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WHY DO WE CARE ABOUT 
QUANTUM CODES?

Goal: store information and perform computation.

Encode to protect from noise.

Perform computation without corrupting 
encoded information.

Color code: many transversal logical gates 
(Clifford group in 2D).

Toric code: high threshold, experimentally realizable (2 dim, 4-body 
terms), scalable.
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STABILIZER CODES
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H = �
nX

i=1

ZiZi+1
ZiZi+1

Stabilizer Hamiltonian - commuting terms are products of Pauli operators;  
ground space corresponds to the code space.

Topological quantum codes - encode information in non-local degrees of 
freedom but have (geometrically) local stabilizer generators. 

Stabilizer code - stabilizers are product of Pauli operators and the code 
space is +1 eigenspace of stabilizers.

(Exactly solvable) toy models, e.g. classification of quantum phases.



TORIC CODE IN 2D
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code space C = ground space of H
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8v, p : [X(v), Z(p)] = 0

degeneracy(C) = 22g , where g - genus

H = �
X

v

X(v)�
X

p

Z(p)

qubits on edges

X-vertex and Z-plaquette terms 

logical operators - non contractible loops of X’s or Z’s



for 1 ≤ k < d,  TCk(L):   qubits             -  k-cells  
                                    X stabilizers    - (k-1)-cells  
                                    Z stabilizers    -  (k+1)-cells

TORIC CODE IN 3D (OR MORE)
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lattice L in d dim  -  d-1 ways of defining toric code
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COLOR CODE IN 2D
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2 dim lattice:  
- 3-valent  
- 3-colorable
qubits on vertices

8p, p0 : [X(p), Z(p0)] = 0
code space C = ground space of H

degeneracy(C) = 24g , where g - genus
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COLOR CODE IN 3D (OR MORE)
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for 1< k ≤ d,  CCk(L):    Z stabilizers    -  k-cells  
                                     X stabilizers    - (d+2-k)-cells  
                                     qubits             -  0-cells

lattice L in d dim  -  d-1 ways of defining color code

d dim lattice:  
- (d+1)-valent  
- (d+1)-colorable
qubits on vertices

arXiv:1410.0069
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TORIC AND COLOR CODES - 
HOW ARE THEY RELATED?
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Yoshida’10, Bombin’11: 2D stabilizer Hamiltonians w/ local interactions, 
translation and scale symmetries are equivalent to toric code.

Equivalence of codes = ground states of stabilizer Hamiltonians in the 
same quantum phase.

Two gapped ground states belong to the same phase if and only if they are 
related by a local unitary evolution (Hastings&Wen’05, Chen et al.’10).

EQUIVALENCE = local unitaries and adding/removing decoupled ancillas.

Classification for: 2D, stabilizers, translation symmetry, no boundaries.

arXiv:1503.02065



EQUIVALENCE IN D DIMENSIONS
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Theorem: there exists a unitary               , which is a tensor product of 
local terms with disjoint support, such that     transforms the color code 
into                decoupled copies of the toric code. 

U [CCk(L)]U † =
nO

i=1

TCk�1(Li)

n =
� d
k�1

�

U =
N

� U�

U

obtained from     by  
local deformations

L

CCk(L):   qubits          -  0-cells  
              X stabilizers  - (d+2-k)-cells  
              Z stabilizers  -  k-cells

TCk(L):  qubits           -  k-cells  
             X stabilizers  - (k-1)-cells  
             Z stabilizers  -  (k+1)-cells

arXiv:1503.02065



TRANSFORMATION IN 2D
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Unitary U = tensor product of unitaries Up supported on green faces.

Every qubit belongs to exactly one green plaquette.

arXiv:1503.02065

U

Desired transformation:
X X Z

Z
X X ZUp

u
Up

u

X/Z-plaquette transforms into an operator either on pink or blue qubits.



EQUIVALENCE IN 2D

arXiv:1503.02065

shrink red 
plaquettes
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Stabilizers of color code mapped to new stabilizers - either pink or blue.
Two decoupled codes = 2 x toric code w/ X-vertex and Z-plaquette 
stabilizers.



CODES WITH BOUNDARIES
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2 dim toric code w/ boundaries: rough and smooth 

sm
oo

th

rough

2 dim color code w/ boundaries: red, green and blue

arXiv:1503.02065
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COLOR CODE UNFOLDED
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local unitaries on green plaquettes

two copies are not decoupled along the green boundary

unfold

color 
code

toric 
code

arXiv:1503.02065



BOUNDARIES IN 3D (OR MORE)
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@LD

@LC

@LB

@LA

L

LA
identified

rough

smooth

smooth

LC
identified

rough

smooth

smooth

LB
identified

rough

smooth

smooth

Theorem: color code with point-like excitations in  
d dim with d+1 boundaries is equivalent to d copies 
of toric code attached along (d-1)-dim boundary. 

U [CC(L)]U† = TC(#d
i=1Li)

obtained from     by  
local deformations

L

arXiv:1503.02065



Fact: anyons condensing into a gapped 
boundary have mutually trivial statistics.
Toric code: e - rough, m - smooth.

Folded toric code:

ANYONS AND CONDENSATION

17

m2

e1
@R@G

@B

@G = {1, e1e2,m1m2, ✏1✏2}

@R = {1, e1,m2, e1m2}
@B = {1, e2,m1, e2m1}

e1 ⌘ RX e2 ⌘ BX

m2 ⌘ RZ m1 ⌘ BZ

Correspondence between anyonic 
excitations in toric code and color code:

arXiv:1503.02065
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PERFORMING COMPUTATION

19

When performing computation, we do not want to spread errors and 
corrupt encoded information!

Transversal gates - tensor product of single-qubit unitaries.

U = . . .⌦ Ui�1 ⌦ Ui ⌦ Ui+1 ⌦ . . .

Transversal gates do not propagate errors.

. . .⌦ U ⌦ U ⌦ U ⌦ U ⌦ U ⌦ U ⌦ . . . U



NO-GO RESULTS

20

Dream: transversal universal gate set. Can we have one?

Eastin&Knill’09: for any nontrivial local-error-detecting quantum code, 
the set of transversal, logical unitary operators is not universal.

Bravyi&König’13: for a topological stabilizer code in d dim, a constant-
depth quantum circuit preserving the codespace implements an encoded 
gate from the dth level of the Clifford hierarchy.

Clifford hierarchy defined recursively.  
 

Gates in dth level of Clifford hierarchy
R

d

|xi = e

2⇡ix/2d |xi C

d�1
Z|x1, . . . , xd

i = (�1)x1...xd |x1, . . . , xd

i

P1

P2

P3

Pauli group

Clifford groupPj = {unitary U |UPU † 2 Pj�1 8P 2 P1}



SUBSYSTEM COLOR CODES
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X

X
X

X

Z

Z Z

Z

Subsystem color code CCd(x,z):  
- X gauge generators:     x-cells 
- Z gauge generators:     z-cells

X

XX

X
Stabilizer group (center):  
- X stabilizers:      (d+2-z)-cells  
- Z stabilizers:      (d+2-x)-cells

x,z ≥ 2 and x+z ≤ d+2

arXiv:1410.0069

Stabilizer code - specified by a stabilizer group S (Abelian). 

Subsystem code - specified by a gauge group G (non-Abelian).

Stabilizers w/ big weight - difficult to engineer and measure.



CODE SWITCHING BETWEEN  
COLOR CODES
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S1 S2 Sa

S

X

Z

S 0
G � G0

Gb

G0
bG0

1

G1

fix these  
gauge qubits

1 logical  
qubit

d-simplex-like lattice w/ boundaries: C = CCd(x,z) and C’ = CCd(x’,z’) are 
two (subsystem) color codes with 1 logical qubit.

If x ≤ x’ and z ≤ z’, then  
-  
-
G � G0

S ⇢ S 0

Switching C’        C - trivial.

Switching C         C’ - fix certain gauge qubits in +1 state.

arXiv:1410.0069

G = hx�cell, z�celli S = h(d+ 2� z)�cell, (d+ 2� x)�celli



Stabilizer and subsystem color codes in d dim 
defined by x,z ≥ 2 such that x+z ≤ d+2.

d-simplex-like lattice - 1 logical qubit.

CNOT - transversal in CSS codes.

R3 - transversal in C’ = CC3(3,2).

H - transversal in C = CC3(2,2) (self-dual).

Can switch between C = CCd(x=2,z=2) and C’ = CCd(x’=3,z’=2) since  
x ≤ x’ and z ≤ z’ - universal gate set in 3D!

Circumventing no-go result by Eastin and Knill.

UNIVERSAL GATE SET W/  
COLOR CODES IN 3D

23

2 3 4 5
2

3

4

5

x

z

d=2

d=3

d=4

R3H

arXiv:1410.0069



3D architecture challenging! 2D possible to build (soon)?

2D color code - transversal logical Clifford group.  
When logical R3 needed, switch to 3D color code -  
dimensional jump w/ gauge fixing (Bombin’14).

Code switching in 3D or dimensional jump -  
overhead associated with gauge fixing.

Alternative approach - “flatten” 3D gauge color code to become 2D 
(Bravyi&Cross’15, Jochym-O’Connor&Bartlett’15, Jones et al.’15).

Issues:  
- non-locality,  
- no threshold,  
- macroscopic stabilizers.

UNIVERSAL GATE SET W/  
COLOR CODES, CONTINUED

24
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Toric/color code - conceivable quantum computer 
architectures. We need to efficiently decode them!

CSS codes - can decode X and Z separately 
(might reduce threshold!).

Error happens, e = locations of Z-errors.

Input: s = violated X-star stabilizers. 

Output: e’ = Z-errors which might have happened. 

Success: e and e’ differ only by stabilizer b (product of Z-plaquettes).

Z
ZZ

DECODING TORIC CODE

26

Z
ZZZ

Z

work w/ N. Delfosse

Z
ZZ

X

X



Best strategy: if syndrome s observed, pick the most probable equivalence 
class of errors consistent with s (errors e ~ e’ iff differ by stabilizer b).

Min weight perfect matching - efficient and almost optimum.

Qudit toric code for d≥3 - min weight hypergraph matching is in general 
NP-hard!

Other decoders, e.g. RG (Duclois-Cianci&Poulin’10, Bravyi&Haah’11, 
Anwar et al.’13).

DECODING TORIC CODE

27

work w/ N. Delfosse



Can we use toric code decoders?

Dual lattice L=(V, E, F) - triangulation  
w/ 3-colorable vertices.  

 

Goal:  error               syndrome  
            2D                     0D  

Delfosse’13: project onto 3 sublattices 
 and use toric code decoder!

DECODING COLOR CODE

28

work w/ N. Delfosse

1D

qubit stabilizer
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work w/ N. Delfosse
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work w/ N. Delfosse

qubit

stabilizer

1D

0D2D



DECODING BY PROJECTION
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Decoding of color code not harder - can use toric code decoders!

Lower bound on threshold pCC of color code decoder, pCC ≥ f(pTC).

Threshold pCC matches threshold of other decoders - RG and unitary 
mapping (Bombin et al.’11).

Still room for improvement!

Idea can be generalized to 3D (or more).

work w/ N. Delfosse



DECODING IN 3D (OR MORE)

32

work w/ N. Delfosse

Dual lattice L=(V, E, F, C) consists of  
tetrahedra w/ 4-colorable vertices.

Qubits = tetrahedra, stabilizers = vertices/edges.

Goal:  error              syndrome  
            3D               1D       0D  

Idea: project onto 6 or 4 sublattices (0D and 1D syndromes, respectively). 
Use toric code decoder!

Beyond perfect matching - finding min area k-chain w/ given boundary, i.e.  
(k-1)-chain. Efficient for (n-1)-chains in n dim (Sullivan PhD thesis’94).

2D 1D



Lattice (tiling of a manifold) L = (V, E, F).

Z2-vector spaces Ci and boundary operators ∂i  
 

Toric code decoding:  
Chain complex  

Correction succeeds iff e+e’=∂2b, where ∂1e=∂1e’=s.

Color code decoding - chain complex on L’ = (V, E’, F’).

Projection works - morphism of chain complexes!

CHAIN COMPLEX 
CONSTRUCTION

33

C2
@2�! C1

@1�! C0

error e syndrome sstabilizer b

work w/ N. Delfosse

C2 =
M

f2F

Z2f, C1 =
M

✏2E

Z2✏, C0 =
M

v2V

Z2v
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THRESHOLDS

Threshold pth - maximum error  
rate the code can tolerate.

If p < pth - can decode perfectly 
(for increasing system sizes).

Relevant for: guiding the experiment (surface code), benchmarking 
decoders (Brown et al.’15), resource analysis (magic state distillation).

Often, evaluated for specific models (depends on the lattice, noise model, 
decoder, etc.).

Stat-mech models can give insight into “decoder-independent” thresholds.
35
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Assumption - errors happen independently with  
probability p, i.e.

Success iff e and e’ differ only by some stabilizer b  
(product of Z-plaquettes) - same equivalence class.  
 

Best strategy: if syndrome s observed, pick 
the most probable equivalence class consistent with s.

Dennis et al.’02: connection with a stat-mech model!

Perfect decoding (large L):                           . Then,  
 

DECODING OF TORIC CODE 
REVISITED

36

pr(success) ! 1

pr(ē) =
X

b2C2

pr(e+ @2b) = (1� p)N
X

b2C2

(
p

1� p
)|e+@2b|

�
X

e

pr(e) log
pr(e+ h)

pr(e)
! 1

pr(e) = (1� p)N�|e|p|e|

work w/ F. Brandao, K. Svore



RANDOM BOND ISING MODEL

2D model, spins on faces, 2-body interactions,  
couplings: +1 w/ pr = 1-p and -1 w/ pr = p.  

Partition function  
 
 

Free energy difference of introducing a domain wall h in the system  
 

37

He = �
X

hi,ji

{ijsisj , e = {(i, j)|{ij = �1}

Ze =

X

{si}

exp(��He({si}))

=

X

b2C2

exp(��He+@2b({si = 1})) =
X

b2C2

exp(�(N � 2|e+ @2b|))

�h =

X

e

pr(e)(Fe+h � Fe) = � 1

�

X

e

pr(e) log
Ze+h

Ze

work w/ F. Brandao, K. Svore



DECODING  VS.  STAT-MECH

We want to relate successful decoding to phase transition.  
 
                                       vs. 

Partition function  
 

Equivalence class of error 
 

Expressions match if 
38

p

1� p
= exp(�2�)

Ze =

X

b2C2

exp(�(N � 2|e+ @2b|))

� 1

�

X

e

pr(e) log
Ze+h

Ze
�
X

e

pr(e) log
pr(e+ h)

pr(e)

pr(ē) = (1� p)N
X

b2C2

(
p

1� p
)|e+@2b|

work w/ F. Brandao, K. Svore
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THRESHOLD FROM PHASE 
DIAGRAM

Phase diagram - ordered and 
disordered phases.

Parameter space: temperature T 
and disorder p.

Nishimori line

Perfect decoding = ordered phase.

Threshold pth - critical point along Nishimori line.

Honecker et al.’00 - 2D toric code threshold pth = .1094(2)

F. Accuracy threshold

What accuracy threshold can be achieved by surface
codes? We have found that in the case where the syn-
drome is measured perfectly (q = 0), the answer is
determined by the value of critical point of the two-
dimensional random-bond Ising model on the Nishimori
line. This value has been determined by numerically eval-
uating the domain wall free energy; a recent result of
Honecker et al. is [24]

pc = .1094 ± .0002 . (41)

A surface code is a Calderbank-Shor-Steane (CSS)
code, meaning that each stabilizer generator is either a
tensor product of X ’s or a tensor product of Z’s [25,26].
If X errors and Z errors each occur with probability p,
then it is known that CSS codes exist with asymptotic
rate R ≡ k/n (where n is the block size and k is the
number of encoded qubits) such that error recovery will
succeed with probability arbitrarily close to one, where

R = 1 − 2H2(p) ; (42)

here H2(p) = −p log2 p− (1− p) log2(1− p) is the binary
Shannon entropy. This rate hits zero when p has the
value

pc = .1100 , (43)

which agrees with eq. (41) within statistical errors. Thus
the critical error probability is (at least approximately)
the same regardless of whether we allow arbitrary CSS
codes or restrict to those with a locally measurable syn-
drome. This result is analogous to the property that the
classical repetition code achieves reliable recovery from
bit-flip errors for any error probability p < 1/2, the
value for which the Shannon capacity hits zero. Note
that eq. (41) can also be interpreted as a threshold for
the quantum repetition code, in the case where the bit-
flip error rate and the measurement error rate are equal
(p = q).

If measurement errors are incorporated, then the ac-
curacy threshold achievable with surface codes is deter-
mined by the critical point along the Nishimori line of the
three-dimensional Z2 gauge theory with quenched ran-
domness. In that model the measurement error proba-
bility q (the error weight for vertical links) and the bit-flip
probability p (the error weight for horizontal links) are
independent parameters. It seems that numerical studies
of this quenched gauge theory have not been done previ-
ously, even in the isotropic case; work on this problem is
in progress.

Since recovery is more difficult with imperfect syn-
drome information than with perfect syndrome informa-
tion, the numerical data on the random-bond Ising model
indicate that pc < .11 for any q > 0. For the case p = q,
we will derive the lower bound pc ≥ .0114 in Sec. V.

G. Free energy versus energy

In either the two-dimensional model (if q = 0) or the
three-dimensional model (if q > 0), the critical error
probability along the Nishimori line provides a criterion
for whether it is possible in principle to perform flaw-
less recovery from errors. In practice, we would have to
execute a classical computation, with the measured syn-
drome as input, to determine how error recovery should
proceed. The defects revealed by the syndrome measure-
ment can be brought together to annihilate in several
homologically distinct ways; the classical computation
determines which of these “recovery chains” should be
chosen.

We can determine the right homology class by comput-
ing the free energy for each homology class, and choos-
ing the one with minimal free energy. In the ordered
phase (error probability below threshold) the correct sec-
tor will be separated in free energy from other sectors by
an amount linear in L, the linear size of the lattice.

N
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β−1

FIG. 11. The phase diagram of the random-bond Ising
model, with the temperature β−1 on the vertical axis and
the probability p of an antiferromagnetic bond on the hori-
zontal axis. The solid line is the boundary between the ferro-
magnetic (ordered) phase and the paramagnetic (disordered)
phase. The dotted line is the Nishimori line e−2β = p/(1−p),
which crosses the phase boundary at the Nishimori point N .
From the point N to the horizontal axis, the phase boundary
is vertical.

The computation of the free energy could be performed
by, for example, the Monte Carlo method. It should
be possible to identify the homology class that mini-
mizes the free energy in a time polynomial in L, un-
less the equilibration time of the system is exponentially
long. Such a long equilibration time would be associ-
ated with spin-glass behavior — the existence of a large
number of metastable configurations. In the random-
bond Ising model, spin glass behavior is expected in
the disordered phase, but not in the ferromagnetically
ordered phase corresponding to error probability below
threshold. Thus, we expect that in the two-dimensional

17

p

1� p
= exp(�2�)

39

work w/ F. Brandao, K. Svore



2D COLOR CODE  VS.
ISING MODEL

Model: 3-body random bond Ising model in two dimensions.  
 
 
 
 

Previous work - extensive analysis (measurement errors, different lattices), 
e.g. Bombin et al.’08, Katzgraber et al.’09,  Andrist PhD thesis’12.

40

H = �
X

{ijksisjsk

-1 with pr  = p       
+1 with pr = 1-p

{ijk

si

sj sk

work w/ F. Brandao, K. Svore



3D COLOR CODE  VS.
ISING MODEL

Color code in 3 dim

stabilizer CC: stabilizers on 2-cells (A) and 3-cells (B),

subsystem CC:  gauge generators on 2-cells, stabilizers on 3-cells (C).

Two models to analyze:

4-body random bond Ising model (A),  
 

local order parameter - easy to analyze!

6-body random bond Ising model (B & C),  
 

challenging due to gauge symmetries (no local order parameter). 41

H = �
X

{abcdsasbscsd

H = �
X

{abcdefsasbscsdsesf

work w/ F. Brandao, K. Svore
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SUMMARY

42Thank you!
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