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Quantum Deep Learning



• How do we make computers that see, listen, and understand?

• Goal: Learn complex representations for tough AI problems

• Challenges and Opportunities:
• Terabytes of (unlabeled) web data, not just megabytes of limited data
• No “silver bullet” approach to learning
• Good new representations are introduced only every 5-10 years

• Can we automatically learn representations at low and high levels?
• Does quantum offer new representations? New training methods?

The problem in artificial intelligence
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• An item (sample) in a data set can be represented as a vector.

• Each component of the vector is called a feature.

• Example: 

• An image is represented as a vector of gray-scale pixel values

• Each pixel is a feature

Representing data with features

Microsoft Proprietary



• Supervised:
Each training sample has a “gold-standard” label

• Unsupervised:
Labels are not provided for the data

Classes of machine learning

Label: “2” or “Even” Label: “1” or “Odd”
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object recognition

Difficult to specify 

exactly

Deep networks 

learn these from 

data without 

explicit labels

Analogy: layers of visual processing in the brain

Deep networks learn complex 
representations
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Associative memories

Salakudinov and Hinton: Training a deep Boltzmann machine with 12,000 hidden units, 3 layers.Microsoft Proprietary



• Deep learning has resulted in significant improvements in last 2-3 
years
• 30% relative reduction in error rate on many vision and speech tasks

• Approaching human performance in limited cases (e.g., matching 2 
faces)

• New classical deep learning methods already used in:
Language models for speech
Web query understanding models
Machine translation
Deep image understanding (image to text representation)

Why is deep learning so important?
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• Desire: learn a complex representation (e.g., full Boltzmann machine)
• Intractable to learn fully connected graph  poorer representation

• Pretrain layers?
• Learn simpler graph with faster train time?

• Desire: efficient computation of true gradient 
• Intractable to learn actual objective  poorer representation

• Approximate the gradient?

• Desire: training time close to linear in number of training examples
• Slow training time  slower speed of innovation

• Build a big hammer?
• Look for algorithmic shortcuts?

Primary challenges in learning

Can we speedup model training on a 
quantum computer?

Can we learn the actual objective (true 
gradient) on a quantum computer?

Can we learn a more complex 
representation on a quantum 
computer?
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• Training involves changing the interaction 
strengths to minimize energy for training vectors  

• Interactions set according to Gibbs distribution

• Visible units are observable (training vector)
• Hidden units are not directly observed 
• Both units take 0,1 values

Deep learning networks
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• Energy based model

Restricted Boltzmann Machine

Hidden units

Visible units

Data

1 0 1 0

1 1 0

Microsoft Proprietary



• Energy based model

Restricted Boltzmann Machine

Hidden units

Visible units

Data

Energy penalty applied
if connected bits have the

same value. 

1 0 1 0

1 1 0
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Deep Restricted Boltzmann Machine

Data

1 0 1 0

1 1 0

1 0 1

Features

Higher-level features

Hidden units
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• Probability of a (𝑣, ℎ) configuration is given by the Gibbs distribution:

𝑃 𝑣, ℎ =
𝑒−𝐸 𝑣,ℎ

𝑍
• Energy is given by
𝐸 𝑣, ℎ

= − 

𝑖

𝑣𝑖𝑏𝑖
𝑣 − 

𝑗

ℎ𝑗𝑏𝑗
ℎ − 

𝑖,𝑗

𝑤𝑖,𝑗
𝑣ℎ𝑣𝑖ℎ𝑗 − 

𝑖,𝑗

𝑤𝑖,𝑗
𝑣 𝑣𝑖𝑣𝑗 − 

𝑖,𝑗

𝑤𝑖,𝑗
ℎ ℎ𝑖ℎ𝑗

• Equivalent to an Ising model on a bipartite graph

From energy to probability
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• Defines a probability distribution based on an energy function over 
binary vectors 𝑣 ∈ 0,1 𝑛 and ℎ ∈ 0,1 𝑚

𝑃 𝑣, ℎ =
𝑒−𝐸 𝑣,ℎ

𝑍
, 𝑃 𝑣 =  

ℎ∈ 0,1 𝑚

𝑃(𝑣, ℎ)

𝐸 𝑣, ℎ = −𝑏𝑣
𝑇𝑣 − 𝑏ℎ

𝑇ℎ − ℎ𝑇𝑊𝑣

𝑍 =  

𝑣∈ 0,1 𝑛

 

ℎ∈ 0,1 𝑚

𝑒−𝐸(𝑣,ℎ)

Binary RBM

“Partition” Function
(Exponential Sum)

“Visible” units “Hidden” units

“Weights” connecting 
hidden and visible units
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• Goal: find weights and biases for the edges such that the average 
log-likelihood of obtaining the training data from the BM is 
maximized

𝑂𝑀𝐿 =
1

𝑁𝑑𝑎𝑡𝑎
 

𝑣∈𝑑𝑎𝑡𝑎

log  

ℎ

𝑃(𝑣, ℎ)

• In practice, a regularization term 𝜆𝑤𝑇𝑤 is added to 𝑂𝑀𝐿 to 
combat overfitting to the training data

Objective function
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𝑏𝑣, 𝑏ℎ , 𝑤 = argmax
1

𝑁𝑑𝑎𝑡𝑎
 

𝑣∈𝑑𝑎𝑡𝑎

log  

ℎ

𝑒−𝐸(𝑣,ℎ)

𝑍

• Perform gradient ascent to find the best weights and biases 
𝜕𝑂𝑀𝐿
𝜕𝑤𝑖,𝑗
=< 𝑣𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎 −< 𝑣𝑖ℎ𝑗 >𝑚𝑜𝑑𝑒𝑙

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + 𝜆
𝜕𝑂𝑀𝐿
𝜕𝑤𝑖,𝑗

• Problem: there are an exponential number of configurations in the 
model!

Training an RBM

Easy: 𝐷 𝑣, ℎ = 𝑃 ℎ 𝑣 𝐷 𝑣

Trivial to sampleFactorizes
Hard: Requires exponential sum
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• The expectation value over the data is easy for the RBM

• The conditional probability of hidden units given visible units can 
be efficiently calculated:

𝑃 ℎ𝑗 = 1 𝑣 = sigmoid  

𝑣

𝑤ℎ𝑗,𝑣 + 𝑏𝑗

Training RBMs via Gibbs sampling
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• The expectation over the model is exponential to compute

• Use contrastive divergence: perform Gibbs sampling to generate 
the hidden units and then use those to generate visible units

1. Let 𝑣′~𝐷 𝑣 be a random training point

2. Compute 𝑃 ℎ′ 𝑣′ ; Sample ℎ′from 𝑃 ℎ′ 𝑣′

3. Compute 𝑃 𝑣 ℎ′ ; Sample 𝑣 from 𝑃(𝑣|ℎ′)

4. Compute 𝑃(ℎ|𝑣)

5. Return 𝑃(ℎ|𝑣)

Contrastive Divergence (CD)
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Training RBM - Classical

for each epoch //until convergence

for i=1:N //each training vector

CD(V_i, W) //CD given sample V_i and 
parameter vector W

dLdW += dLdW //maintain running sum

end

W = W + (/N) dLdW //take avg step

end

CD Time: # Epochs x # Training vectors x # Parameters

ML Time: # Epochs x # Training vectors x (# Parameters)2 x 2|v| + |h|
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for each epoch //until convergence

for i=1:N //each training vector

CD(V_i, W) //CD given sample V_i and 
parameter vector W

dLdW += dLdW //maintain running sum

end

W = W + (/N) dLdW //take avg step

end

Training RBM - Quantum

qML(V_i, W) //qML: Use Mean Field
Approx. to sample P(v,h)

qML Time ~ # Epochs x # Training vectors x # Parameters

qML Size (# qubits) for one call ~ |v| + |h| + K,    K≤33

!!!
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• Directly prepare a coherent analog of the Gibbs state (a close 
approximation) on a quantum computer

• The required expectation values for the ML-objective gradient 
can be found by sampling the output

𝜕𝑂𝑀𝐿
𝜕𝑤𝑖,𝑗
=< 𝑣𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎 −< 𝑣𝑖ℎ𝑗 >𝑚𝑜𝑑𝑒𝑙

Our quantum approach
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• Classically compute a mean-field approximation to Gibbs state

• Prepare the mean-field state on a quantum computer

• Refine the mean-field state into the Gibbs state by using 
measurement and post selection

• Measure the state and infer the likelihood gradient from the 
measurement statistic

Key steps
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• Objective is to find a mean-field approximation 𝑄 𝑣, ℎ that is 
maximally close to the true probability 𝑃 𝑣, ℎ

• 𝑄(𝑣, ℎ) is the product distribution that minimizes relative 
entropy

𝐾𝐿(𝑄||𝑃) = 

𝑖

𝑄𝑖 ln
𝑄𝑖
𝑃𝑖

• This can be used to estimate the partition function

𝑍𝑀𝐹 ≔ 

𝑣,ℎ

𝑄 𝑣, ℎ log
𝑒−𝐸 𝑣,ℎ

𝑄(𝑣, ℎ)

• 𝑍𝑀𝐹 ≤ 𝑍

Mean-field approximation
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Mean-field approximation
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• Assume the mean-field parameters and partition functions are a 
priori known

• 𝜅 is provided such that

• The mean-field state can be prepared using a series of single-
qubit rotations

State preparation algorithm
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• Using the value of 𝜅 and 𝑍𝑀𝐹, the likelihood ratio can be 
bounded 

𝑃 𝑣, ℎ

𝑄(𝑣, ℎ)
≤
𝑒−𝐸 𝑣,ℎ

𝑍𝑀𝐹𝑄(𝑣, ℎ)

• Furthermore by dividing this through by 𝜅 we guarantee that

𝑃 𝑣, ℎ

𝜅𝑄(𝑣, ℎ)
≤
𝑒−𝐸 𝑣,ℎ

𝑍𝑀𝐹𝜅𝑄 𝑣, ℎ
≤ 1

Preparation of Gibbs state

Call this 𝒫(𝑣, ℎ)𝑄(𝑣, ℎ)𝒫(𝑣, ℎ) ∝ 𝑃(𝑣, ℎ)
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• If we can prepare the state  𝑣,ℎ 𝑄(𝑣, ℎ) 𝑣 ℎ and multiply it by 
𝒫(𝑣, ℎ) then the resulting state is proportional to 𝑃(𝑣, ℎ)

• Add a quantum register to compute 𝒫(𝑣, ℎ)
• Compute the likelihood ratio in superposition to efficiently prepare:

• If “1” is measured on last qubit then the resultant state is the Gibbs 
state

• The success probability can be boosted by using amplitude 
amplification

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑍

𝜅𝑍𝑀𝐹
≥
1

𝜅

Preparation of Gibbs state
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Entire algorithm: GEQS
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• Our algorithm:

• Compared to contrastive divergence on a ℓ-layer graph

• Our method trains multi-layer graphs faster and allows intra-layer 
connections

• Can be slow if 𝜅 is large; can be overcome by adjusting units and 
regularizer

Complexity comparison

Qubits: 𝑂 𝑛ℎ + 𝑛𝑣 + log
1

𝜖
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• The entire construction could potentially fail 

• If underestimated then the assumption
𝑃 𝑣, ℎ

𝜅𝑄(𝑣, ℎ)
≤
𝑒−𝐸 𝑣,ℎ

𝜅𝑍𝑀𝐹𝑄 𝑣, ℎ
≤ 1

may be false

• An upper bound of 1 is needed to ensure that you can perform 
the rotation properly

What if 𝜅 is unknown?
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• The simplest solution is to clip the likelihood ratio 𝒫(𝑣, ℎ) to 1 if 
a ratio greater than 1 is observed.

• This can be done in quantum superposition.

• An estimate of 𝜅 that minimizes the fraction of the probability 
distribution that you reject can be found by statistical sampling 
on a classical computer.

Clipping
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• Amplitude estimation is just phase estimation using Grover’s 
search oracle as a unitary.

• The eigenvalues of the oracle depend on the overlap between 
two states so phase estimation gives probability of overlap.

• This can quadratically reduce the number of samples needed.

• You can train without looking at the entire data set.

Amplitude estimation algorithm
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• Oracle to access data:

• Prepare a uniform superposition over all the training vectors and 
repeat the same algorithm

• Use amplitude estimation to learn the probability of measuring “1”.

• Use amplitude estimation to learn the probability that a given hidden 
or visible unit is “1” and the above qubit is “1”

𝑃 𝑣𝑖 = ℎ𝑗 = 1 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑃 𝑣𝑖 = ℎ𝑗 = 1  𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)

Idea behind algorithm
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Entire algorithm: GEQAE
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• The query complexity of estimating all the gradients within error 
1/ Ntrain using amplitude estimation is

• The non-query complexity scales as

• Quadratically worse scaling with the number of edges and 𝜅

• May be more practical for problems that use extremely large 
training sets.

Complexity
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• Large amounts of training data imply parallelization is important

• May want to train in mini-batches

• Achieve improved depth over classical CD

Parallelization of learning

Algorithm Depth

CD-𝑘

GEQS

GEQAE
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• How much advantage can we gain from avoiding CD 
approximation?

• How large does 𝜅 tend to be in practice?

• How badly does noise in the ML gradient affect the learning?

• Are there advantages to using unrestricted Boltzmann 
machines?

How well do these models perform?
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• Standard datasets are too large to numerically investigate

• Prepare synthetic data

Training data

1

0

1

0

1

0

1

0

(Vector 1)

(Vector 2)

(Vector 3)

(Vector 4)
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Overlap with Gibbs state
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• CD-ML experiment: randomly choose weights and train system

• What is the distance between optima? 

• What are the differences in their qualities?

Comparison of CD to ML training

Initial model

CD Optima

ML Optima
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CD and ML learn different parameters!
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• Significant differences between learning the objective function 
with CD and ML for a 3-layer dRBM

• Complex models benefit from ML training!

Learning of 𝑂𝑀𝐿 objective
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• We provide new quantum algorithms for learning using deep 
Boltzmann machines.

• Key contribution is state preparation technique.

• Our algorithms

• Train without the contrastive divergence approximation

• Avoid greedy layer-by-layer training

• Generalize to full unrestricted Boltzmann machines

• May lead to much smaller models or more accurate models

Conclusions
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• How can we take advantage of the “quantumness” of 
Hamiltonians for learning?

• Does quantum give us the ability to ask entirely new questions?

• How can we approach the “input/output” problem in quantum 
algorithms?

• We give one algorithm that avoids QRAM

• What other methods are there to deal with large data?

Open questions
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