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Main result:

All pure non-Gaussian fermionic states
are magic states for matchgate computations.



Magic states (Bravyi & Kitaev 2004)

Special input states that extend classically simulatable circuits to
full universal QC power (UQC) while retaining same gate set,
and allowing intermediate measurements with adaptive choices.

Gate gadgets (for Clifford circuits)

Example 1: Clifford gates with T = ( L0
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Example 2: More generally — gate teleportation (relevant for later)

|€> Bell L
I U)¢") )
magic state (Uij)\Q ( Pi’s Pauli’s)
"N

" want just U here

)
If U P =(Clifford) U then can correct 7 with (allowed)
Clifford gate (depending adaptively on outcome jk ).

i.e. need UPU' = Clifford
i.e. U in 3" level of Clifford hierarchy e.g. 7 gate is there.
(Level n conjugates Paulis into level n-1).



Matchgates (MGs) - any 2-qubit gate of the form

RS R e
0 a b 0 r s c d
G(A, B) = 0 ¢ d O \
| 0 0 s acts in even {100>,|11>} and odd {|01>,|10> }

subspaces respectively.

with A and Bin U(2) both with same determinant,

and acting only on nearest neighbour (n.n.) qubit lines.

!
/

Note: SWAP = G(/,.X) is not a MG! maps

but FISWAP = G(Z X)is a MG. «—| 100> 10 |00> |11>10 -|11>
|01>to [10> |10>to |01>

Physical significance
Introduce n fermionic modes: a,, ..., a, with

(CCRs) {aj,a;} = al.all =0 {a;,al} =6 i,j=1,...,n
J i’ J J

Quadratic hamiltonians: quadratic in g’s and a’’s



Map n fermionic modes to n qubits:
introduce vacuum state |€2) and define n-qubit basis by
by kn) = () (@) Q) ks =0,1

Then (CCRs) —
these states are orthonormal and matrix of g;’'s and a’’s
are the standard Jordan-Wigner representation:

623'_1 :(aj—l—a;) 52]' :—i(aj—a;-)
CZj—l — Z@Z@@Z@X]@)I@@[

Fact: for any U on n qubits -

U corresponds to an evolution of fermionic modes
under a quadratic Hamiltonian /f and only if

U is a circuit of (n.n.) matchgates.



Classical simulation properties of MG computations

Poly-sized circuit of MGs on n qubit lines.
Measurements (final or intermediate) are always in comp basis.

Scenarios:
Comp-in: only computational basis inputs |i; . ..%,) allowed.
Prod-in: general product state inputs |a1) ... |a,) allowed.
1-out:  single line output (1 bit).
Many-out: multi-line output (£ < n bits).
Ad-Mmt: intermediate mmts allowed and later MGs can be chosen
adaptively to depend on earlier mmt outcomes.



Theorem 1 (Valiant, Terhal&DiVincenzo, Knill ~2000)
Comp-in and Many-out: any output probability or marginal
can be classically efficiently computed, so can efficiently sample too.

Theorem 2 (Terhal&DiVincenzo 2000)
Comp-in with Ad-Mmt and Many-out: output distribution can be
classically efficiently sampled.

Theorem 3 (RJ and A. Miyake 2008)
Prod-in and 1-out: output probabilities can be classically efficiently
computed (so sampled too).

(Y Theorem 4 (D. Brod 2016)
Prod-in with Ad-Mmt and Many-out: output distribution can be
classically efficiently sampled.



Theorem 1 (Valiant, Terhal&DiVincenzo, Knill ~2000)
Comp-in and Many-out: any output probability or marginal
can be classically efficiently computed, so can efficiently sample too.

Theorem 2 (Terhal&DiVincenzo 2000)
Comp-in with Ad-Mmt and Many-out: output distribution can be
classically efficiently sampled.

Theorem 3 (RJ and A. Miyake 2008)
Prod-in and 1-out: output probabilities can be classically efficiently
computed (so sampled too).

(Y Theorem 4 (D. Brod 2016)
Prod-in with Ad-Mmt and Many-out: output distribution can be
classically efficiently sampled.

Compare(!): Clifford circuits have wide range of classical simulation
complexities (including quantum universal) in analogous scenarios!

MG circuits appear ‘more classically simulatable” yet

Clifford gates/circuits have representation as classical stochastic maps
on a phase space (viz. the discrete Wigner function formalism).



Brod’s method: reduce Prod-in to Comp-in

(will be relevant for magic states, in a moment)

We'll use the following simple facts about MGs:

(A1): G(Z X)acts as usual SWARP if one of the lines is |0>.

(A2): For any 1-qubit phase gate P(g), / @ P(¢)and P(p) ®/ are MGs.

(A3): G(H.H)|o>|+> = (H|¢>) |+> so if we have an extra ancilla |+>
next to a line, we can implement /A on that line.

Also know (A4): {H, P(¢)} is universal for all 1-qubit gates.

So:
Start with |0>... |0>|0>+> and make |0>...|0> |a;>+> (by (A2),(A3),(A4))

Next swap |a,>to left end giving |a; >[0>...]0> [+> (by (A1))

Continue in same way, making |a,> in rightmost |0> and swap it to the left
over all |0>’s etc, to finally get

MG circuit
0>... |0>]+> > o> o> >




Thus for Prod-in, any MG circuit

C on |a>...|Jo>

can be reduced to a (slightly larger) MG circuit
C* now on |0>... |0>+> .

MG circuits preserve parity of any input Comp-in string
so for input |0>... |O>|+> the two branches from

\/_|O> 0>[0> and = |O> .|0>|1> never interfere

and output probabilities are averages
of the two Comp-in processes with input
|0>...|0>|0> and |0>...|0>|1> respectively.



Matchgates with (n.n.) SWAP is UQC

Encode 0 and 1 as |00> and |11> /e. use the even subspace.
Then any 1-qubit gate U encodes as U,,. = G(U,U)
and can get (CZ),,. (which then suffices for UQC) using SWAP

j> >
> Teex|[ |swap[ = 0> = (CZone ON
k>—{ &%) R S 7 > kK>
k> k>

Definitions for n qubit states

Fermionic state: superposition of only even parity or only
odd parity bit strings.

Gaussian state: any state obtainable via action of a MG circuit
on a computational basis input.

(so Gaussian is special case of fermionic)
(MG analogue of stabiliser state)



Magic states for matchgate circuits

more subtle than the Clifford case

An m qubit state |M) is a magic state for a A qubit gate R if
(M1): there is a MG circuit C with adaptive measurements

(“the R-gate gadget”) such that

Q)| M) < (Rla)) |M)  for any |a) on k qubits

(and | M) may depend on measurement outcomes but not on|a) ) .

More generally (inexact implementation of R):

Forany € > 0 there is an adaptive MG circuit of size poly(1/¢) with

a)|M)® &5 (R|a)) |M)  with p =poly(1/e)

with probability > 1 — € (over intermediate measurement outcomes).

This suffices to represent R in bounded error computations like BQP.

However we will need more conditions on |[M> to be a magic state...



Example

MGs with R = H is known to be UQC.

H can be implemented with MGs if |+> ancilla available (Brod)
i.e. [+> functions as a ‘magic state’ for #

(and [+> is even preserved in the gadget!)

(1) But also: MG circuits with Comp-in and input [+>s is
classically simulatable (even with Ad-mmt and Many-out).
So conclude BQP = BPP!?



Example

MGs with R = H is known to be UQC.

H can be implemented with MGs if |+> ancilla available (Brod)
i.e. [+> functions as a ‘magic state’ for #

(and [+> is even preserved in the gadget!)

(1) But also: MG circuits with Comp-in and input [+>s is
classically simulatable (even with Ad-mmt and Many-out).
So conclude BQP = BPP!?

(') But [+> needs to be adjacent to the line of A action!

For UQC we generally want to implement many R’s in a n.n. MG circuit

But (unlike Clifford case):

(a) generally cannot swap | > next to |a> line to implement a gadget
by n.n. MGs;

(b) cannot initially place |M>’s between input lines (where later needed)
as this partitions the circuit into independent sectors for n.n. MGs!

Use of |[+> is debilitatingly constrained by (a) and (b) above!



So impose a second condition on |/ > to be a magic state:

(M2): IM> can be swapped through arbitrary states

using n.n. MGs only.

Example. =
0> can be swapped anywhere using G(Z,X)

1> can be swapped anywhere using G(-Z,X) +—

|1>|1> maps to —|1>|1>
but never get |[1>|1>

to swap.

Similarly for |0>]|0>.

Theorem:

+> cannot be swapped around (unless BQP=BPP)

|M > satisfies (M2) if and only if |M>is a fermionic state.

Thus any magic state must be a fermionic state.

Not a priori clear that any state satisfies both (M1) and (M2)?..




Magic state for SWAP gate in MG circuits

Remark

Smallest number of qubits for any magic state is four since:

(i) for one qubit, any adaptive MG circuit is classically simulatable;
(ii) all 2- and 3-qubit fermionic states are Gaussian.

Introduce:

[ M)1234 = |67 )13]¢" )24 = = [/0000) + [0101) + |1010) + [1111)]

1
2

|M > is fermionic so satisfies (M2).
|M > is Choi state for SWAP with the reordering and partition 14|23

1
M) 1234 = 14 @ SWAP23 Z 97)14|77)23  (up to factor of a haif)
i,5=0

We'll use | M )1934 to teleport from 14 over to 23
i.e. do gate teleportation for U = SWAP



The SWAP gadget for matchgates

|(3> e[ = e m = ljf>
0y i |j1 ,: Note:
. 1—r\ N N ’// (SWAP)(PQ 0% Pg) =
:’F" GX,X)[ "~~~ ~"~"""°° (P3® P) ® (SWAP)
a d7 4] ML
s 14 e [T )
e i
0) 71)

For Z correction: G(Z,7Z) = Z ® I is a matchgate.
For X correction: bring in ancilla |0> with G(Z,X)’s, apply
G(X,X) =X ® X, and then remove ancilla |1> with G(-Z,X)’s.



Main theorem

All fermionic states that are not Gaussian are magic states
for matchgate computations.

Outline of approach to proof

Introduce the (even fermionic) state Choi state for
/ C-phase(¢) gate

1 .
M) = 10000) + [0011) + |1100) + €*?|1111)]

Then have three lemmas

Lemma 1: any 4-qubit fermionic state |£> which is non-Gaussian
Is MG-equivalent to | M) for some ¢ < (0,27).

In fact we give an explicit depth-3 MG circuit transforming |£>
into an |[M,> for suitable ¢ in (0,2r).

Not also that |M,> is Gaussian iff ¢ =0 or 2n.



Lemma 2: for k>4 let |Vk+1) be any (k+7)-qubit fermionic
non-Gaussian state. Then using MGs and measurements,
[%r+1) can be transformed with probability > 0 into a
k-qubit fermionic non-Gaussian state, and hence to A= 4
and hence to | M)

Useful technical ingredient in this proof (and in other proofs)

Fact (Bravyi 2005) om,
Let An=) ci®c
Then =1

(@) Any fermionic state |£> is a Gaussian state iff A, (|¢) @ [£)) =0
(b) Any even operator R is Gaussian iff [A,,, R® R] =0

(No such neat exact algebraic characterization for
stabilizer states and Clifford operations?)



Lemma 3: |M,> can be used to realise the 2-qubit C-phase(¢) gate.
And known (Brod & Galvao 2011):

MGs with C-phase(¢) for any ¢ in (0,2n) is UQC.

Proof idea

IM,> is Choi state for C-phase(¢).

Use it in the SWAP gadget construction to implement
C-phase(¢) or C-phase(—¢) with probabilities half.

Then show how this can be rectified to get C-phase(¢)
with probability (1-€) using O(poly(1/¢)) copies of [M,>.

Finally putting together lemmas 1,2,3 gives the main result.




