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Coogee question 1: How crazy is this?
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Coogee question 2:

Can we “quantize” CFTP to make exact =]
Q-samples?
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Exact sampling

-"coupling from the past” (Propp, Wilson)

Bernoulli Factory Problem:

Given the ability to exactly sample a
distribution, what other distributions can also
be exactly sampled by suitable processing?

Most attention given to:

0000000000

Given the ability to repeatedly sample a coin
which is heads with probability p, for which
functions f can we output a single new coin
with probability of heads f(p)?

To = =50 To = ~100 Ty = <200
From McKay, Information Theory
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Simulating Events of Unknown Probabilities via
Reverse Time Martingales

Krzysztof Latuszyriski Ioannis Kosmidis
Department of Statistics Department of Statistics
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envelopes of f. To run the algorithm one has to construct sets of {0, 1} strings of
appropriate cardinality based on coefficients of the polynomial envelopes. Un-
fortunately its naive implementation requires dealing with sets of exponential
size (we encountered e.g. 2226) and thus is not very practical. Hence the authors
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eration settings provided by Roy and Hobert (2007). This example is ill-suited
using the proposed algorithm because of computational limitations related to
the Bernoulli factory and in obtaining a practical . Specifically, we found (in
simpler examples) obtaining a single draw from 7w sometimes required millions of
i.i.d. 7 variates. Unfortunately, even using non-constant s(z), the probit example
requires about 14,000 Markov chain draws per 7 (Flegal and Jones, 2010). Hence
obtaining a single draw from 7 would require an obscene number of draws from

X. Implementation for more comphcafa Narkov chains, such as fﬂls, likely

requires further improvements, or a lot of patience.



EO

COIN P>l +(-pPldl

\\Y
é

QUOIN {p oy «iv-p\D




NOTE: unbounded input so not equivalent to Turing machine model









£(p) - %‘( 2&’ )Lk Wl‘?}]

o A 1
P y R
fpor+ Tov2)" = ploo>+fplrelz AP

0e(d)= -L@v\-(\—?))
P (i™s) = -'-(p-(\-p)) *@“0
Pr Ce's) = 29 (-p)



P
C\r.P‘d’ . {;p“)-)b’l_ P o> fpiv
Re(G%) = ] e e
pr( ‘;}) ; .liJ(-P: ( \—?))2: Ji 'p'(‘-l’"\"{""ar 6‘)‘“)
= p—( R -0)’ ’
el =3 C‘-\;;)) =+Qp () = 2 g; )
- = %e(\-p)
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Theorem 1: a function £[0, 1]—[0, 1] is constructible with quoins and a finite set of single-qubit
operations if and only if the following conditions hold:

1. f is continuous.
2. Both Z={z ;:f(z ;)=0} and W={w ;:f(w ; )=1} are finite sets.

3. VzeZ there exists constants ¢, >0 and and integer k<= such that
cp—2)*< f(p)p € [z— 0.2+ ).

4. VY weW there exist constants ¢, >0 and an integer k<= such that
1 —c(p— w)'y">f(p)’v'p € [w—d,w+ 9l
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Outline of the theorem proof:

Imagine we have Lp) < f(p) < U(p)
constructible

bounding functions:

max (U (p) - L (p) < 5.

Define sequence of filp) = f(p)
constructible Ly (p)
functions: g (p) = 1 — Uk (p) + Lk (p)

fea®) = 3 (50~ 39.0))
f(p) can be o ra\ k-1
convexly J 1
decomposed: = Z (4) 4 Ik ()

k=0



First guess for L(p) and U(p), Bernstein polynomial approximants:
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First guess for L(p) and U(p), Bernstein polynomial approximants:
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Coogee questions 4-6:

- Practical advantage?
- What the heck is the class of Q-sampleable distributions?

- For what set of functions f(p) can we implement:
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