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Majorana fermions for quantum computing

Fermions can be occupied or unoccupied, i.e., c†c = 0, 1

Write c† = γA + iγB , with γS = γS† and
{
γS , γS

′
}

= 2δS ,S ′ .

Occupancy of the actual fermion is encoded by iγAγB = ±1.

When γA and γB are spatially separated, can encode a qubit
nonlocally.
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Majorana fermions as Majorana zero modes (MZMs)
spinless p-wave superconducting system:

H =
N−1∑
j=1

(
−Jc†j+1cj + ∆c†j+1c

†
j + h.c .

)
+

N∑
j=1

µc†j cj . (1)

Let c†j = 1
2

(
γAj + iγBj

)
, with γSj = γS†j and

{
γSj , γ

S ′
j ′

}
= 2δS,S ′δj ,k .

Take ∆ = J for simplicity,

H =
N∑
j=1

µ

2
iγAj γ

B
j +

N−1∑
j=1

J iγBj+1γ
A
j . (2)
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Majorana fermions as MZMs
Two extreme cases:
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Majorana fermions as MZMs

Energy excitation at finite µ and J.

Gap closing at µ = 2J, separating two regions with and without
MZMs respectively.

No adiabatic deformation is possible from one region to the other
=⇒ they are topologically distinct!
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Quantum computing with MZMs

Qubit definition:
I Prepare two p-wave superconductors with four MZMs in total

I Define two basis qubit states |0〉 and |1〉 such that

iγ1Lγ
1
R |0〉 = iγ2Lγ

2
R |0〉 = |0〉 , (3)

iγ1Lγ
1
R |1〉 = iγ2Lγ

2
R |1〉 = −|1〉 . (4)

I Note that γ1Lγ
1
Rγ

2
Lγ

2
R |S〉 = |S〉 for S = 0, 1.

I The two basis states are related by |1〉 = γ1Lγ
2
L|0〉.
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Quantum computing with MZMs
Quantum gate operations:

I Implementing HZ gate by braiding:

I Braiding matrix U = exp
(
π
4 γ

1
Lγ

2
L

)
= 1√

2

(
1 + γ1Lγ

2
L

)
.

I Note that U†γ1LU = γ2L, U†γ2LU = −γ1L, U†γ1RU = γ1R , and
U†γ2RU = γ2R .

I Indeed,

U|0〉 =
1√
2

(|0〉+ |1〉) , (5)

U|1〉 =
1√
2

(|1〉 − |0〉) . (6)
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Quantum computing with MZMs
Quantum gate operations:

I Implementing P = exp
(
−iπ4Z

)
gate by braiding:

I Braiding matrix U = exp
(
π
4 γ

1
Lγ

1
R

)
= 1√

2

(
1 + γ1Lγ

1
R

)
.

I Note that U†γ1LU = γ1R , U†γ1RU = −γ1L, U†γ2LU = γ2L, and
U†γ2RU = γ2R .

I Indeed,

U|0〉 =
1√
2

(1− i) |0〉 , (7)

U|1〉 =
1√
2

(1 + i) |1〉 . (8)
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Proposals to realize p-wave superconductors:

Chiral edge states of topological insulators, proximitized by s-wave
superconductivity. PRL 100, 096407 (2008)

Semiconducting nanowire proximitized by s-wave superconductivity
and subject to perpendicular magnetic field. PRL 105, 077001 (2010); PRL 105,

177002 (2010)

Picture taken from RIV NUOVO CIMENTO 11, 523-593 (2017)
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Quasiparticle poisoning problem

Majorana-based quantum computing relies on the conservation of
total Majorana parity γ1Lγ

1
Rγ

2
Lγ

2
R .

Current proposals to realize p-wave superconductors necessarily
involve coupling with environments.

Quasiparticle poisoning: The unwanted flow of Majorana fermions
in and out the system =⇒ total Majorana parity is no longer
conserved.

Results in the low coherence time of MZMs, i.e., between 10 ns to 0.1
ms. PRB 85, 174533 (2012)

Either fast quantum computation or supplement with active quantum
error corrections.
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Time-periodic p-wave superconductors

H(t) =

{
H1 for MT < t ≤ (M + 1

2)T

H2 for (M + 1
2)T < t < (M + 1)T

,

HS =
N−1∑
j

(
−JSc†j+1cj + ∆Sc

†
j+1c

†
j + h.c .

)
+ µS

N∑
j

c†j cj , (9)

Under periodic boundary conditions,

H(t) =
1

2

∑
k

ψ†kh(k , t)ψk , (10)

h(k , t) = [µ(t)− 2J(t) cos(k)]σz + 2∆(t) sin(k)σy , (11)

where ψk =

(
ck
c†−k

)
.
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Time-periodic p-wave superconductors

symmetric time-frame Floquet operator,

U ≡ U(t − T

2
; t +

T

2
)

= exp

(
−iH1T

4~

)
× exp

(
−iH2T

2~

)
× exp

(
−iH1T

4~

)
(12)

Its eigenvalues are of the form exp (−iεT/~).

ε ∈ (−~π
T ,

~π
T ] is called quasienergy.

In addition to MZMs, Majorana fermions can also exist as ~π
T

quasienergy excitations, i.e., Majorana π modes (MPMs).
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Time-periodic p-wave superconductors

Bulk-edge correspondence: The presence of MZMs and MPMs can
be determined from bulk properties.

Under PBC, the momentum space Floquet operator is

u(k) = F (k)G (k) ,

F (k) = exp

(
−ih1(k)T

4~

)
× exp

(
−ih2(k)T

4~

)
,

G (k) = exp

(
−ih2(k)T

4~

)
× exp

(
−ih1(k)T

4~

)
, (13)

where
hS(k) = [µS − 2JS cos(k)]σz + 2∆S sin(k)σy . (14)
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Time-periodic p-wave superconductors

Transform F (k) and G (k) to canonical basis, such that

σzF (k)σz = G (k)† . (15)

Write

F (k) =

(
A(k) B(k)
C (k) D(k)

)
. (16)

Number of MZMs and MPMs are given by

ν0 =
1

2πi

∫
dkB−1

dB

dk
,

νπ =
1

2πi

∫
dkD−1

dD

dk
. (17)
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Time-periodic p-wave superconductors
Main trick: µ2 = mµ1, J2 = −mJ1, and ∆2 = −m∆1, where m ∈ R.
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Time-periodic p-wave superconductors

At m = 3.6π, there are 3 pairs of MZMs and 4 pairs of MPMs (14
Majoranas in total)

By writing each Majorana as γ =
∑

i wiγi , where cj = γ2j − iγ2j+1,
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Majorana stabilizer codes to combat quasiparticle
poisoning

Using our proposed model at m = 3.6π,
I 3 pairs of MZMs: γ0,L,1, γ0,L,2, γ0,L,3, γ0,R,1, γ0,R,2, γ0,R,3.
I 4 pairs of MPMs: γ0,L,1, γ0,L,2, γ0,L,3, γ0,L,4 γ0,R,1, γ0,R,2, γ0,R,3, γ0,R,4.

Six weight-four Majorana stabilizers

S1 = γ0,L,1γ0,R,1γπ,L,1γπ,R,1 ,

S2 = γ0,L,1γ0,R,2γπ,L,1γπ,R,2 ,

S3 = γ0,L,1γ0,R,1γπ,L,2γπ,R,2 ,

S4 = γ0,L,2γ0,R,3γπ,L,3γπ,R,3 ,

S5 = γ0,L,3γ0,R,3γπ,L,3γπ,R,4 ,

S6 = γ0,L,2γ0,R,3γπ,L,4γπ,R,4 . (18)

Logical operators,

ZL = γ0,L,1γ0,L,2γ0,L,3γ0,R,1γ0,R,2γ0,R,3 ,

XL = γ0,L,1γ0,R,1γ0,R,2 . (19)
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Majorana stabilizer codes to combat quasiparticle
poisoning

Error model: Application of any single Majorana operator.
Any of such errors anticommutes with a unique set of stabilizers,

Error Anticommutes with
γ0,L,1 S1, S2, and S3

γ0,L,2 S4 and S6

γ0,L,3 S5

γ0,R,1 S1 and S3

γ0,R,2 S2

γ0,R,3 S4, S5, and S6

γπ,L,1 S1, and S2

γπ,L,2 S3

γπ,L,3 S4 and S5

γπ,L,4 S6

γπ,R,1 S1

γπ,R,2 S2 and S3

γπ,R,3 S4

γπ,R,4 S5 and S6
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Stabilizer measurements via four-terminal conductance

Using third-order Floquet perturbation theory, PRB 101, 085401 (2020)

Ḡ = a0 + a1〈iγ0,Lγ0,R〉 sin
[e
~

(Φ0 − φ0)
]

+a2〈iγπ,Lγπ,R〉 sin
[e
~

(Φπ − φπ)
]

+a3〈γ0,Lγ0,Rγπ,Lγπ,R〉 cos
[e
~

(Φπ − φπ − Φ0 + φ0)
]
, (20)
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State initialization

Tune some system parameters to move the topologically nontrivial
edges closer to each other.

Hybridization of Majoranas lead to splitting in quasienergy
degeneracy.
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Integration into scalable Majorana-qubit architectures
Recall the two-sided tetron design PRB 95, 235305 (2017)

Apply the proposed time-periodic drive
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Integration into scalable Majorana-qubit architectures

Apply quantum gate operations via a series of measurements like its
static counterparts.

Inherent active quantum error corrections for each tetron to mitigate
quasiparticle poisoning effect.

Raditya (USyd) Combating QP with multiple FMMs 23 / 25



Summary and potential future direction
Summary:

Majorana-based qubits are themselves topologically protected and
allow topologically protected Clifford gate operations.

In their current experimental realizations, quasiparticle poisoning is
unavoidable.

Time-periodic drive allows arbitrarily many Majorana modes to
emerge at each end of the system.

With 14 Majorana modes in total, a stabilizer code capable of
correcting a single quasiparticle poisoning event can be implemented.

Compatibility with scalable Majorana-qubit architectures.

Possible future direction:

Application in designing topological codes with lower space-overhead.
Work towards experimental realizations of Floquet Majorana
fermions:

I Proposals for detecting MPMs.
I Replace periodic quench in the current model with more experimentally

friendly time periodic functions.
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More info, see arXiv:1912.03827
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Appendix
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Detection of MZMs

Zero bias peak in differential conductance.
Science 336, 1003-1007 (2012); PRL 119, 136803 (2017); Nature 556, 74 (2018)

4π Josephson effect. Nat. Phys. 8, 795 (2012)

Picture taken from RIV NUOVO CIMENTO 11, 523-593 (2017)
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Some braiding proposals

T-junction Nat. Phys. 7, 412 (2011)
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Some braiding proposals

Array of superconducting wires PRL 111, 203001 (2013)
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Analytical calculations of ν0 and νπ

Focus on µ1 = J1 = ∆1 = δ.

F (k) =

(
c(θ−)c(mθ+)− is(θ−)s(mθ+) e−ik/2 [c(θ−)s(mθ+) + ic(mθ+)s(θ−)

]
−eik/2

[
c(θ−)s(mθ+)− ic(mθ+)s(θ−)

]
c(θ−)c(mθ+) + is(θ−)s(mθ+)

)
,

θ± =
δT

4~

√
2(1± cos(k)) (21)

Define z = θ− + imθ+,

ν0 = −
1

2
−

1

4πi

∮
s(Re(z))s(Im(z))dz + ic(Re(z))c(Im(z))dz∗

c(Re(z))s(Im(z)) + ic(Im(z))s(Re(z))
,

νπ = −
1

4πi

∮
sin(Re(z))c(Im(z))dz∗ − ic(Re(z))s(Im(z))dz

c(Re(z))c(Im(z)) + is(Im(z))s(Re(z))
, (22)

Let nπ/2 < m < nπ/2 + π, where n ∈ Z.

By residue theorem,

ν0 = n ,

νπ =
n + 1

2
. (23)
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