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Introduction

• Aim: To get a general and efficient method to identify
topological materials.
• Claim: Deep neural networks and quantum walks

together can efficiently identify topological phases and
phase transitions, and assist engineering new topological
materials.
• Importance: Our approach is generally applicable and 

suitable for different experimental setups.



Topology in quantum systems
Topologically protected matter

• Interactions are ignored
• Unique topologically protected 

ground state
• Momentum space analysis
• Topological invariant: Chern

number, Z2-index…
• Short-range quantum 

entanglement
• Quantum Hall effect; 

topological insulators…

Topologically ordered matter

• Interactions are important
• Topologically protected 

degeneracy of ground states
• Lattice/spatial space analysis
• Topology of higher-genus 

manifolds;
• Long-range quantum 

entanglement
• Fractional quantum Hall effect; 

topological codes…



• The Chern number is a topological invariant. It is very 
reminiscent of the Euler characteristic (Gauss-Bonnet 
theorem):

• The topology comes from the geometric phase integral of 
the ground state in FBZ. 

for an orientable surface, where K is the Gaussian curvature 
and g is the genus (easy to check for sphere where K = 1/R2). 

Chern number



Chern number
• Consider a 2-band Chern insulator Hamiltonian

where                           is an array of Pauli matrices. The 
energies are              so we can define the unit vector

• For a closed contour over the energy surface (now defined 
on the 2-sphere), the (lower-band) Chern number is equal to 
the number of times the unit vector wraps around the origin 
as a function of k (important fact that we will need later)



Model
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• In momentum space:

• In the tight-binding model, the entries become:

• This ‘mass’ term comes from the energy difference between 
hopping in the upper and lower planes.

‘hopping’ amplitudes

Model



• Recall that the Chern number is defined by the number of times the surface of the 
Hamiltonian (hx, hy, hz) wraps around the origin:

t2=0

Geometric picture of the topology



Topological phase diagram

• Chern number distributions in parameters plane

Zhang et al. PRL 119, 197401 (2017); 



Continuous-time quantum walks(CTQW)

• One particle dynamical evolutions governed with H
• Described with Schrödinger equation



CTQW with Chern number �1, 0

• With t2=0
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•The energy bands as a function of t3 through the phase 
transition from C = 0 to C = 1 (m = -12 t1):

Energy bands



CTQW with Chern number �1, 0

• Density profiles in positon space, with t2=0

C=0 C=1
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Zhang et al. PRL 119, 197401 (2017); 



• Looking more top-wise, the band energies are 
minimized (maximized) at the point (kx,ky) = (p/2, p/2) for 
C = 0, but in a ring around this point for C = 1:

Energy bands



CTQW with Chern number �1, 0

• The wave function in position space

• Around Ek= =0

so that there is a ring of peaks near the spatial origin for non-zero 
Chern number, but no feature for topological trivial systems.  



• Dynamical observation in momentum space:

• Oscillation amplitude and period (ring locations           )

C = 1 C = 0

CTQW with Chern number �1, 0

Sun, Yi, Wang, Zhang, et al. PRL 121, 250403 (2018);



Higher C ?

perturbations?

Conjecture:
CTQW contain all information on topology of the Hamiltonian.
Problem:
How do we identify the topology



Solution: Deep Neural Networks & CTQW

Ming, Lin, Bartlett, Zhang,  arXiv 1811.12630  (2018); 



Input data: CTQW

• 2D Spin-orbit coupling Hamiltonian with strength {m, t3}
• Chern number of our simulated system C={0, �1, �2}

• “whole”: all the coloured area; 
• “Transition”: all the dotted area;
• Density profiles in both 

momentum and position space 
• Noisy data



DNN: hybrid learning paradigm

• Computation network: Error correction learning, such as back-
propagation with gradient descent. Supervised learning: reduce
the difference between trained output and the target vectors.

• Memory network: Self-organising map (SOM) reveals the hidden
correlations; Unsupervised learning



Outputs:

• Computation network:  Statistical accuracy and T-
distributed stochastic neighbour embedding (t-SNE)
• Memory network:  Principal component analysis (PCA)



Results-I:



Results-II:



Identify the effects of perturbation-I

• Long-range interactions: Next-nearest neighbour
coupling in x direction: hxnnn=tt*cos(2kx)!z
• tt is taking 3,6,9
• With trained DNN, we obtain the phase diagram



Identify the effects of perturbation-II

• External magnetic field in y direction hym=ϕY!z
• ϕ is taking from 0.001, 0.005, 0.01
• With trained DNN, we obtain the phase diagram



Thanks! 


