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Incoherent and coherent noise

—Incoherent noise means stochastic noise channels, where an
error operation is applied with some classical probability.

—By coherent noise, we mean something not incoherent, a
channel with some unitary rotation part.

Depolarizing:  Dx(p) = (1= Np+ 3 (XpX +YpY + ZpZ)
Unitary: Us* (p) = exp(—iX0)pexp(iX0)



Growth of infidelity
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-The average infidelity: r(N) =1 — fp Tr (pN(p)) dp

ure p -

—After m applications of a given noise channel, the average
infidelity is given by

Depolarizing:  r(D™) = mr + higher order
Unitary:  7(U}") = m?®r -+ higher order



Diamond distance from identity

—The diamond distance from identity is defined as a max over
pure states in a doubled space:

[N —id], = max, [((N —id) ® id) (p)],

—The diamond distance from identity is related to the average
infidelity differently for coherent and incoherent channels
Depolarizing: | Dy —id|l,  ocr

Unitary: ||Um't‘9X — z'dH<> x /T



Coherence in channel representations

—Pauli transfer matrix/Liouville representation

N(p) = N (¥, p507) = X2, ; Nipso'
{O’i} is a basis of n qubit Pauli operators

—x matrix/process matrix representation:

N(p) = >_; ; Xi,j0" po’
(0°p0”?) := X,
—Incoherent components are diagonal in both representations



Error correction

—We will analyze one round of error correction

—We average over syndrome measurements to produce the error
correction channel

—We assume perfect syndrome extraction. The errors are all
bundled up into the noise channel N

—The logical noise channel is given by

~

N = Decode o N o Encode



Logical noise channels

N = Decode o N o Encode

—Each component of the logical noise channel is a sum of terms
from the physical noise channel

—In the y matrix representation we can write:

Logical tri T ~T \ _ Physical y matrix
ogical y matrix (La,OLb) — Zs,i,j (EsLa,Si,OSijEs) y

component terms

E o  Logical a operator on encoded qubits B s  Standard error for syndrome s
2 State of encoded qubits L, Logical a on physical qubits
P State of physical qubits S;  Stabilizer operator i



Structure of coherent components

—In any stabilizer code, the logical coherent components are given by

~

(Lap) = Zs,i,j (EsLoSipS;Es)

—Each of these physical noise terms can be mapped to a logical string

(EsLaSipSjEs) mummp-1,0gical String: L,S;5;

Logical String: L[ =) Noise term
(OU,O Oc) : OUOC =L



Coherent connected part

— We define the connected part of the noise term in the coherent
logical noise component:
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Structure of incoherent components

—The noise terms that enter into the incoherent noise components include
both coherent and incoherent physical terms

(Lapla) = X4 s ;(EsLaSipS; LaEs)

— Each physical noise term maps to two different logical strings, and many
noise terms map to the same string

(EsLqySipS;LoEs)
\ [ s Oty e O,

LoS;




Incoherent connected part

—We again define the connected part. The definition is slightly
different for the noise terms that enter into the incoherent logical
noise components
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The noise model: unitary noise

—We are interested in how error correction transforms coherent
noise

—It is easy to show that incoherent (Pauli) channels are mapped
to incoherent logical channels

—Therefore, we will study full coherent (unitary) noise channels
—These could be single-qubit or multi-qubit unitaries



The noise model: 1deal error correction

—We will assume ideal error correction D
—We expect that realistic error correction will add D
significant noise to any implementation of error
correcting codes
—Most of this noise will not be coherent °

—Exception is single qubit coherent rotations caused by the two

qubit entangling gates. This noise fits into the noise model we
study



Repetition code calculation 1

—Consider an n qubit bit flip code where n is odd

n qubits
Check operators {Z; ® Z; 11}
Q Q Q Q Q Logical X operator L1 = Q),_, X;
—Let our noise model consist of single qubit rotations about the X
axis

U =cosf I +isinf X N(p) = U®rputer



Repetition code calculation 2

—Compute the coherent logical channel component Xx1,0

Xx.1 = Zs (EsLypEs)

s is a syndrome

L, is the logical X operator

—Each term in the sum corresponds to a partitioning of the logical
operator into two:

(®@®O®0O)p(OO®O®)
(®@®®OX®)p(OO0OX®O)



Repetition code calculation 3

—Each syndrome and correction is a set of fewer than half of the n
qubits. Together with the phases that come from the factors of i sin 6
in the unitary, we have

(nl)/2 |
)ZX,I — Z ( ) (—1)‘7 (Z sin 6 cos 9)”
: J
7=0

— 1
= <nn_1 )i(sin@cos 0)"

2

—Notice that the sum is alternating
—Cancellations are crucial to the suppression of coherence



Repetition code calculation 4

—Now let us compute the incoherent logical channel component

)ZX,X — Zs (ESL:UIOL:BES)

—The same logical operator appears on both sides of p.

(n—1)/2 - | |
Xx.x = E ( ) (sin 0)2"_23((308 9)27
, J

7=0

n

- (n_1> (sin )" (cos )" ! + ...

2



Repetition code calculation 5

—We have computed exactly the coherent and incoherent
components of the logical noise channel. Now compare them:

= N icos (7 <7
(L1p) = 5228 (L1pLs )
—As a function of the code size n, the two components are related

by a constant. This allows us to prove the following statement
about the growth of infidelity:

T(Nm’) < mr(N) + O(fr(](f)Q)m2




Different rotation angles

—Instead of rotating each qubit by a fixed angle 0, we can rotate
qubit i by an angle 6,

—Write coherent and incoherent components as functions of two
particular rotation angles, 6; and 6;:

XX,I(HM 93) = o sin 6)7/ sin 9]'
Yx.x(05,0;) = asin®0;/2sin* 0, /2 + b(sin® 0, /2 + sin® 0; /2) + ¢

—Coherence is maximized when all angles are equal
—Can also rotate by an axis other than the X-axis



Correlations

—We can allow for correlations between qubits
—We use a Hamiltonian to model the correlations

H = Zk thk -+ Zi,j hQXin
U =exp(—iH)

—The same two body term couples every pair of qubits along a
logical string

—Coherence is still suppressed in this case



Correlations (cont.)

- Instead of the simple expressions we had for the magnitude and
phases of each error, we now have a sum over all possible
combinations of one and two body terms

sin™ N n n—2

—The sum is much more complicated, but it can still be evaluated
- We find

Xx,x > n_|_1 ThiXx.r



The toric code

Theorem: For the toric code with minimal-weight decoding, as
long as a condition on the single qubit rotation angles is satisfied,
then coherent and incoherent components are related by

~ i(—1)n+1 ~ _~
—Statements about diamond distance from identity and growth of

average infidelity follow from this

—Similar statements continue to hold when we have correlated
unitary noise




Prooft sketch

—The basic plan will be to apply something like the repetition

code calculation for each logical string

coherent /incoherent = > _ .(...)

—The disconnected parts of the syndrome
will be factored out

—We will compare coherent and incoherent
contributions for each string

—

An X type logical string in the toric code



Which logical strings?

—We can neglect certain logical noise components
(LapLy)
—Neglect a # b with both non-trivial
—Neglect a or b logical Y-type operator BT T4
—Neglect a or b that act on both encoded qubit .« 1.+ 1.+ &t _+ -

oooooo

The reason is always that these noise L
components are much higher order in the B e = B

local noise strength T T T




Sum over partitions

—The contribution to (Za p) from a logical string £ is ) (OvupO¢)

Oy uncorrectable, O¢c correctable, OyO¢c = L

—This is a sum over ways of dividing the logical string into an uncorrectable
and correctable error. We call these partitions

—The sum over partitions for the connected logical strlng is not as simple as
in the repetition code: P
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Disconnected part

—We take a connected noise term and dress it with additional
errors to produce a generic noise term

—Consider a partition of a logical strmg in COIlJllIlCthIl with a
distant closed loop : R

—Incoherent-type added errors i ] (OuDLpO.Dp)
—Coherent-type added errors [ 0. L1, ]
L] — OuDy
et 0D




Phases in incoherent components

—The incoherent components of the logical noise channel now
involve physical coherent terms that become incoherent under
error correction:

XXle — Z(OUDLP O{]DR)

—Many of the terms on the right are off-diagonal.
—These terms have different signs



Over-counting factor in incoherent
components

—We must lower bound the contribution of each logical string to
the incoherent logical noise

—This contribution is given by a combinatorial factor
{0 }H
Zc ZOU |{oU

® — OU
| - — o
——t _'O{]

29



Truncation

—The main tool in the proof is to use the path counting expression
to truncate the length of logical strings we consider

—If the angle of rotation 6 is < 1/;, then we can neglect the strings
longer than L + 2k for some constant k

—The error is exponentially small in k
—This is not the most physically relevant case



Arbitrary Angles

—So far we have considered a noise model in which every qubit is
rotated by the same unitary

—We can show that this maximizes the coherence of the logical
noise channel within a region around the point where all
rotations are equal

—Consider the logical coherent and incoherent noise components
as functions of the individual rotation angles as we did for the
repetition code



Correlations

—Consider the model of correlations we introduced earlier for the
repetition code

—We can apply our repetition code calculation with correlations
to the short logical strings in the toric code

—The ratio of coherent to incoherent contributions from each
logical string is bounded by the same upper bound



Results

— Toric code without boundary
— Minimum weight decoding
— Single qubit unitary noise with equal rotation angles 6

Theorem: Suppose that 8 < 1/L where L is the code size. Then, the
following bounds hold:

Dy (N —id)? < cr? for a constant is given by ¢ o (m)
Let 7,,be the infidelity after m applications, then

~ ~ d ~
Tm < m7(1+ 2(dL—|—ji) ST

—Similar statements continue to hold for correlated unitary noise and
for different rotation angles on each qubit within a region.



Remaining difficulties

—Coherent components: sum over partitions

—Incoherent components: combinatorial over-counting factor
and minus signs

—Factoring disconnected piece

—Self-avoiding random walk counting lets us truncate logical
strings at length L(1 + )

—Each of these counting problems become more difficult as the
length of logical strings increases



Future Work

—Extend our proof to the physically reasonable case where noise
strength is constant

—For now, our proof applies only to the toric code with minimum
weight decoding. We expect that a similar theorem holds for any
stabilizer code and reasonable decoding scheme

—Numerics are probably needed to test how tight our bound is on
the logical coherence for a particular code size

—Can we find a more physical model for correlations that is
tractable?
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