
Matrix Product Operators: 
Algebras and Applications

Frank Verstraete

Ghent University and University of Vienna

Nick Bultinck, Jutho Haegeman, Michael Marien

Burak Sahinoglu, Dominic Williamson

Ignacio Cirac, David Perez Garcia, Norbert Schuch



Outline

• Matrix Product Operators: examples of transfer matrices

• Matrix Product Operators: normal forms and diagonalization

• Matrix Product Operator Algebras:

– Algebraic Bethe Ansatz and Yang Baxter equations

– Tensor Fusion Categories and Anyons



Matrix Product Operators: 

• The MPO is characterized by the tensor                ; for given d,D, the 
dimension of the corresponding manifold is  (d2-1)D2

• MPO’s pop up everywhere in many body systems or systems with a tensor 
product structure: partition functions in statistical physics, counting 
problems, non-equilibrium steady states, path integrals, …
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MPO and statistical physics

• Example: 2-D Ising model:

– Partition function is given by the contraction of the following tensor 
network:

– All the physics is encoded in the eigenstructure of the transfer MPO

: 



• Similarly, the leading eigenvalue of transfer matrix provides the scaling of 
the number of configurations on the lattice in counting problems:

– Counting dimer configurations on the square lattice:

– Entropy of spin-ice on the square lattice:

– Number of Configurations of “hard disks”: 



MPO and non-equilibrium physics

• Probabilistic cellular automata, mapping probability functions of n bits to 
probability distributions:

• Typical Examples:

– Percolation

– Asymmetric exclusion processes and traffic

• Main purpose: find fixed point (i.e. leading eigenvector) of corresponding 
MPO

– Non-equilibrium phase transitions happen when the MPO becomes 
gapless (with corresponding critical exponents, …); e.g. directed 
percolation universality class, traffic jams, …
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MPO’s and path Integral representation of ground states

• Let us consider an arbitrarily Hamiltonian of a quantum spin system, and a
path integral                              representing the ground state for

Physical 
spins



MPO’s and entanglement degrees of freedom:

• Consider the following tensor network (PEPS):
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• The main features of PEPS are encoded in the eigenvalues and eigenvectors of 
the corresponding transfer matrices  (similar to classical statistical physics, 
although here we have a “double layer” structure and  we deal with a state as 
opposed to a Hamiltonian)

• Different phases of matter will be characterized by symmetries and symmetry 
breaking on the entanglement degrees of freedom (“virtual” level)
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Matrix Product Operators 

• Injectivity: there exists a finite n such that the map from the blue to the 
red indices is full rank

• Fundamental Theorem of Injective Matrix Product States:
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• Application: consider an MPS with a global symmetry Ug ; then 

• Classification of projective representations leads to classification of 1-D 
symmetry protected phases (Pollmann, Turner, Berg, Oshikawa ‘10; Chen, 
Gu, Wen ‘11; Schuch, Perez-Garcia, Cirac ’12)

Ug

= Vg V-1
g



• We will later need the fundamental theorem in case of non-injective MPS:

– If MPO is non-injective, there exists a basis in which the MPS is upper 
block diagonal:



• We will later need the fundamental theorem in case of non-injective MPS:

– If MPO is non-injective, there exists a basis in which the MPS is upper 
block diagonal:

– The upper triangular blocks do not contribute to the MPO on the 
physical level, so they can be set to zero, leaving us with a direct sum 
of 2 MPO’s which can again be injective or not. Repeat this until all 
invariant subspaces are injective.

– Fundamental theorem of MPS: 2 MPS are equal for all N iff the 
injective MPS’s in the invariant subspaces are equal to each other up 
to a gauge transform



Example: CZX MPO
Chen, Gu, Wen ‘12
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Let us take the square of this operator, giving rise to a non-injective MPO 
with bond dimension 4: CZX.CZX = (-1)N .I
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Diagonalization of MPO’s 

• For many interesting cases, exact solutions for the eigenvalues of the 
MPO’s have been found using mappings to free fermions (Ising, dimer), 
Bethe ansatz (spin ice), or algebraic matrix product state methods (ASEP)

• More generally, leading eigenvectors can be approximated very efficiently 
using variational matrix product state algorithms:

– We get an effective Hamiltonian for the “entanglement” degrees of 
freedom

– Many other alternatives: corner transfer matrices (Nishino), iTEBD
(Vidal), iDMRG (McCulloch), …: converge very fast
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Algebraic Bethe Ansatz

• Central concept in integrable models of statistical mechanics and quantum 
spn chains: find a 1-parameter set of commuting MPO’s:

• Fundamental theorem of MPO’s: there exists a R(λ,μ) such that

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ
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R(λ,μ) = R(λ,μ)



Yang Baxter

• The R-matrices have to satisfy an associativity condition, which is encoded in 
the Yang Baxter equation (condition on 3-particle scattering):

• Logic of Bethe ansatz construction: find solution of Yang Baxter, and then 
use those R’s to construct MPO’s satisfying the pulling through equation

– Of course, many other solutions are possible

R(λ,μ)

R(λ,ν)

R(μ,ν)

R(μ,ν) R(λ,μ)

R(λ,ν)
=

λ

μ λ

μ
R(λ,μ) = R(λ,μ)



• In the case of D=2, we construct 4 MPO’s with different boundary 
conditions:

– A(λ), B(λ), C(λ), D(λ) 

• The Yang Baxter solutions for D=2 are of the form 

– Yang Baxter dictates the following commutation relations for the MPO’s:
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Korepin: Quantum 
Inverse Scattering



Korepin: Quantum 
Inverse Scattering

Using those relations, one can now readily construct eigenstates of the 
transfer matrix A(λ)+D(λ) of the form

where the λj have to satisfy a consistency equation dictated by the g and f’s 
(the so-called Bethe equations)

Example: spin ice 

Heisenberg antiferromagnet:
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Topological Order

• Yang Baxter relations also play a central role in studies of the braid group, 
albeit where we deal with discrete labels as opposed to continuous ones

– Natural question: can we find representations for topological phases 
using Matrix Product Operators?

– We will develop well known tensor fusion category theory from the 
MPO point of view



PEPS and topological order

• A large class of 2-D systems with topological order (so-called string nets 
and quantum doubles) have a simple description in terms of PEPS. 

• The defining property of those PEPS is a symmetry on the entanglement 
(virtual) degrees of freedom which forces the PEPS to be non-injective and 
giving rise to the topological entanglement entropy



• This symmetry can be completely characterized by a MPO projector:

• Locally, this symmetry is manifested by a “pulling through” equation:

• The fundamental theorem of MPO’s can now be used to characterize the 
consistency condtions for such an MPO (cfr. Yang Baxter)

=



Example: Toric Code

• Simplest MPO projector:

– Note that the MPO is NOT injective and is the sum of 2 MPO’s with 
bond dimension 1

• Just like in the case of Bethe ansatz, we construct a PEPS tensor satisfying 
the pulling through by condition: MPO itself



• Consistency conditions for general MPO’s:

1. MPO is a projector so P2=P                                                                             
If we bring P into normal form,                               we get

2. The fundamental theorem of MPS now tells us that P2 must have the 
same blocks as P, hence there must exist a gauge transform X s.t.

=

and

Bultinck et al. arXiv 1511.08090
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3. Associativity + injectivity leads to F-symbols:

4. Associativity  once more leads to conditions on F-symbols: pentagon equation

This equation has only a discrete number of solutions for a given fusion rule



5. Just as in the case of the Yang Baxter equation in Bethe ansatz, solutions of 
the pentagon equation allows us to construct fusion tensors and MPO’s + 
PEPS satisfying all conditions that we wanted: we can find solutions both of 
associativity of V’s and pulling through of MPO’s by defining all tensors in 
term of F-symbols

This construction allows us to define string nets (Levin and Wen)  and quantum 
doubles on arbitrary lattices  and also to construct examples with string tension; 
given any input tensor category, this construction leads to a modular tensor 
category



Anyons and Topological Sectors

• Modular tensor category defines a consistent theory of anyons; what is 
the MPO description of them?



• This “anyon” tensor has 5 indices in and 5 out: 

– defines a C* algebra

– Elementary excitations / anyons should be locally distinguishable by 
their charge. So they should be defined as idempotents of this algebra

– It turns out that the elementary anyons correspond to the central 
idempotents of this algebra



Topological spin:

• Example: the 4 central idempotents for the toric code are given by                                               
with or without a string of Z’s  (1,e,m,em) and hence the 

topological spins are (0,0,0,π)

= 



Braiding

• It can readily be seen that the braiding matrix R is itself determined by the  
central idempotent (“teleportation”)



Topological Sectors in the Ground State

• Gives direct access to the S and T matrices: e.g. Dehn twist is with respect 
to the MPO and not with respect to the lattice!



Topological Quantum Computation

Braiding 
tensor is F-
symbol

a

b

c

a’

Controlled-Controlled-U gate

a

b

c

a’

Freedman, Kitaev, Wang, …

We can identify a tensor product structure of logical qubits with the 
entanglement (virtual) degrees of freedom; e.g. Fibonacci string net



Conclusion

• Matrix Product Operators pop up everywhere when studying many body 
physics

• Matrix Product Operator Algebras give an explicit representation of tensor 
fusion categories

• Next step is to study topological quantum phase transitions (e.g. 
condensation of anyons)


