Parallelized quantum error correction with fracton topological codes

Ben Brown

joint work with Dom Williamson

Decoding

- Decoders correct errors
- they use the locations of excitations to estimate the error
- This may be slow as we grow the code
- We explore parallelizable codes to speed up decoders

Parallelized quantum error correction

Parallelized quantum error correction is a missing link in topological decoders

- Less evolved than self-correcting codes with cellular automata decoders
- Fills the divide between common 2D topological codes and self correction
- Cousin to fault-tolerant single-shot error correction
- Completing the picture of evolution gives new insights into decoding

HOMERSAPIEN

Toric code

The toric code has point defects at the end points of string errors

Decoding the toric code

The toric code is decoded using matching

Matching pairs up defects that can be pairwise corrected

Decoding general topological codes

Generically, we can use clustering to decode topological codes

Clustering scales like the code volume - slow

Parallelized decoding

A simple classical example - the eight-vertex model

Features of the code:

- Spins on the faces
- Four-body stabilizers on the faces that touch every vertex

Parallelized decoding

A simple classical example - the eight-vertex model

Features of errors and its defects:

- Stabilizer defects light up at the corners of the face errors
- Defects occur in pairs along horizontal and vertical lines

Parallelized decoding

A simple classical example - the eight-vertex model

Decoding:

- With this structure we can perform one-dimensional matching
- Edges from the matching form the boundaries of the error

X-cube model

The X -cube model is three-dimensional with qubits on the faces of a cubic lattice

Pauli-X stabilizer

Pauli-Z stabilizer

Planeons

Pauli-Z operators create planeons

Decoding planeons

Planeons are corrected in clusters that respect their planar symmetries

We can find a Pauli operator to correct a cluster of defects if

- Every defect is paired with another on an $x y$ plane
- Every defect is paired with another on an $y z$ plane
- Every defect is paired with another on an $z x$ plane

Threshold for planeons

The threshold for planeons is $\sim 4.3 \%$

Lineons

Pauli-X operators create lineons

Decoding lineons

We can decode lineons with groups of defects if

- Every red defect is matched with a red or a blue vertex on its plane of constant z
- Every red defect is matched with a red or a green vertex on its plane of constant x
- Every green defect is matched with a blue or a green vertex on its plane of constant y
- and so on

Decoding lineons

We match over planes, not the volume of the lattice, to find groups of defects as above

Threshold with parallelized error correction

The threshold is close to that of the toric code, as we may expect

Emergent symmetries

We decoded the X -cube model using its emergent symmetries
We decode a lot of code ${ }^{1}$ using emergent symmetries

HOMERSAPIEN

Emergent symmetries

Emergent symmetries promise charge conservation
Eight-vertex model - 1D charge conservation symmetries

Toric code - global charge conservation symmetry

Emergent symmetries

Emergent symmetries promise charge conservation on planes

X-cube model planar charge conservation symmetries

Color code - emergent symmetry among pairs of colored defects

(a)

(b)

(c)
(d)
(e)

(h)

Parallelized quantum error correction

Parallelized quantum error correction is a missing link in topological decoders

2D toric code (global symmetries)

X-cube model
(planar symmetries)

4D toric code (local symmetries)

Single-shot error correction

Single-shot error correction is temporally parallelized

Single-shot error correction

Single-shot error correction is temporally parallelized

(a)

(c)

Correlated errors with parallelized quantum error correction

Resilience of single-shot codes to time-correlated errors is understood by parallelization

Local decoders with self-correcting memories

Self-correcting stabilizer models have local emergent symmetries

Biased noise on the surface code

Decoding Pauli-Y errors on the surface code is like decoding the eight-vertex model

Biased noise on the surface code

The parallelized decoder is generalizable to noisy measurements and finite bias
We deal with measurement errors in the standard way The model has 2D symmetries in $2+1 \mathrm{D}$ spacetime
(a)

(b)

(c)

We generalize to a weakly symmetry respecting decoder to decode finite bias

The cubic code model

The cubic code may be more parallelizable than the X -cube model or the toric code

