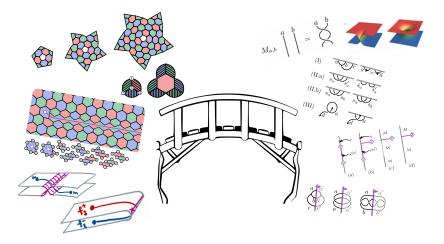
The twists and boundaries of the 2D color code

arXiv:1806.02820, Quantum 2, 101 (2018).

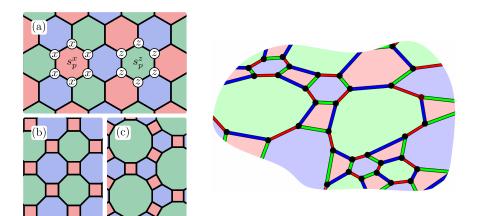
Markus Kesselring, Fernando Pastawski, Jens Eisert, Ben Brown

Coogee, Syndey – 5th of February 2019

A bridge between condensed matter and quantum info

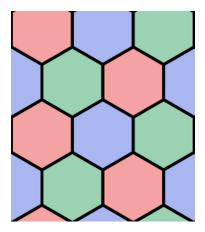


Introduction to 2D color codes: Stabilizers

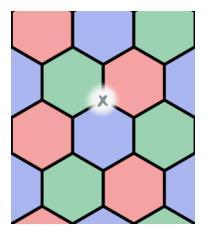


$$H_{CC} = -\sum_{p} s_{p}^{x} - \sum_{p} s_{p}^{z}$$

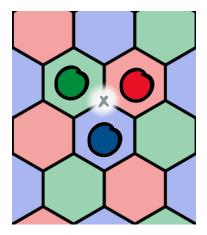
Color code anyons: creation

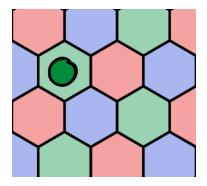


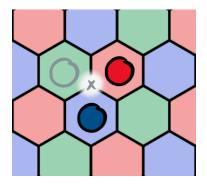
Color code anyons: creation

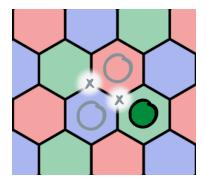


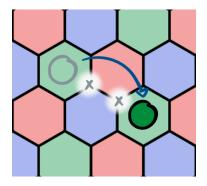
Color code anyons: creation



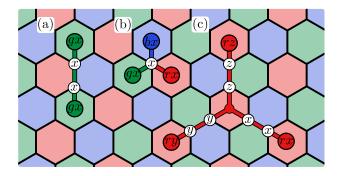




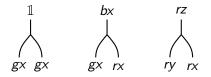




Color code anyons: fusion



rx	gx	bx
ry	gу	by
rz	gz	bz

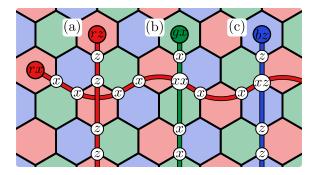


Color code anyons: braiding

$$\begin{vmatrix} a & b \\ b \\ \end{vmatrix} = S_{a,b} \bigotimes^{a \ b}$$

For abelian anyons braiding results in a phase: $S_{a,b} = e^{i\theta_{a,b}}$

Color code anyons: braiding



rx	gx	bx
ry	gу	by
rz	gz	bz

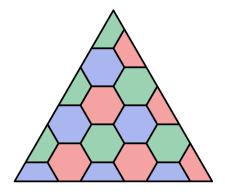
Fusion of two anyons within a row/column results in the third anyon within said row/column.

Braiding of two anyons which are in the same row/column is trivial, otherwise it will result in a phase -1.

rx	gx	bx
ry	gу	by
rz	gz	bz

Boundaries of the color code

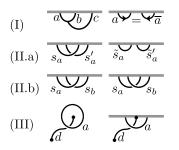
Three known bounadries of the color code:



rx	gx	bx
ry	gу	by
rz	gz	bz

Gapped bounadries

Anyons that condense at a gapped boundary form a Lagrangian subgroup $\ensuremath{\mathcal{M}}$

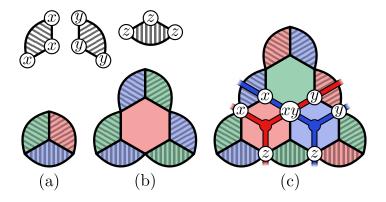


	colo				
	boı	Indai	ries		
Dauli	(rx	gx	bx		
Pauli undaries	ry	gу	by		
linuaries	rz	gz	bz		

boı

- self bosonic exchange statistics
- \blacktriangleright trivial braiding with other anyons in ${\cal M}$

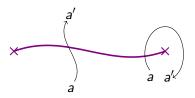
Small codes with Pauli boundaries



A tiny [[4, 1, 2]] color code!

Domain walls and twists

- ▶ domain walls correspond to maps $a \mapsto \varphi(a) = a'$
- anyons crossing domain walls get mapped
- anyons circling around twist get mapped



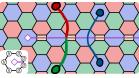
data of anyon model is left invariant

•
$$\varphi(N_{a,b}^c) = N_{a',b'}^{c'} = N_{a,b}^c$$

• $\varphi(S_{a,b}) = S_{a',b'} = S_{a,b}$
• $\varphi(T_{a,b}) = T_{a',b'} = T_{a,b}$

Color Code Twists

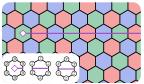
color label permuting domain walls



$$|S_3| = 6$$

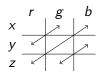
Pauli label permuting domain walls

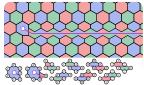
rx	gx	bx	4
ry	gу	by	
rz	gz	bz	Ļ



$$|S_3| = 6$$

Duality (or domino) domain walls - exchange color and Pauli label



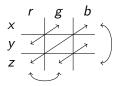


$$|Z_2| = 2$$

Generating domain walls and twists

Combining domain walls and twists

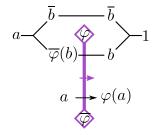
Generating set of twists

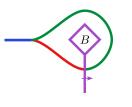


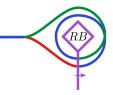
Number of twists

 $(S_3 \times S_3) \rtimes Z_2 = S_3 \wr Z_2$ order 72

Anyon localization at twist defects



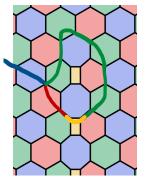




Non-abelian Ising anyons:

$$\sigma \times \psi = \sigma$$

$$ightarrow N_{\sigma,\psi}^{\sigma} = 1$$



Quantum dimension of twists

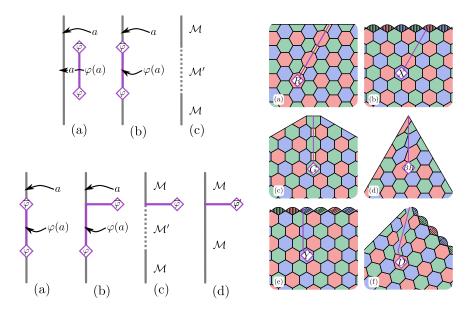
Quantum dimension of a twist φ :

$$d_{arphi}^2 = \sum_{a \in \mathcal{C}} d_a N_{arphi,a}^{arphi}$$

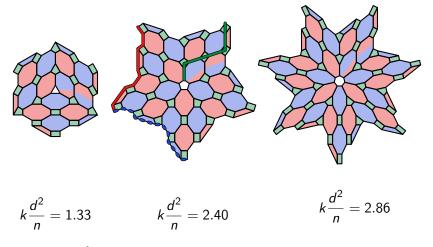
Quantum dimensions of color code twists:

	1	X	Y	Z	XZ	ZX	$D \circ ()$	1	X	Y	Z	XZ	ZX
1	1	2	2	2	4	4	1	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$
R	2	2	2	2	4	4	R	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$
G	2	2	2	2	4	4	G	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$
B	2	2	2	2	4	4	В	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{8}$
RB	4	4	4	4	2	2	RB	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{2}$
BR	4	4	4	4	2	2	BR	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{8}$

Twist condensation

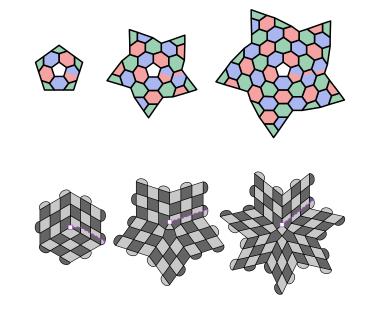


Applications of twists: Stellated codes



General: $k\frac{d^2}{n} = 4 - \frac{8}{s} \rightarrow 4$

Applications of twists: Stellated codes



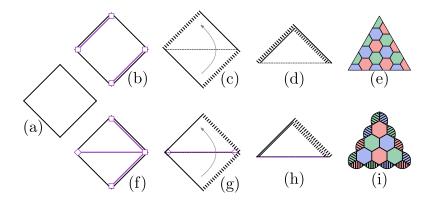
Unfolding the Color Code into 2 Toric Codes

The color code can be "unfolded" into two copies of the toric code: $CC = TC \otimes TC$

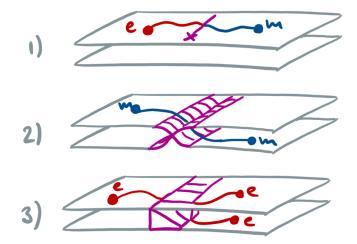
Toric code anyons: $1, e, m, \varepsilon = e \times m$

	r	g	Ь
X	<i>e</i> ⁻	e^e+	e ⁺
y	e^-m^+	$\varepsilon^{-}\varepsilon^{+}$	m^-e^+
Ζ	m^+	m^-m^+	<i>m</i> ⁻

Unfolding the Color Code into 2 Toric Codes: Boundaries



Unfolding the Color Code into 2 Toric Codes: Twists



Unfolding the Color Code into the Three Fermion Model

Three fermion anyon model:

Like the toric code, but with more fermions!

Anyons and fusion:

$$\mathbb{1}, \qquad f_1, \qquad f_2, \qquad f_3 = f_1 \times f_2$$

Self exchange:

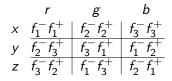
$$\theta_{f_i} = -1$$

Braiding:

$$S_{f_i,f_j} = egin{cases} +1, & i=j \ -1, & i
eq j \end{cases}$$

Topological subsystem code:

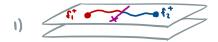
Unfolding the Color Code into the Three Fermion Model

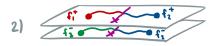


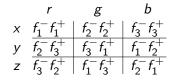
The Three Fermion Model: Symmetries + CC Twists

 $|S_3| = 6$

Six permutations of three elements

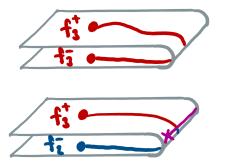


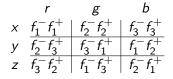




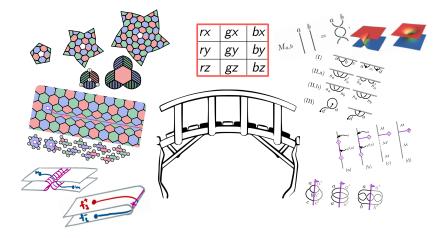
The Three Fermion Model: CC Boundaries Twists

CC boundary = 3F fold + 3F domain wall 6 possible 3F domain walls \leftrightarrow 6 CC boundaries

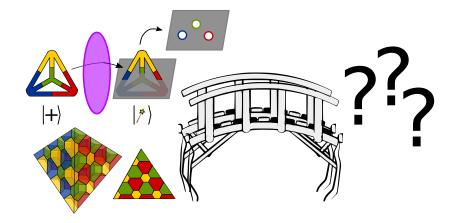




Summary



And now the same in 3D!

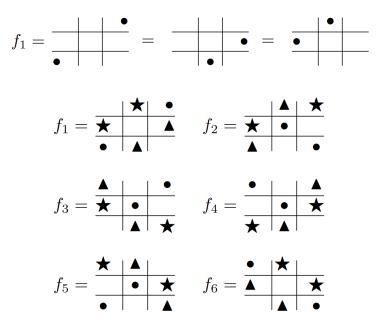


arXiv:1806.02820, Quantum 2, 101 (2018)

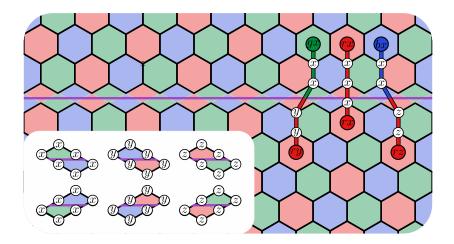
Thanks to my collaborators: Ben J. Brown, Fernando Pastawski, Jens Eisert

And thank you for your attention!

Fermions in the Color Code



Domino Twist: anyons



Twists crossing domain walls

