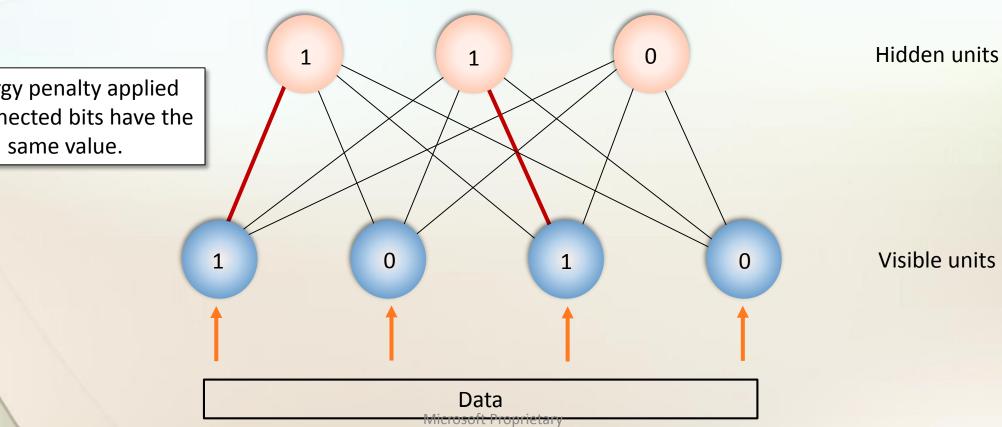
Energy based model



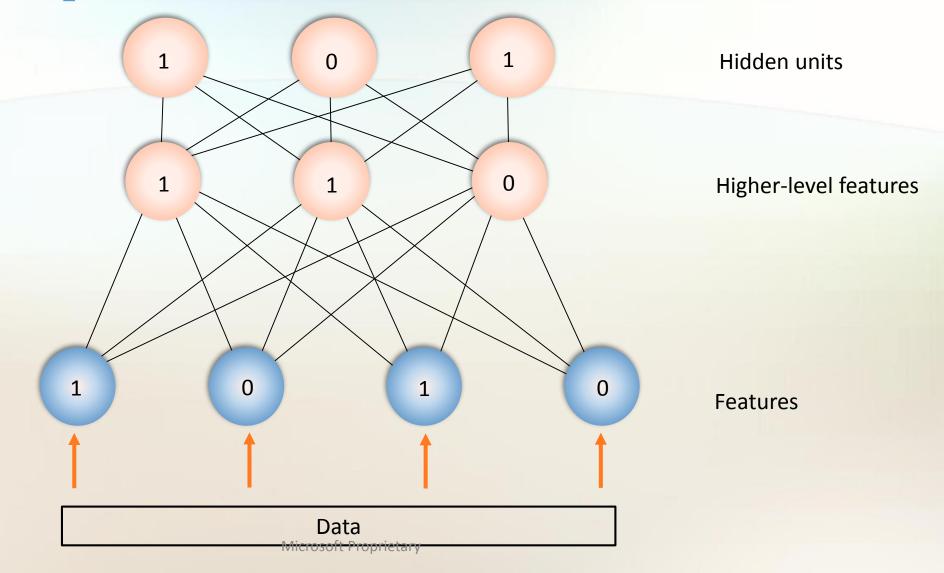
Restricted Boltzmann Machine

Energy based model





Deep Restricted Boltzmann Machine



From energy to probability

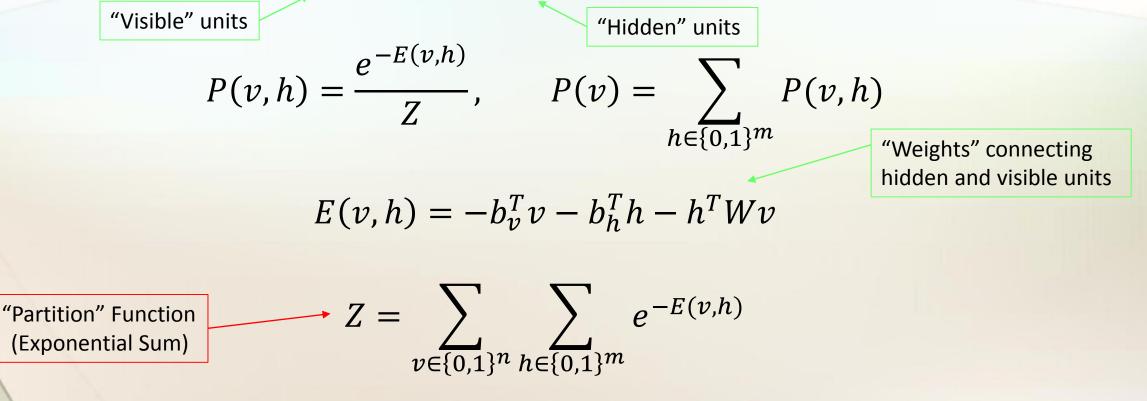
• Probability of a (v, h) configuration is given by the Gibbs distribution: $P(v, h) = \frac{e^{-E(v, h)}}{Z}$

• Energy is given by E(v,h) $= -\sum_{i} v_i b_i^v - \sum_{j} h_j b_j^h - \sum_{i,j} w_{i,j}^{vh} v_i h_j - \sum_{i,j} w_{i,j}^v v_i v_j - \sum_{i,j} w_{i,j}^h h_i h_j$

• Equivalent to an Ising model on a bipartite graph

Binary RBM

• Defines a probability distribution based on an energy function over binary vectors $v \in \{0,1\}^n$ and $h \in \{0,1\}^m$



Objective function

 Goal: find weights and biases for the edges such that the average log-likelihood of obtaining the training data from the BM is maximized

$$O_{ML} = \frac{1}{N_{data}} \sum_{v \in data} \log\left(\sum_{h} P(v, h)\right)$$

• In practice, a regularization term $\lambda w^T w$ is added to O_{ML} to combat overfitting to the training data

$$\begin{pmatrix} b^{v}, b^{h}, w \end{pmatrix} = \operatorname{argmax} \left(\frac{1}{N_{data}} \sum_{v \in data} \log \left(\sum_{h} \frac{e^{-E(v,h)}}{Z} \right) \right)$$
• Perform gradient ascent to find the best weights and biases
$$\frac{\partial O_{ML}}{\partial w_{i,j}} = \langle v_{i}h_{j} \rangle_{data} - \langle v_{i}h_{j} \rangle_{model}$$
Easy: $D(v,h) = P(h|v)D(v) \quad \frac{\partial W_{i,j}}{\partial w_{i,j}} = \langle v_{i,j} + \lambda \frac{\partial O_{ML}}{\partial w_{i,j}}$
Hard: Requires exponential sum

Problem: there are an <u>exponential</u> number of configurations in the model!

Training RBMs via Gibbs sampling

- The expectation value over the data is easy for the RBM
- The conditional probability of hidden units given visible units can be efficiently calculated:

$$P(h_j = 1|v) = \text{sigmoid}\left(\sum_{v} w_{h_j,v} + b_j\right)$$

Contrastive Divergence (CD)

- Use contrastive divergence: perform the hidden units and then use those
 - 1. Let $v' \sim D(v)$ be a random training pc •
 - 2. Compute P(h'|v'); Sample h'from P
 - 3. Compute P(v|h'); Sample v from P^{\bullet}
 - 4. Compute P(h|v)
 - 5. Return P(h|v)

Contrastive Divergence • The expectation over the model is exp (Hinton, 2002) Approximates the desired In general, not the gradient of any objective function! Convergence properties not understood! • Doesn't work for full BMs! • Suboptimal for deep RBMs!

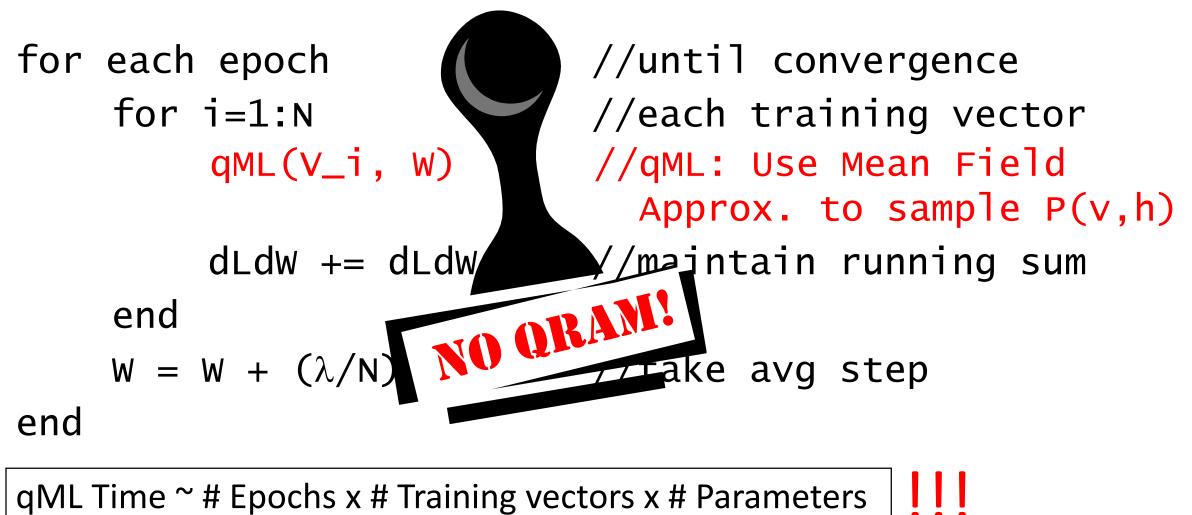
Training RBM - Classical

for each epoch	<pre>//until convergence</pre>
for i=1:N	<pre>//each training vector</pre>
CD(V_i, W)	//CD given sample V_i and parameter vector W
dLdW += dLdW	//maintain running sum
end	
$W = W + (\lambda/N) dLdW$	//take avg step
end	

CD Time: # Epochs x # Training vectors x # Parameters

ML Time: # Epochs x # Training vectors x (# Parameters)² x 2^{|v| + |h|}

Training RBM - Quantum



qML Time ~ # Epochs x # Training vectors x # Parameters

qML Size (# qubits) for one call $\langle v | + |h| + K_{r}$ K≤33

Our quantum approach

- Directly prepare a coherent analog of the Gibbs state (a close approximation) on a quantum computer
- The required expectation values for the ML-objective gradient can be found by sampling the output

$$\frac{\partial O_{ML}}{\partial w_{i,j}} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$$

Key steps

Classically compute a mean-field approximation to Gibbs state
Prepare the mean-field state on a quantum computer

- Refine the mean-field state into the Gibbs state by using measurement and post selection
- Measure the state and infer the likelihood gradient from the measurement statistic

Mean-field approximation

KL(Q||P)

•

error

In general, the partition

function Z is #P-hard to

compute within fixed additive

Mean-field approximations can

often give the partition function

correct to within 10% error

The calculation is efficient

because the probability

distribution factorizes

- Objective is to find a mean-field maximally close to the true pro
- Q(v, h) is the product distribut entropy

This can be used to estimate

$$Z_{MF} \coloneqq \sum_{v,h}$$

$$Z_{MF} \leq Z$$

Microsoft Proprietary

Mean-field approximation

$$Q(v,h) = \left(\prod_{i} \mu_{i}^{v_{i}} (1-\mu_{i})^{1-v_{i}}\right) \left(\prod_{j} \nu_{j}^{h_{j}} (1-\nu_{j})^{1-h_{j}}\right)$$

$$\mathrm{KL}(Q||P) = \sum_{v,h} -Q(v,h)\ln(P(v,h)) + Q(v,h)\ln(Q(v,h))$$

$$\mu_{i} = \sigma(-b_{i} - \sum_{j} w_{i,j}\nu_{j})$$
$$\nu_{j} = \sigma(-d_{j} - \sum_{i} w_{i,j}\mu_{i})$$

Microsoft Proprietary

State preparation algorithm

- Assume the mean-field parameters and partition functions are a priori known
- κ is provided such that

$$P(v,h) \le \frac{e^{-E(v,h)}}{Z_{\rm MF}} \le \kappa Q(v,h)$$

 The mean-field state can be prepared using a series of singlequbit rotations

$$|\psi_{\rm MF}\rangle := \prod_{i} R_y(2 \arcsin(\sqrt{\mu_i})) |0\rangle \prod_{j} R_y(2 \arcsin(\sqrt{\nu_j})) |0\rangle = \sum_{v,h} |v\rangle |h\rangle \sqrt{Q(v,h)}.$$

Preparation of Gibbs state

• Using the value of κ and Z_{MF} , the likelihood ratio can be bounded

$$\frac{P(v,h)}{Q(v,h)} \le \frac{e^{-E(v,h)}}{Z_{MF}Q(v,h)}$$

• Furthermore by dividing this through by κ we guarantee that

$$\frac{P(v,h)}{\kappa Q(v,h)} \leq \frac{e^{-E(v,h)}}{Z_{MF} \kappa Q(v,h)} \leq 1$$

$$Q(v,h) \mathcal{P}(v,h) \propto P(v,h)$$
Call this $\mathcal{P}(v,h)$

Preparation of Gibbs state

- If we can prepare the state $\sum_{v,h} \sqrt{Q(v,h)} |v\rangle |h\rangle$ and multiply it by $\mathcal{P}(v,h)$ then the resulting state is proportional to P(v,h) $R_y(2\sin^{-1}(\mathcal{P}(v,h)))$
- Add a quantum register to compute $\mathcal{P}(v, h)$
- Compute the likelihood ratio in superposition to efficiently prepare:

$$\sum_{v,h} \sqrt{Q(v,h)} |v\rangle |h\rangle |\mathcal{P}(v,h)\rangle |0\rangle \mapsto \sum_{v,h} \sqrt{Q(v,h)} |v\rangle |h\rangle |\mathcal{P}(v,h)\rangle \left(\sqrt{1-\mathcal{P}(v,h)} |0\rangle + \sqrt{\mathcal{P}(v,h)} |1\rangle\right).$$

 If "1" is measured on last qubit then the resultant state is the Gibbs state

• The
am
$$\sum_{v,h} \sqrt{Q(v,h)\mathcal{P}(v,h)} = \sqrt{\frac{Z}{\kappa Z_{\rm MF}}} \sum_{v,h} \sqrt{\frac{e^{-E(v,h)}}{Z}} |v\rangle |h\rangle = \sqrt{\frac{Z}{\kappa Z_{\rm MF}}} \sum_{v,h} \sqrt{P(v,h)} |v\rangle |h\rangle$$
$$F_{success} = \frac{1}{\kappa Z_{\rm MF}} \leq \frac{1}{\kappa}$$
$$F_{\rm Microsoft Proprietary} = \frac{1}{\kappa} \sum_{w} \sum_{w} \frac{1}{\kappa} \sum_{w} \frac{1}{\kappa} \sum_{w} \sum_{w} \frac{1}{\kappa} \sum_$$

Entire algorithm: GEQS

Input: Initial model weights w, visible biases b, hidden biases d, edge set E and κ , a set of training vectors x_{train} , a regularization term λ , and a learning rate r.

Output: Three arrays containing gradients of weights, hidden biases and visible biases: gradMLw, gradMLb, gradMLd.

```
for i = 1 : N_{\text{train}} \text{ do}
     success \leftarrow 0
     while success = 0 do
          |\psi\rangle \leftarrow \texttt{qGenModelState}(w, b, d, E, \kappa)
          \texttt{success} \leftarrow \texttt{result} of measuring last qubit in |\psi\rangle
     end while
     modelVUnits[i] \leftarrow result of measuring visible qubit register in |\psi\rangle.
     modelHUnits[i] \leftarrow result of measuring hidden unit register in |\psi\rangle using amplitude amplification.
     success \leftarrow 0
     while success = 0 do
          |\psi\rangle \leftarrow \mathsf{qGenDataState}(w, b, d, E, \kappa, x_{\mathrm{train}}[i]).
          success \leftarrow result of measuring last qubit in |\psi\rangle using amplitude amplification.
     end while
     dataVUnits[i] \leftarrow result of measuring visible qubit register in |\psi\rangle.
     dataHUnits[i] \leftarrow result of measuring hidden unit register in |\psi\rangle.
end for
for each visible unit i and hidden unit j do
    \texttt{gradMLw}[i,j] \leftarrow r \left( \frac{1}{N_{\texttt{train}}} \sum_{k=1}^{N_{\texttt{train}}} \left( \texttt{dataVUnits}[k,i] \texttt{dataHUnits}[k,j] - \texttt{modelVUnits}[k,i] \texttt{modelHUnits}[k,j] \right) - \lambda w_{i,j} \right).
    \texttt{gradMLb}[i] \leftarrow r\left(\frac{1}{N_{\text{train}}}\sum_{k=1}^{N_{\text{train}}} \left(\texttt{dataVUnits}[k, i] - \texttt{modelVUnits}[k, i]\right)\right).
    \texttt{gradMLd}[j] \leftarrow r\left(\frac{1}{N_{\text{train}}}\sum_{k=1}^{N_{\text{train}}} (\texttt{dataHUnits}[k, j] - \texttt{modelHUnits}[k, j])\right).
end for
                                                                        Microsoft Proprietary
```

Complexity comparison

• Our algorithm:

$$\tilde{O}\left(N_{\text{train}}E\sqrt{\kappa+\max_{v}\kappa_{v}}\right)$$

Compared to contrastive divergence on a ℓ-layer graph

 $\tilde{O}(N_{\text{train}}\ell E)$

- Our method trains multi-layer graphs faster and allows intra-layer connections Qubits: $O\left(n_h + n_v + \log \frac{1}{\epsilon}\right)$
- Can be slow if κ is large; can be overcome by adjusting units and regularizer

What if κ is unknown?

- The entire construction could potentially fail
- If underestimated then the assumption $P(v,h) = e^{-E(v,h)}$

$$\frac{\Gamma(v,n)}{\kappa Q(v,h)} \le \frac{c}{\kappa Z_{MF}Q(v,h)} \le 1$$

may be false

 An upper bound of 1 is needed to ensure that you can perform the rotation properly

Clipping

• The simplest solution is to clip the likelihood ratio $\mathcal{P}(v, h)$ to 1 if a ratio greater than 1 is observed.

 $\sum_{v,h} \sqrt{Q(v,h)} |v\rangle |h\rangle |\mathcal{P}(v,h)\rangle |0\rangle \mapsto \sum_{v,h} \sqrt{Q(v,h)} |v\rangle |h\rangle |\mathcal{P}(v,h)\rangle \left(\sqrt{1-\mathcal{P}(v,h)} |0\rangle + \sqrt{\mathcal{P}(v,h)} |1\rangle\right).$

This can be done in quantum superposition.

 An estimate of κ that minimizes the fraction of the probability distribution that you reject can be found by statistical sampling on a classical computer.

Amplitude estimation algorithm

 Amplitude estimation is just phase estimation using Grover's search oracle as a unitary.

 The eigenvalues of the oracle depend on the overlap between two states so phase estimation gives probability of overlap.

This can quadratically reduce the number of samples needed.

• You can train without looking at the entire data set.

Idea behind algorithm

- Oracle to access data: $U_O|i\rangle|y\rangle := |i\rangle|y \oplus x_i\rangle$
- Prepare a uniform superposition over all the training vectors and repeat the same algorithm

$$\frac{1}{\sqrt{N_{\text{train}}}} \sum_{i,h} \sqrt{Q(X_i,h)} |i\rangle |x_i\rangle |h\rangle \left(\sqrt{1 - \mathcal{P}(x_i,h)} |0\rangle + \sqrt{\mathcal{P}(x_i,h)} |1\rangle\right)$$

- Use amplitude estimation to learn the probability of measuring "1".
- Use amplitude estimation to learn the probability that a given hidden or visible unit is "1" and the above qubit is "1"

$$P(v_i = h_j = 1 | success) = \frac{P(v_i = h_j = 1 \cap success)}{P(success)}$$

Entire algorithm: GEQAE

Input: Initial model weights w, visible biases b, hidden biases d, edge set E and κ , a set of training vectors x_{train} , a regularization term λ , $1/2 \ge \Delta > 0$, a learning rate r, and a specification of edge (i, j). Output: $r \frac{\partial O_{\text{ML}}}{\partial w_{ij}}$ calculated to within error $2r\Delta$.

Call
$$U_O$$
 once to prepare state $|\psi\rangle \leftarrow \frac{1}{\sqrt{N_{\text{train}}}} \sum_{p \in x_{\text{train}}} |p\rangle |x_p\rangle$.

 $|\psi\rangle \leftarrow \text{qGenDataState}(w, b, d, E, \kappa, |\psi\rangle).$ \triangleright Apply Algorithm 2 using a superposition over x_p rather than a single value. Use amplitude estimation on state preparation process for $|\psi\rangle$ to learn $P([x_p]_i = h_j = \text{success} = 1)$ within error $\Delta/8$. Use amplitude estimation on state preparation process for $|\psi\rangle$ to learn P(success = 1) within error $\Delta/8$.

 $\langle v_i h_j \rangle_{\text{data}} \leftarrow \frac{P([x_p]_i = h_j = \text{success} = 1)}{P(\text{success} = 1)}.$ Use amplitude estimation in exact same fashion on qGenModelState (w, b, d, E, κ) to learn $\langle v_i h_j \rangle_{\text{data}}.$

 $\frac{\partial O_{\mathrm{ML}}}{\partial w_{ij}} \leftarrow r\left(\left\langle v_i h_j \right\rangle_{\mathrm{data}} - \left\langle v_i h_j \right\rangle_{\mathrm{model}}\right)$

Complexity

• The query complexity of estimating all the gradients within error $1/\sqrt{N_{train}}$ using amplitude estimation is

$$\tilde{O}\left(\sqrt{N_{\text{train}}}E(\sqrt{\kappa}+\max_{x}\sqrt{\kappa_{x}})\right)$$

The non-query complexity scales as

$$\tilde{O}\left(\sqrt{N_{\text{train}}}E^2(\kappa + \max_x \kappa_x)\right)$$

- Quadratically worse scaling with the number of edges and κ
- May be more practical for problems that use extremely large training sets.

Parallelization of learning

- Large amounts of training data imply parallelization is important
- May want to train in mini-batches
- Achieve improved depth over classical CD

Algorithm	Depth
CD-k	$O(k\ell^2 \log(MN_{\text{train}}))$
GEQS	$O\left(\log([\kappa + \max_{x} \kappa_{x}]M\ell N_{\text{train}})\right)$
GEQAE Microsoft Proprieta	$O\left(\sqrt{N_{\text{train}}[\kappa + \max_{x} \kappa_{x}]}\log(M\ell)\right)$

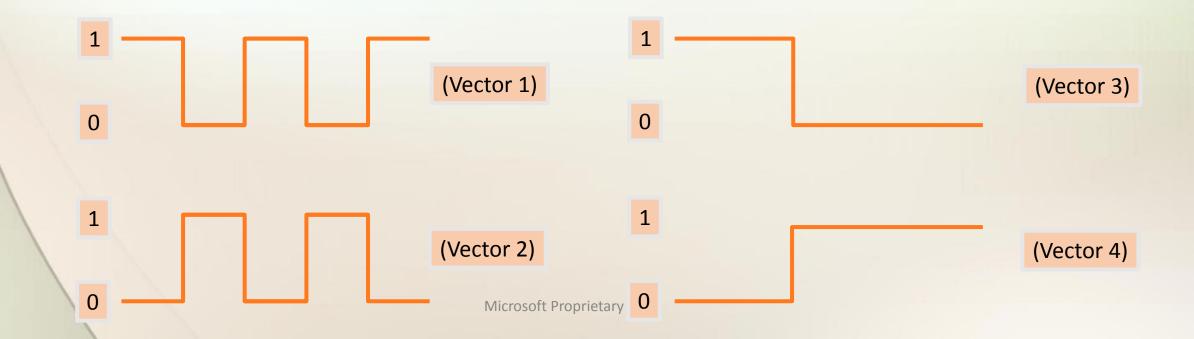
How well do these models perform?

- How much advantage can we gain from avoiding CD approximation?
- How large does *κ* tend to be in practice?
- How badly does noise in the ML gradient affect the learning?
- Are there advantages to using unrestricted Boltzmann machines?

Training data

Standard datasets are too large to numerically investigate

Prepare synthetic data



Overlap with Gibbs state

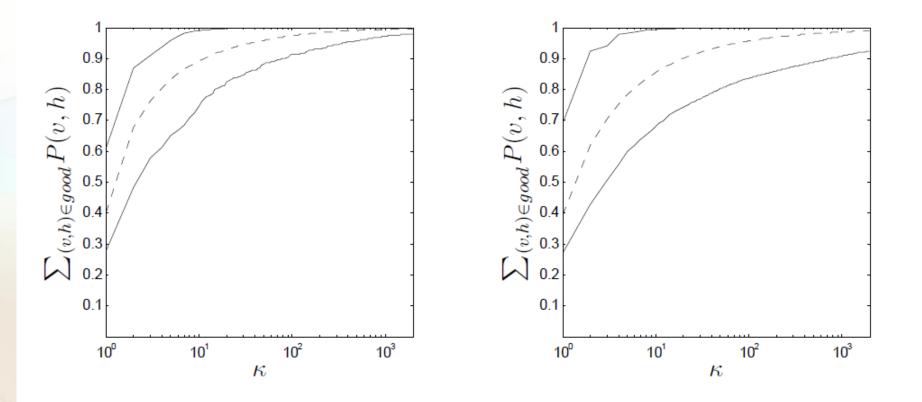
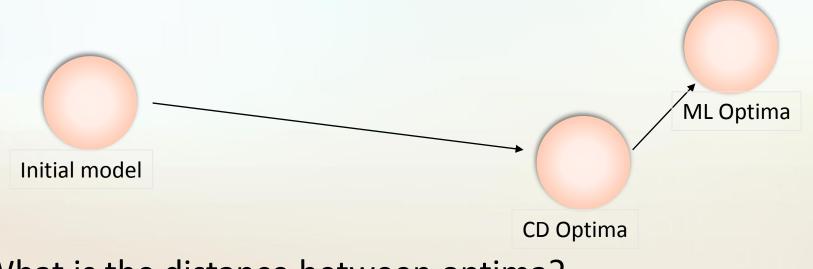


Figure 2: Probability mass such that $\mathcal{P}(v,h) \leq 1$ vs κ for RBMs trained on (22) with $n_h = 8$ and $n_v = 6$ (left) and $n_v = 12$ (right). Dashed lines give the mean value; solid lines give a 95% confidence interval.

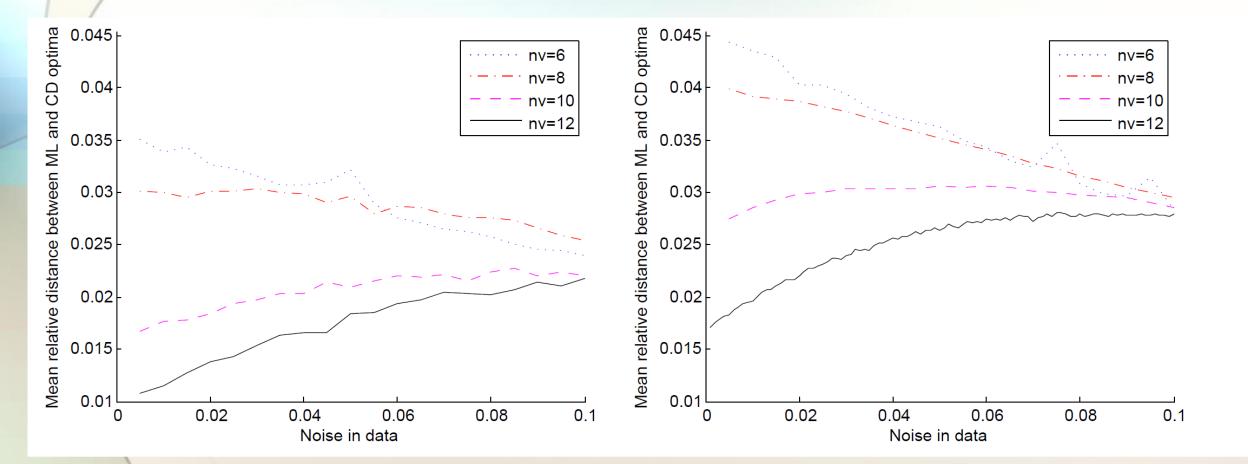
Comparison of CD to ML training

CD-ML experiment: randomly choose weights and train system



- What is the distance between optima?
- What are the differences in their qualities?

CD and ML learn different parameters!



Microsoft Proprietary

Learning of O_{ML} objective

- Significant differences between learning the objective function with CD and ML for a 3-layer dRBM
- Complex models benefit from ML training!

n_v	n_{h1}	n_{h2}	CD	ML	% Improvement
6	2	2	-2.7623	-2.7125	1.80
6	4	4	-2.4585	-2.3541	4.25
6	6	6	-2.4180	-2.1968	9.15
8	2	2	-2.8503	-3.5125	-23.23
8	4	4	-2.8503	-2.6505	7.01
8	6	4	-2.7656	-2.4204	12.5
10	2	2	-3.8267	-4.0625	-6.16
10	4	4	-3.3329	-2.9537	11.38
10	6	4	-2.9997	-2.5978	13.40

Microsoft Proprietary

Conclusions

 We provide new quantum algorithms for learning using deep Boltzmann machines.

	Operations	Qubits	Exact
CD	$\tilde{O}(N_{\text{train}}\ell E)$	0	N
GEQS	$\tilde{O}(N_{\text{train}}E(\sqrt{\kappa} + \max_x \sqrt{\kappa_x}))$	$O(n_h + n_v + \log(1/\mathcal{E}))$	Y
GEQAE	$\tilde{O}(\sqrt{N_{\text{train}}}E^2(\sqrt{\kappa} + \max_x \sqrt{\kappa_x}))$	$O(n_h + n_v + \log(1/\mathcal{E}))$	Y
GEQAE (QRAM)	$\tilde{O}(\sqrt{N_{\text{train}}}E^2(\sqrt{\kappa} + \max_x \sqrt{\kappa_x}))$	$O(N_{\text{train}} + n_h + n_v + \log(1/\mathcal{E}))$	Y

Avoid greedy layer-by-layer training

- Generalize to full unrestricted Boltzmann machines
- May lead to much smaller models or more accurate models

Open questions

- How can we take advantage of the "quantumness" of Hamiltonians for learning?
- Does quantum give us the ability to ask entirely new questions?
- How can we approach the "input/output" problem in quantum algorithms?
 - We give one algorithm that avoids QRAM
 - What other methods are there to deal with large data?