Testing Quantum Devices
Stephanie Wehner
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Menu

* How good is a qguantum memory or communication
channel?

* New Procedure: Capacity estimation and verification

* How good is the fidelity of quantum gates?

* Analysis: Reducing the number of samples to perform
randomized benchmarking.
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Problem 1:

How well can we store (or transmit) quantum information ?

S(K) £ S(H) B

> S(H) —2» S(K)

+ 7 | > 1
Some attempts: At
e Let’simplement an error correcting code!
e Let’s fully characterize the device!
e Well... then let’s assume A = M®N and then characterize!
* Noise is almost never of that form.
* Even if we knew M, some capacities are unknown.

Goal:

estimate the quantum capacity directly, for any device, using only simple operations (uu:ich!



What is the capacity?
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Single-shot capacity
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Q¢ (A) = max{logm | F;;,(A,m) =1 — €}

Fnin(A,m) = max
dim(Hll::)=m

max min (®|(D o Ao E(D)|P)

DE |P)EHiy

F. Buscemi and N. Datta, IEEE Trans. Inf. Theory, 56(3), 2010/

No structure — arbitrarily correlated errors
Finite number of channel uses
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Goal

 Estimate Q€(A) =7
* Using only

* Single qubit preparations and measurements

* Two flavors
* Capacity estimation of all qubits used
» Capacity verification of data qubits
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Capacity estimation with correlated errors
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(Goal
Q¢(A) = f(measured data)
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A simple protocol for capacity estimation

« Chooses € {0,1}¥ andb € {X,Z}" s.t. X, Z occur%times inb

* Foreachi=1,..,N
Prepare qubit in state |s;),, and send through channel

Measure qubit in basis b; to obtain outcome s;

Estimate error rates

ey = ZiEIX Sl @ S{ e, = ZiEIZ Sl @ S{
X || g 1]
Iy ={i | b; = X} Iz ={ilb; =7}

(¢

onclude
Q¢(A) £ N(q — h(ex) — h(ez))

q = —log max [{ix|j;)| =1 (Preparation quality)
i,j€{0,1}

h(p) = —plog(p) — (1 — p) log(1 —p) :
\ / QUTech
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Capacity estimation: .

a more precise statement —— _— ~—— ——
-gubits Z-qubits

: Jﬁ? ! k 1“\?;'2 :

e

N

Theorem 1 : Let N € M be an even number, let e, and e. be error rates determined in a run of the Estimation
Protocol where the used bases X and Z had a preparation quality of q. Then, for every ¢ > 0 and for every
€ |0,1), it holds that

« either, the probability that at least one error rate exceeds e, or e, respectively, was higher than p,

= or the one-shot quantum capacity of the N-qubit channel A is bounded hy

Q°(A) = sup [N(q—h{ + 1) — h(e. +,u.}) —2log (k) — 4log (%) ——2] ; (1)
T;E{D.\/E) /

where h is the binary entropv function
h(x) := —xlog(x) — (1 — x)log(1 — x) (2)

and p and k are given hy

- (). ()
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| What is this parameter p?

« either, the probability that at least one error rate exceeds e, or e., respectively, was higher than p,

Example: Fully depolarizing channel on N qubits
I
NY —
A(p") = 5%

Channel has zero capacity, yet with probability p = ziN we havee, = e, =0

Let’s say we observe e,, = e; = 0 which is highly untypical. We have
* Either probability the error rate exceeds 0 was actually higher than p = 1/2V
e Or the capacity bound applies

In practice: Pick any constant p
Already for moderately sized N, the estimate is essentially independent of any

constant p. Example: p = 1/2.

‘ QUTich



Capacity verification with correlated errors

——| Prepare
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(Goal

Q€ (A on data qubits) = f(measured data)
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A simple protocol for capacity verification

* Decide on maximum acceptable error rates e, and e,

« Choose s € {0,1}3N and b € {X,Z,D}*" s.t. X,Z, D occur N times in b
° Foreachi=1,..,3N
* If b; = D send data!
* else
* Prepare qubit in state |Si)bi and send through channel

 Measure qubit in basis b; to obtain outcome s;
* Estimate error rates

. Yiery Si D s 1= Yier, Si D si
TN 7]
Iy ={i | b; = X} Iz ={ilb; =72}
If y > e, and A > e, abort, else conclude )

Q¢(A) £ N(q — h(ex) — h(ez))
A is channel on data qubits only!
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Capacity verification A<e @) v<e

o

a more precise statement  [Zuwbis ] [dwabin] [ Xabis
5 "

Theorem 2 : Let N € N, let e,, e. € [0,1]. Assume that the Verification Protocol is run successfully without
abortion, where the used bases X and Z had a preparation quality of q. Then, for every ¢ > () and for every
p € [0,1), it holds that

» either, the probability that the protocol aborts was higher than p,

+ or the one-shot quantum capacity of the channel A on the N data qubits is bounded by

Q°(A) = sup {N(q —h(e: +p) —hes+ ,u)) — 2log (k) — 4log (l) - 2] A (4)
ne {{1,1&:;2) |
where k and p are given hy
| AN + 1 34+ 2 3 4 ,1—5 ’
u F.; ) In P ), =g =2 | (5)
N £/2—n /2 —n

QUTgeh



How can this be proven?

Already know (Barnum, Knill, Nielsen (2000) and Buscemi, Datta (2010))

ﬁ 1
Q¢(A) = sup |H* (AIE), —4logﬁ—1 —-1
ne, |5

AlE max H,:.,(A|E
nun( | )p p'E€BS(p) nun( | )

Hmin(A|E) = —log[|A|Dec(4|E)]

Dec(A|E) = max F(D 47,14 @ Ap_4(Par))

Ag_a

Measure how entangled E has become with Al
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If only A was classical.....

Using a tripartite uncertainty relation (Tomamichel, Renner PRL 2011)

Not qubits?

Hpnin(X|E) + Hmax  (Z|B) > q Change this to extend!

Using a number of properties of the min and max entropies

Hmin(AlE) = Nq _ (Hmax(XN|B)p + Hmax(ZNlB)p) —f(E)

Estimate using error rates as in QKD!
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How well does this work?

Example: Capacity estimation, i.i.d. dephasing noise
A=D®Y withD(p) =1 —-1r)p+7r ZpZ

What happens?
e Zbasis left invariant: e, = 0
* X basis flipped with probability : ey = r (asymptotically)
* Asymptotically boundis g — h(0) — h(r) =1 — h(r)

This is the quantum capacity of dephasing noise. Asymptotically optimal!
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Scaling

Finite size

r= 0.42T7

'i_-l_}.
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0 LAk = : =
10% 104 10° 108 107

N

Remark:

e Same finite size effects in QKD

108

“(A)

1
N

bound on the rate

e Capacities are in fact much smaller for finite N
(W. Matthews, S. Wehner, IEEE Trans. IT 2012,

M. Berta, J. Renes, M. Tomamichel, Nat. Comm. 20186, ....)

Dependence on error rate
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| What is this “X” and “Z”?

Example: Capacity estimation, i.i.d. dephasing noise

A=D®  withD(p) =1 —-1)p+r ZpZ

Wait! Doesn’t this depend on the noise

What h 5 being aligned with the bases used??
at happens:

* Zbasis left invariant: e, = 0
* X basis flipped with probability r: ey = r (asymptotically)
* Asymptotically boundis g — h(0) — h(r) =1 — h(r)

Of course ©

In practice:
* Any choice of basis gives a bound.
* Rotate to minimize error rate ahead of time.
* Best way to do so: open question!
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bound on the rate 4 Q(A)

. . M. Adriaan Rol
Test In experiment

Transmon qubit (Leo DiCarlo group, QuTech), N = 1.04 x 10°, ~1.5 hours
Take: g = 0.9,p = 0.5
Estimate the capacity of the idling operation I (At)
* Generate 8000 pairs of random numbers b,s
* For each element
* Rotate |0) to the right state
*  Waittime At
* Rotate if measuring X
* Measure Z
* Repeat 130 times

Dependence on € Zoomed in
04l =
g 0.43
0.3 =
(0.2 At = 300 ns ; 0.43 ey .
—— At = 600 ns s '

. — At =1ps S —— At = 300 ns
0.1 ! T 042 ,

0 - e -

0 -8 -7 -6 -5 —4 -3 —2 -1 =0 = —f = = =4 =F =0 =] —

log (<) logy(<)



Errors over time
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bound on the rate 3 Q*(A)
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Menu

* How good is a qguantum memory or communication
channel?

* New Procedure: Capacity estimation and verification

* How good is the fidelity of quantum gates?

* Analysis: Reducing the number of samples to perform
randomized benchmarking.
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| Testing quantum gates

Want Get

Average fidelity
Fang(,U) = [ dp F (U($), U(@$)) = | dop (A1)

Entanglement fidelity ) Equivalent estimate
fN) =(D|ly @ A(P)|P) d Fppg(AU) — 1

f) = —22

d
1~ .
) = ﬁ;|1>A|1>B
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Randomized Benchmarking

What |S Rand0m|zed BenChmaI’klng? Apply Strings of random gates:
errors accumulate exponentially

S O30--3 1510 (on average)

—
=

)
=
7]
8
1. Initialize state p S s
2. Apply (noisy) gates Uy,...,U,, £
3. Apply inversion gate U, , 5 08
4. Measure output state g oo
5. Repeat for many (N) random U,,...,U 2
6. Average over measurement results F 06 Clifford gate fidelity: 99.983(6) % -
i | Single gate fidelity - 59.8991(3) %
7. Repeat for many values of m g | . |
) 5 by TS Ti00 1000

Plot results and find decay

M (number of Clifford gates)

Decay constant gives average fidelity of gate set.

QUTech
Muhonen et al., Journal of Physics Condensed Matter, 27(15):154205, Apr.16,2015.



Randomized Benchmarking: what we do

Let’s be a little more precise: -

stion;
V\ll_l%alemgary N%‘E%isnagr?@ingﬂmgggef from the Clifford group C

W nrged chdiivedin £6t ffo rpetradigadiseliole rstrintgsrdf m gates —> Imposs

Fit P, to function Af™ +B —> Yields estimate for f

f Is relatdtiaim goreiaa@ishatavwwaditiv & dratsavatbge gatsibl

Paoh fforobabidyistibugorfthaartes i

from applying random strings of Clifford gates

o 18 HSoEMBAYREREE QYR A RARS IR SHiIREM

P.. \ is the empirical average over a subset of strings
CIFfdrd group is a group ———> Use REPRESENTATION THEORY

do in practice!

Jonas Helsen - PhD student
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Results on randomized benchmarking

Crucial ingredient: Analysis of the representations of the Clifford group!

[

o=
i
o

current bound
previous bound

=
[
[

= e
I e R
o O 0O T
-~ | w8 2
L}
L]
i
5
L1
L]
1]
L1
1]

108
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Summary and open questions

* First procedure for direct capacity estimation and verification
* Using only simple preparations and measurements
* Asymptotically optimal for dephasing noise
+ Tested in experiment: bad qubits? They may still be useful ©
* Open questions
* How about non-qubits? Change uncertainty relation!

* What is a good way to calibrate the bases before or during the protocol?
* Better method?

* Randomized benchmarking
* Significantly less samples!
* How about correlated forms of noise?
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