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Decoding

I Decoders correct errors

I they use the locations of excitations to estimate the error

I This may be slow as we grow the code

I We explore parallelizable codes to speed up decoders



Parallelized quantum error correction
Parallelized quantum error correction is a missing link in topological decoders

I Less evolved than self-correcting codes with cellular automata
decoders

I Fills the divide between common 2D topological codes and
self correction

I Cousin to fault-tolerant single-shot error correction

I Completing the picture of evolution gives new insights
into decoding



Toric code
The toric code has point defects at the end points of string errors



Decoding the toric code
The toric code is decoded using matching

Matching pairs up defects that can be pairwise corrected



Decoding general topological codes
Generically, we can use clustering to decode topological codes

(a) (b)

(c) (d)

Clustering scales like the code volume - slow



Parallelized decoding
A simple classical example – the eight-vertex model

Z Z

Z Z

Features of the code:

I Spins on the faces
I Four-body stabilizers on the faces that touch every vertex



Parallelized decoding
A simple classical example – the eight-vertex model

X

X X

Features of errors and its defects:

I Stabilizer defects light up at the corners of the face errors
I Defects occur in pairs along horizontal and vertical lines



Parallelized decoding
A simple classical example – the eight-vertex model

X

X X

Decoding:

I With this structure we can perform one-dimensional matching
I Edges from the matching form the boundaries of the error



X-cube model
The X-cube model is three-dimensional with qubits on the faces of a cubic lattice

Pauli-X stabilizer

Pauli-Z stabilizer



Planeons
Pauli-Z operators create planeons



Decoding planeons
Planeons are corrected in clusters that respect their planar symmetries

We can find a Pauli operator to correct a cluster of defects if

I Every defect is paired with another on an xy plane
I Every defect is paired with another on an yz plane
I Every defect is paired with another on an zx plane



Threshold for planeons
The threshold for planeons is ∼ 4.3%
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Lineons
Pauli-X operators create lineons
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Decoding lineons
We can decode lineons with groups of defects if

I Every red defect is matched with a red or a blue vertex on its
plane of constant z

I Every red defect is matched with a red or a green vertex on its
plane of constant x

I Every green defect is matched with a blue or a green vertex
on its plane of constant y

I . . . and so on

x

y

z

(a) (b)
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Decoding lineons
We match over planes, not the volume of the lattice, to find groups of defects as above

(a)

(b)

(c)



Threshold with parallelized error correction
The threshold is close to that of the toric code, as we may expect
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Emergent symmetries
We decoded the X-cube model using its emergent symmetries

We decode a lot of code1 using emergent symmetries

1a LOT of codes



Emergent symmetries
Emergent symmetries promise charge conservation

Eight-vertex model – 1D charge conservation symmetries

X

X X

Toric code – global charge conservation symmetry



Emergent symmetries
Emergent symmetries promise charge conservation on planes

X-cube model planar charge conservation symmetries

(a)

(b)

(c)

Color code – emergent symmetry among pairs of colored defects

(a) (b) (c)

(d) (e) (f) (g) (h)



Parallelized quantum error correction
Parallelized quantum error correction is a missing link in topological decoders

2D toric code X-cube model
(global symmetries) (planar symmetries)

gauge color code 4D toric code
(temporal planar symmetries – single-shot) (local symmetries)



Single-shot error correction
Single-shot error correction is temporally parallelized
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Single-shot error correction
Single-shot error correction is temporally parallelized
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Correlated errors with parallelized quantum error correction
Resilience of single-shot codes to time-correlated errors is understood by parallelization



Local decoders with self-correcting memories
Self-correcting stabilizer models have local emergent symmetries



Biased noise on the surface code
Decoding Pauli-Y errors on the surface code is like decoding the eight-vertex model
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Biased noise on the surface code
The parallelized decoder is generalizable to noisy measurements and finite bias

We deal with measurement errors in the standard way
The model has 2D symmetries in 2+1D spacetime
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We generalize to a weakly symmetry respecting decoder to
decode finite bias



The cubic code model
The cubic code may be more parallelizable than the X-cube model or the toric code
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