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Incoherent and coherent noise

−Incoherent noise means stochastic noise channels, where an 
error operation is applied with some classical probability. 

−By coherent noise, we mean something not incoherent, a 
channel with some unitary rotation part.
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Growth of infidelity

−The average infidelity:

−After m applications of a given noise channel, the average
infidelity is given by
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Diamond distance from identity

−The diamond distance from identity is defined as a max over 
pure states in a doubled space:

−The diamond distance from identity is related to the average 
infidelity differently for coherent and incoherent channels
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Coherence in channel representations 

−Pauli transfer matrix/Liouville representation

−χ matrix/process matrix representation:

−Incoherent components are diagonal in both representations
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Error correction

−We will analyze one round of error correction

−We average over syndrome measurements to produce the error 
correction channel

−We assume perfect syndrome extraction. The errors are all 
bundled up into the noise channel N

−The logical noise channel is given by
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Logical noise channels

−Each component of the logical noise channel is a sum of terms 
from the physical noise channel

−In the χ matrix representation we can write:

Logical 𝜒 matrix
component

Physical 𝜒 matrix
terms

Logical a operator on encoded qubits

State of encoded qubits

State of physical qubits

Standard error for syndrome s

Logical a on physical qubits

Stabilizer operator i
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Structure of coherent components
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−In any stabilizer code, the logical coherent components are given by

−Each of these physical noise terms can be mapped to a logical string
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Coherent connected part

− We define the connected part of the noise term in the coherent 
logical noise component:



Structure of incoherent components

−The noise terms that enter into the incoherent noise components include 
both coherent and incoherent physical terms

−Each physical noise term maps to two different logical strings, and many 
noise terms map to the same string
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Incoherent connected part

−We again define the connected part. The definition is slightly 
different for the noise terms that enter into the incoherent logical 
noise components



The noise model: unitary noise

−We are interested in how error correction transforms coherent 
noise

−It is easy to show that incoherent (Pauli) channels are mapped 
to incoherent logical channels

−Therefore, we will study full coherent (unitary) noise channels

−These could be single-qubit or multi-qubit unitaries
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The noise model: ideal error correction

−We will assume ideal error correction

−We expect that realistic error correction will add 
significant noise to any implementation of error 
correcting codes

−Most of this noise will not be coherent
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−Exception is single qubit coherent rotations caused by the two 
qubit entangling gates. This noise fits into the noise model we 
study



Repetition code calculation 1

−Consider an n qubit bit flip code where n is odd

−Let our noise model consist of single qubit rotations about the X 
axis
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Repetition code calculation 2

−Compute the coherent logical channel component 

−Each term in the sum corresponds to a partitioning of the logical 
operator into two:
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Repetition code calculation 3

−Each syndrome and correction is a set of fewer than half of the n
qubits. Together with the phases that come from the factors of 
in the unitary, we have

−Notice that the sum is alternating
−Cancellations are crucial to the suppression of coherence
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Repetition code calculation 4

−Now let us compute the incoherent logical channel component 

−The same logical operator appears on both sides of .
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Repetition code calculation 5

−We have computed exactly the coherent and incoherent 
components of the logical noise channel. Now compare them:

−As a function of the code size n, the two components are related 
by a constant. This allows us to prove the following statement 
about the growth of infidelity:
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Different rotation angles

−Instead of rotating each qubit by a fixed angle θ, we can rotate 
qubit i by an angle ௜

−Write coherent and incoherent components as functions of two 
particular rotation angles, θ௜ and θ௝:

−Coherence is maximized when all angles are equal

−Can also rotate by an axis other than the X-axis
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Correlations

−We can allow for correlations between qubits

−We use a Hamiltonian to model the correlations

−The same two body term couples every pair of qubits along a 
logical string

−Coherence is still suppressed in this case
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Correlations (cont.)

− Instead of the simple expressions we had for the magnitude and 
phases of each error, we now have a sum over all possible 
combinations of one and two body terms

−The sum is much more complicated, but it can still be evaluated

−We find
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The toric code

Theorem: For the toric code with minimal-weight decoding, as 
long as a condition on the single qubit rotation angles is satisfied, 
then coherent and incoherent components are related by

−Statements about diamond distance from identity and growth of 
average infidelity follow from this 

−Similar statements continue to hold when we have correlated 
unitary noise
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Proof sketch

−The basic plan will be to apply something like the repetition 
code calculation for each logical string
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An X type logical string in the toric code

−The disconnected parts of the syndrome 
will be factored out

−We will compare coherent and incoherent 
contributions for each string



Which logical strings?

−We can neglect certain logical noise components

−Neglect with both non-trivial

−Neglect a or b logical Y-type operator

−Neglect a or b that act on both encoded qubit
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The reason is always that these noise 
components are much higher order in the 
local noise strength



Sum over partitions

−The contribution to             from a logical string       is 

−This is a sum over ways of dividing the logical string into an uncorrectable 
and correctable error. We call these partitions

−The sum over partitions for the connected logical string is not as simple as 
in the repetition code:
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Lower weight uncorrectable error

Higher weight correctable error



Disconnected part

−We take a connected noise term and dress it with additional 
errors to produce a generic noise term

−Consider a partition of a logical string in conjunction with a 
distant closed loop

−Incoherent-type added errors

−Coherent-type added errors
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Phases in incoherent components

−The incoherent components of the logical noise channel now 
involve physical coherent terms that become incoherent under 
error correction:

−Many of the terms on the right are off-diagonal.

−These terms have different signs
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Over-counting factor in incoherent 
components
−We must lower bound the contribution of each logical string to 

the incoherent logical noise

−This contribution is given by a combinatorial factor
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Truncation

−The main tool in the proof is to use the path counting expression 
to truncate the length of logical strings we consider

−If the angle of rotation is ଵ
௅, then we can neglect the strings 

longer than for some constant k

−The error is exponentially small in k

−This is not the most physically relevant case
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Arbitrary Angles

−So far we have considered a noise model in which every qubit is 
rotated by the same unitary

−We can show that this maximizes the coherence of the logical 
noise channel within a region around the point where all 
rotations are equal

−Consider the logical coherent and incoherent noise components 
as functions of the individual rotation angles as we did for the 
repetition code
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Correlations

−Consider the model of correlations we introduced earlier for the 
repetition code

−We can apply our repetition code calculation with correlations 
to the short logical strings in the toric code

−The ratio of coherent to incoherent contributions from each 
logical string is bounded by the same upper bound
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Results

− Toric code without boundary

− Minimum weight decoding

− Single qubit unitary noise with equal rotation angles 𝜃

Theorem: Suppose that where L is the code size. Then, the 
following bounds hold:

Let ௠be the infidelity after m applications, then

−Similar statements continue to hold for correlated unitary noise and 
for different rotation angles on each qubit within a region.
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Remaining difficulties

−Coherent components: sum over partitions

−Incoherent components: combinatorial over-counting factor 
and minus signs

−Factoring disconnected piece

−Self-avoiding random walk counting lets us truncate logical 
strings at length L

−Each of these counting problems become more difficult as the 
length of logical strings increases
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Future Work

−Extend our proof to the physically reasonable case where noise 
strength is constant

−For now, our proof applies only to the toric code with minimum 
weight decoding. We expect that a similar theorem holds for any 
stabilizer code and reasonable decoding scheme

−Numerics are probably needed to test how tight our bound is on 
the logical coherence for a particular code size

−Can we find a more physical model for correlations that is 
tractable?
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