Entanglement, 2-dimensional gravity and tensor networks

Nele Callebaut
Ghent University, Verstraete group \& Princeton University
Based on 1808.10431, with Herman Verlinde and 1808.05583

February 8, 2019

Outline

- Set-up: bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}, x \geq 0$
- Goal: develop theory of entanglement dynamics
- Result: entanglement dynamics of bCFT_{2} is described by JT gravity
- Entanglement renormalization in bCFT described by Schwarzian QM - connection to cMERA
- Example of 'geometry from entanglement'
- Future directions

Set-up 1

CFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}$in vacuum state $|0\rangle$

Set-up 2

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

Set-up 3

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

$$
\int_{\operatorname{point} P \text { at }\left(x_{P}^{+}, x_{P}^{-}\right)}^{x^{-}}
$$

Set-up 4

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

point P at $\left(x_{P}^{+}, x_{P}^{-}\right)$
\sim interval

Set-up 5

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

$$
\begin{aligned}
& \text { point } P \text { at }\left(x_{P}^{+}, x_{P}^{-}\right) \\
& \sim \text { interval }
\end{aligned}
$$

$$
S_{P}=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)
$$

$$
=\frac{c}{6} \log \frac{x_{P}}{\delta}=\frac{c}{6} \log \frac{x_{P}^{+}-x_{P}^{-}}{2 \delta}
$$

$$
=S_{P}\left(x_{P}^{+}, x_{P}^{-}\right)
$$

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

$$
\begin{aligned}
& \text { point } P \text { at }\left(x_{P}^{+}, x_{P}^{-}\right) \\
& \sim \text { interval }
\end{aligned}
$$

$$
S_{P}=-\operatorname{tr} \rho_{A} \log \rho_{A}
$$

$$
=\frac{c}{6} \log \frac{x_{P}}{\delta}=\frac{c}{6} \log \frac{x_{P}^{+}-x_{P}^{-}}{2 \delta}
$$

$$
=S_{P}\left(x_{P}^{+}, x_{P}^{-}\right)
$$

local field $S_{P}\left(x_{P}^{+}, x_{P}^{-}\right) \Rightarrow$ dynamics of S_{P} ?
bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

$$
\begin{aligned}
& \text { point } P \text { at }\left(x^{+}, x^{-}\right) \\
& \sim \text { interval }
\end{aligned}
$$

$$
S=-\operatorname{tr} \rho_{A} \log \rho_{A}
$$

$$
=\frac{c}{6} \log \frac{x}{\delta}=\frac{c}{6} \log \frac{x^{+}-x^{-}}{2 \delta}
$$

$$
=S\left(x^{+}, x^{-}\right)
$$

local field $S\left(x^{+}, x^{-}\right) \Rightarrow$ dynamics of S ?

Entanglement

$$
S\left(x^{+}, x^{-}\right)=\frac{c}{6} \log \frac{x^{+}-x^{-}}{2 \delta}
$$

obeys

$$
\partial_{+} \partial_{-}\left(\frac{12}{c} S\right)=\frac{1}{2 \delta^{2}} e^{-\frac{12}{c} S}
$$

Goal: develop a field theory for the entanglement ("theory of entanglement dynamics") that reproduces this equation as an EOM Inspiration from tensor networks

Entanglement

$$
S\left(x^{+}, x^{-}\right)=\frac{c}{6} \log \frac{x^{+}-x^{-}}{2 \delta}
$$

obeys

$$
\partial_{+} \partial_{-}\left(\frac{12}{c} S\right)=\frac{1}{2 \delta^{2}} e^{-\frac{12}{c} S}
$$

Goal: develop a field theory for the entanglement ("theory of entanglement dynamics") that reproduces this equation as an EOM Inspiration from tensor networks

$$
S \quad \rightsquigarrow \quad(2 \mathrm{D}) \text { metric } g
$$

\Rightarrow dynamics of entanglement $=$ dynamics of (2D) geometry

$$
=(2 \mathrm{D}) \text { gravity }
$$

Dilaton gravity

Einstein gravity

$$
I\left[g, \phi_{m}\right]=\int d x d t \sqrt{g}(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu \nu}=0$.

Dilaton gravity

Einstein gravity

$$
I\left[g, \phi_{m}\right]=\int d x d t \sqrt{g}(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu \nu}=0$.

Dilaton gravity

$$
I\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g}\{\Phi R+V(\Phi)\}+I_{m}\left[g, \Phi, \phi_{m}\right]
$$

Dilaton gravity

Einstein gravity

$$
I\left[g, \phi_{m}\right]=\int d x d t \sqrt{g}(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

is trivial in 2D: EOM doesn't allow non-zero cosmological constant Λ or conformal matter stress tensor because $G_{\mu \nu}=0$.

Dilaton gravity

$$
I\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g}\{\Phi R+V(\Phi)\}+I_{m}\left[g, \Phi, \phi_{m}\right]
$$

Jackiw-Teitelboim (JT) dilaton gravity

$$
I\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

JT gravity and entanglement

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

The EOM following from variation wrt Φ is

$$
R=-\Lambda .
$$

JT metric solution is always AdS_{2} !

$$
d s^{2}=\ell^{2} \frac{\left(-d t^{2}+d x^{2}\right)}{x^{2}}
$$

JT gravity and entanglement

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

The EOM following from variation wry Φ is

$$
R=-\Lambda .
$$

JT metric solution is always AdS_{2} !
In conformal gauge $g_{\mu \nu}=e^{\omega\left(x^{+}, x^{-}\right)} \eta_{\mu \nu}\left(\right.$ or $\left.d s^{2}=-e^{\omega} d x^{+} d x^{-}\right)$and $\Lambda=\frac{2}{l^{2}}$

$$
\begin{gathered}
\partial_{+} \partial_{-} \omega+\frac{1}{2 \ell^{2}} e^{\omega}=0 \\
\partial_{+} \partial_{-}\left(\frac{12}{c} S\right)=\frac{1}{2 \delta^{2}} e^{-\frac{12}{c} S}
\end{gathered}
$$

$$
\omega=-\frac{12}{c} S+2 \log \frac{\ell}{\delta}
$$

$$
d s^{2}=-\left(\frac{\ell}{\delta}\right)^{2} e^{-\frac{12}{c} s\left(x^{+}, x^{-}\right)} d x^{+} d x^{-}
$$

JT entanglement dynamics of bCFT: metric

Part 1 of our JT entanglement dynamics theory: metric is AdS_{2} determined by entanglement of the bCFT.

JT gravity and modular Hamiltonian

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

The EOM following from variation wrt $g_{\mu \nu}$ are

$$
\begin{aligned}
\partial_{+} \Phi \partial_{+} \omega-\partial_{+}^{2} \Phi & =8 \pi G T_{++}^{m} & & \left(-\nabla_{+}^{2} \Phi=8 \pi G T_{++}^{m}\right) \\
\partial_{-} \Phi \partial_{-} \omega-\partial_{-}^{2} \Phi & =8 \pi G T_{--}^{m} & & \left(-\nabla_{-}^{2} \Phi=8 \pi G T_{--}^{m}\right) \\
\partial_{+} \partial_{-} \Phi+\frac{\Lambda}{4} e^{\omega} \Phi & =0 & & (\square \Phi-\Lambda \Phi=0) .
\end{aligned}
$$

What object in bCFT_{2} obeys these EOM?

JT gravity and modular Hamiltonian

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

The EOM following from variation wrt $g_{\mu \nu}$ are

$$
\begin{aligned}
\partial_{+} \Phi \partial_{+} \omega-\partial_{+}^{2} \Phi & =8 \pi G T_{++}^{m} & & \left(-\nabla_{+}^{2} \Phi=8 \pi G T_{++}^{m}\right) \\
\partial_{-} \Phi \partial_{-} \omega-\partial_{-}^{2} \Phi & =8 \pi G T_{--}^{m} & & \left(-\nabla_{-}^{2} \Phi=8 \pi G T_{--}^{m}\right) \\
\partial_{+} \partial_{-} \Phi+\frac{\Lambda}{4} e^{\omega} \Phi & =0 & & (\square \Phi-\Lambda \Phi=0) .
\end{aligned}
$$

What object in bCFT_{2} obeys these EOM?
Answer: modular Hamiltonian K

$$
K \rightsquigarrow \text { dilaton } \Phi
$$

Modular Hamiltonian

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

$$
\begin{aligned}
& \nearrow^{x^{-}} \\
& \begin{array}{l}
\text { point } P \text { at }\left(x^{+}, x^{-}\right) \\
\sim \text { interval }
\end{array} \\
& K=-\log \rho_{A} \quad\left(\text { or } \rho_{A}=e^{-K} / \operatorname{tr}(K)\right) \\
& =2 \pi \int_{x^{-}}^{x^{+}} d s \frac{\left(s-x^{-}\right)\left(x^{+}-s\right)}{x^{+}-x^{-}} T_{++}(s) \\
& =K\left(x^{+}, x^{-}\right)
\end{aligned}
$$

Modular Hamiltonian

bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

point P at $\left(x^{+}, x^{-}\right)$
\sim interval
$K=-\log \rho_{A} \quad\left(\right.$ or $\left.\rho_{A}=e^{-K} / \operatorname{tr}(K)\right)$

$$
\begin{aligned}
& =2 \pi \int_{x^{-}}^{x^{+}} d s \frac{\left(s-x^{-}\right)\left(x^{+}-s\right)}{x^{+}-x^{-}} T_{++}(s) \\
& =K\left(x^{+}, x^{-}\right)
\end{aligned}
$$

local field $K\left(x^{+}, x^{-}\right) \Rightarrow$ dynamics of K ?

Modular Hamiltonian

$$
K=2 \pi \int_{x^{-}}^{x^{+}} d s \frac{\left(s-x^{-}\right)\left(x^{+}-s\right)}{x^{+}-x^{-}} T_{++}(s)
$$

obeys

$$
\begin{aligned}
\nabla_{+} \partial_{+} K & =2 \pi T_{++} \\
\nabla_{-} \partial_{-} K & =2 \pi T_{--} \\
(\square-\Lambda) K & =0 .
\end{aligned}
$$

Modular Hamiltonian

$$
K=2 \pi \int_{x^{-}}^{x^{+}} d s \frac{\left(s-x^{-}\right)\left(x^{+}-s\right)}{x^{+}-x^{-}} T_{++}(s)
$$

obeys

$$
\begin{aligned}
\nabla_{+} \partial_{+} K & =2 \pi T_{++} \\
\nabla_{-} \partial_{-} K & =2 \pi T_{--} \\
(\square-\Lambda) K & =0 .
\end{aligned}
$$

$$
-\nabla_{+} \partial_{+} \Phi=8 \pi G T_{++}^{m}
$$

$$
-\nabla_{-} \partial_{-} \Phi=8 \pi G T_{--}^{m}
$$

$$
(\square-\Lambda) \Phi=0
$$

$$
\Phi=-4 G K+\Phi_{0} \quad \text { and } \quad T_{ \pm \pm}^{m}=T_{ \pm \pm}
$$

Modular Hamiltonian

$$
K=2 \pi \int_{x^{-}}^{x^{+}} d s \frac{\left(s-x^{-}\right)\left(x^{+}-s\right)}{x^{+}-x^{-}} T_{++}(s)
$$

obeys

$$
\begin{aligned}
& \nabla_{+} \partial_{+} K=2 \pi T_{++} \\
& \nabla_{-} \partial_{-} K=2 \pi T_{--} \\
&(\square-\Lambda) K=0 . \\
&-\nabla_{+} \partial_{+} \Phi=8 \pi G T_{++}^{m} \\
&-\nabla_{-} \partial_{-} \Phi=8 \pi G T_{--}^{m} \\
&(\square-\Lambda) \Phi=0 \\
& \Phi=-4 G K+\Phi_{0} \quad \text { and } \quad T_{ \pm \pm}^{m}=T_{ \pm \pm}
\end{aligned}
$$

Part 2 and 3 of our JT entanglement dynamics theory: JT dilaton is determined by modular Hamiltonian of the bCFT, and JT matter sector by the bCFT matter.

JT entanglement dynamics of bCFT

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

$l_{\text {ent dyn of bCFT }}\left[S, K, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+\int d x d t \sqrt{g} \mathcal{L}_{b C F T}$
with

$$
S \rightsquigarrow g, \quad K \rightsquigarrow \Phi, \quad \text { bCFT fields } \rightsquigarrow \phi_{m} .
$$

JT entanglement dynamics of bCFT

$$
I_{J T}\left[g, \Phi, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+I_{m}\left[g, \phi_{m}\right]
$$

$l_{\text {ent dyn of bCFT }}\left[S, K, \phi_{m}\right]=\int d x d t \sqrt{g} \Phi(R+\Lambda)+\int d x d t \sqrt{g} \mathcal{L}_{b C F T}$
with

$$
S \rightsquigarrow g, \quad K \rightsquigarrow \Phi, \quad \text { bCFT fields } \rightsquigarrow \phi_{m} .
$$

Theory of entanglement dynamics obtained by coupling bCFT to AdS_{2} JT gravity.

JT entanglement dynamics of bCFT

Given bCFT_{2}

$$
d s^{2}=-d t^{2}+d x^{2}
$$

Entanglement dynamics of bCFT_{2}

Recap

- bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$

Recap

- bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$
- point $P\left(x^{+}, x^{-}\right) \sim$ interval $\sim S\left(x^{+}, x^{-}\right)$and $K\left(x^{+}, x^{-}\right)$that obey EOM of JT gravity with

$$
\begin{aligned}
& \omega=-\frac{12}{c} S+2 \log \frac{\ell}{\delta} \\
& \Phi=-4 G K+\Phi_{0}
\end{aligned}
$$

Recap

- bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$
- point $P\left(x^{+}, x^{-}\right) \sim$ interval $\sim S\left(x^{+}, x^{-}\right)$and $K\left(x^{+}, x^{-}\right)$that obey EOM of JT gravity with

$$
\begin{aligned}
& \omega=-\frac{12}{c} S+2 \log \frac{\ell}{\delta} \\
& \Phi=-4 G K+\Phi_{0}
\end{aligned}
$$

- Theory of entanglement dynamics obtained by coupling bCFT_{2} to AdS_{2} JT gravity

$$
l_{\text {ent dyn of bCFT }}=I_{J T, g r a v}+I_{b C F T}
$$

Recap

- bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle$
- point $P\left(x^{+}, x^{-}\right) \sim$ interval $\sim S\left(x^{+}, x^{-}\right)$and $K\left(x^{+}, x^{-}\right)$that obey EOM of JT gravity with

$$
\begin{aligned}
& \omega=-\frac{12}{c} S+2 \log \frac{\ell}{\delta} \\
& \Phi=-4 G K+\Phi_{0}
\end{aligned}
$$

- Theory of entanglement dynamics obtained by coupling bCFT_{2} to AdS_{2} JT gravity

$$
I_{\text {ent dyn of bCFT }}=I_{J T, g r a v}+I_{b C F T}
$$

How general? For class of excited states in bCFT obtained by conformal transformations of the lightcone coordinates $X^{ \pm}\left(x^{ \pm}\right)$.

Connection to tensor networks

- Construction coincides with definition of boundary kinematic space [Karch et al 1703.02990]
Kinematic space / MERA [Czech et al]
- Construction allows description of entanglement renormalization in bCFT cfr MERA, cMERA [Vidal, Haegeman et al]

Entanglement renormalization 1

Entanglement interpretation of Φ_{0} ?

$$
\begin{gathered}
\nabla_{ \pm} \partial_{ \pm} \Phi_{0}=0 \\
-e^{\omega} \partial_{ \pm}\left(e^{-\omega} \partial_{ \pm} \Phi_{0}\right)=0 \\
\Phi_{0}(x) \sim-\int^{x} d x^{\prime} e^{\omega\left(x^{\prime}\right)} \sim-\partial_{x} \omega \sim \partial_{x} S=\frac{S(x)-S(x-\epsilon)}{-\epsilon} \\
-\Phi_{0}=\frac{\Phi_{b}}{\epsilon} \frac{3}{c}(S(x)-S(x-\epsilon)) \\
-\frac{\Phi_{0}}{4 G}=S(x)-S(x-\epsilon)
\end{gathered}
$$

Entanglement renormalization 2

$$
\frac{\Phi_{0}}{4 G}=\frac{\Phi_{b}}{4 G \epsilon} \frac{3}{c}\left(-\delta S_{b}\right) \quad \text { or } \quad \frac{\Phi_{0}}{4 G}=-\delta S_{b}
$$

with $\delta S_{b}=S(x)-S(x-\epsilon)$ the amount of entanglement between region left of $P(x, t)$ and boundary layer of width ϵ

In the JT theory, the boundary condition

$$
\Phi_{0}=\frac{\Phi_{b}}{\epsilon}
$$

defines location of boundary $\{t(u), x(u)\}$ in $d s^{2}=\frac{-d t^{2}+d x^{2}}{x^{2}}$ with boundary time u such that

$$
\begin{aligned}
& \text { 1) }\left.d s^{2}\right|_{b}=-\frac{d u^{2}}{\epsilon^{2}} \\
& \text { 2) }\left.\Phi\right|_{b}=\frac{\Phi_{b}}{\epsilon}
\end{aligned}
$$

In the JT theory, the boundary condition

$$
\Phi_{0}=\frac{\Phi_{b}}{\epsilon}
$$

defines location of boundary $\{t(u), x(u)\}$ in $d s^{2}=\frac{-d t^{2}+d x^{2}}{x^{2}}$ with boundary time u such that

$$
\begin{aligned}
& \text { 1) }\left.d s^{2}\right|_{b}=-\frac{d u^{2}}{\epsilon^{2}} \\
& \text { 2) }\left.\Phi\right|_{b}=\frac{\Phi_{b}}{\epsilon}
\end{aligned}
$$

1) Family of trajectories $\left\{t(u), \epsilon t^{\prime}(u)\right\} \Longleftarrow \frac{-d t^{2}+d x^{2}}{x^{2}}=-\frac{d u^{2}}{\epsilon^{2}}$
2) $t(u)$ as a function of matter content of JT theory determined by Schwarzian QM

$$
\Longleftarrow \Phi(x, t ; T)=\frac{\Phi_{b}}{\epsilon}
$$

$$
\Phi\left(\epsilon t^{\prime}(u), t(u) ; T\right)=\frac{\Phi_{b}}{\epsilon}
$$

$$
\Phi_{b} \int\{t, u\} d u+I_{C F T}
$$

$\{t, u\}=\frac{t^{\prime \prime \prime}}{t^{\prime}}-\frac{3}{2}\left(\frac{t^{\prime \prime}}{t^{\prime}}\right)^{2}$

Entanglement renormalization 3

$$
\begin{gathered}
\frac{\Phi_{0}}{4 G}=\frac{\Phi_{b}}{4 G \epsilon} \frac{3}{c}\left(-\delta S_{b}\right) \quad \text { and } \quad \frac{\Phi_{0}}{4 G}=-\delta S_{b} \\
\Phi_{0}=\frac{\Phi_{b}}{\epsilon} \quad \text { corresponds to } \quad \delta S_{b}=-\frac{c}{3}
\end{gathered}
$$

and

$$
\Phi_{b}=\frac{c \epsilon}{3} \Rightarrow \frac{c \epsilon}{3} \int\{t, u\} d u+I_{b C F T}
$$

$$
I_{b C F T}^{\epsilon}=I_{b C F T}^{\epsilon \rightarrow 0}+\frac{c \epsilon}{3} \int\{t, u\} d u
$$

Entanglement renormalization 4

Entanglement renormalization in given bCFT_{2}
similar to CMERA

$$
d s^{2}=-d t^{2}+d x^{2}
$$

Boundary dynamics in entanglement dynamics of bCFT_{2} described by Schwarzian QM

$$
d s^{2}=\frac{-d t^{2}+d x^{2}}{x^{2}}
$$

Geometry from entanglement

Holographic argument

$$
\begin{aligned}
\delta M & =T \delta S \quad \text { gravitational first law in } \mathrm{AdS}_{3} \text { gravity } \\
\delta\langle K\rangle_{C F T} & =\delta S_{C F T} \quad \text { entanglement first law in } \mathrm{CFT}_{2}
\end{aligned}
$$

Jacobson argument (non-holographic)

$$
\begin{aligned}
\delta M & =T \delta S+\delta E \quad \text { gravitational first law in } \mathrm{AdS}_{3} \text { gravity } \\
0 & =\delta \mathbf{S}_{C F T} \mid V \quad \text { condition on entanglement in } \mathrm{CFT}_{3}
\end{aligned}
$$

Current argument (non-holographic)

$$
\begin{aligned}
& 0=T \delta S+\delta E \quad \text { gravitational first law in } \mathrm{AdS}_{2} \mathrm{JT} \text { gravity } \\
& 0=\frac{\delta \Phi}{4 G}+\delta\langle K\rangle_{C F T} \quad \text { condition on entanglement in } \mathrm{CFT}_{2}
\end{aligned}
$$

Summary

- bCFT_{2} on $d s^{2}=-d t^{2}+d x^{2}=-d x^{+} d x^{-}, x \geq 0$ in state $|0\rangle_{X}$
- Theory of entanglement dynamics obtained by coupling bCFT_{2} to AdS_{2} JT gravity

$$
l_{\text {ent dyn of bCFT }}=I_{J T, g r a v}+I_{b C F T}
$$

- Consequence of construction: Entanglement renormalization in bCFT_{2} described by Schwarzian QM

$$
I_{b C F T}^{\epsilon}=I_{b C F T}^{\epsilon \rightarrow 0}+\frac{c \epsilon}{3} \int\{t, u\} d u
$$

Other directions

- cMERA - Schwarzian
- T \bar{T} deformation of CFT
- bCFT / SPT
- de Sitter version
- ...

Other directions

- cMERA - Schwarzian
- T \bar{T} deformation of CFT
- bCFT / SPT
- de Sitter version

Thank you!

