Modified belief propagation decoders for QLDPC codes arXiv:1903.07404, PhysRevA.100.012330

Alex Rigby, JC Olivier, and Peter Jarvis

Outline

- Belief propagation (BP) decoding for classical LDPC codes
- BP for QLDPC codes
- Existing modifications to BP
- New modified decoders
- Some results

Classical decoding

- Linear code $\mathcal{C} \subset \mathrm{GF}(q)^n$ with parity-check matrix H
- Transmit codeword $\mathbf{x} \in \mathcal{C}$ across channel
- Receive $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \in \mathrm{GF}(q)^n$
- Infer most-likely error consistent with syndrome z = Hy = He

$$\hat{\boldsymbol{e}} = \operatorname*{argmax}_{\boldsymbol{e} \in \mathrm{GF}(q)^n} P(\boldsymbol{e}|\boldsymbol{z}) = \operatorname*{argmax}_{\boldsymbol{e} \in \mathrm{GF}(q)^n} P(\boldsymbol{e}) \delta(\boldsymbol{H}\boldsymbol{e} = \boldsymbol{z})$$

Probability P(ê ≠ e) of a decoding error is the frame error rate (FER)
 NP-complete

Belief propagation

▶ Instead make a symbol-wise estimate $\hat{\boldsymbol{e}} = (\hat{e}_1, \dots, \hat{e}_n)$ where

$$\hat{e}_j = \operatorname*{argmax}_{e_j \in \mathrm{GF}(q)} P(e_j | \mathbf{z})$$

• Can obtain $P(e_j|z)$ through marginalization:

$$P(e_j = a | \mathbf{z}) = \sum_{\mathbf{e}: e_j = a} P(\mathbf{e} | \mathbf{z}) \propto \sum_{\mathbf{e}: e_j = a} P(\mathbf{e}) \delta(H\mathbf{e} = \mathbf{z})$$

Assume error components are independent:

$$P(e_j = a | \mathbf{z}) \propto \sum_{\mathbf{e}: e_j = a} \delta(H\mathbf{e} = \mathbf{z}) \prod_{l=1}^n P(e_l)$$

Can approximate these marginals using belief propagation

Belief propagation - inside the black box

- Iterative message passing on graph G = (V, C, E) defined by H
- Error components \longleftrightarrow error nodes $V = \{v_1, \ldots, v_n\}$
- ▶ Rows of $H \longleftrightarrow$ check nodes $C = \{c_1, \ldots, c_m\}$
- Edge $\{c_i, v_j\} \in E$ if $H_{ij} \neq 0$
- ► E.g., [7, 4, 3] Hamming code

$$H=\left(egin{array}{ccccccccc} 1 & 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}
ight)$$

- Estimate $\hat{P}(e_j|z)$ made in each iteration
- Converges to exact value if G is a tree, but no cycles \Rightarrow bad distance
- Keeps going until $\hat{z} = H\hat{e} = z$ or max iterations reached
- Can perform well if graph is sparse and has few short cycles

Stabilizer code decoding

- ▶ Stabilizer code Q with stabilizer $S = \langle M_1, \dots, M_m \rangle \subset \mathcal{P}_n$
- ▶ Transmit codeword $|\phi
 angle \in \mathcal{Q}$ across Pauli channel
- Receive $E | \phi \rangle$ where error $E \in \mathcal{P}_n$
- Measure syndrome z where $z_i = \delta(\{E, M_i\} = 0)$
- Optimal decoder infers

$$\hat{A} = \operatorname*{argmax}_{A \in \mathcal{P}_n / \mathcal{S}} P(A | \boldsymbol{z})$$

- #P-complete¹
- Resort to inferring $\hat{E} = \hat{E}_1 \otimes \cdots \otimes \hat{E}_n$ where

$$\hat{E}_i = \operatorname*{argmax}_{E_i \in \mathcal{P}_1} P(E_i | \boldsymbol{z})$$

 Can approximate these marginals using BP by making a link to classical codes over GF(4)

¹Iyer, Poulin, IEEE Trans. Inf. Theory 2015 (arXiv:1310.3235)

GF(4) BP

• Map $\mathcal{P}_1 \leftrightarrow \operatorname{GF}(4)$ with

$$I \leftrightarrow 0, \, X \leftrightarrow 1, \; Y \leftrightarrow \bar{\omega}, \, Z \leftrightarrow \omega$$

- Map generators M₁,..., M_m of stabilizer S to rows of m × n GF(4) matrix H
- E.g., Steane code

Map error E ∈ P_n to element of e = GF(4)ⁿ
 Syndrome is

$$\boldsymbol{z} = \operatorname{tr}(H\bar{\boldsymbol{e}})$$

where $\operatorname{tr}(x) = x + \bar{x}$ [tr(0) = tr(1) = 0 and tr(ω) = tr($\bar{\omega}$) = 1]

GF(4) BP

▶ GF(4) BP using z and H to find ê = (ê₁,...,ê_n) ↔ Ê = Ê₁...Ê_n
 ▶ Initial probabilities are

$$p(e_j = 0) = P(E_i = I) = 1 - p$$

 $p(e_j = 1) = P(E_i = X) = p_X$
 $p(e_j = \bar{\omega}) = P(E_i = Y) = p_Y$
 $p(e_j = \omega) = P(E_i = Z) = p_Z$

▶ Not quite standard classical BP as $z = tr(H\bar{e})$ rather than z = He

Problems

Degeneracy can cause issues with finding symbol-wise most likely error²

- ► E.g., $S = \langle XX, ZZ \rangle$, $\mathbf{z} = (0, 1) \Rightarrow E \in \{XI, IX, YZ, ZY\}$
- If $P(E_1) = P(E_2)$ then $P(E_1|\mathbf{z}) = P(E_2|\mathbf{z}) \Rightarrow \hat{E}_1 = \hat{E}_2$
- ▶ Stabilizer generators commuting \Rightarrow unavoidable 4-cycles

²Poulin, Chung, QIC 2008 (arXiv:0801.1241)

GF(2) BP

- For CSS codes, can use GF(2) BP instead
- $\blacktriangleright \mathcal{P}_n \leftrightarrow \mathrm{GF}(2)^{2n} \text{ with } X_1^{u_1} Z_1^{v_1} \dots X_n^{u_n} Z_n^{v_n} = X^{\boldsymbol{u}} Z^{\boldsymbol{v}} \leftrightarrow (\boldsymbol{u} | \boldsymbol{v})$
- Generators of S map to rows of $m \times 2n$ matrix $H = (H_X|H_Z)$
- ▶ If CSS, then can represent with X-only and Z-only generators

$$H = \left(egin{array}{c|c} ilde{H}_X & 0 \ 0 & ilde{H}_Z \end{array}
ight)$$

E.g., Steane code again:

▶ S abelian ↔ H
_ZH
_X^T = 0
 ▶ Dual containing (DC) if representation with H
 = H
_X = H
_Z

GF(2) BP

• Errors $E \propto X^{\boldsymbol{e}_X} Z^{\boldsymbol{e}_Z} \leftrightarrow \boldsymbol{e} = (\boldsymbol{e}_X^T | \boldsymbol{e}_Z^T)^T$

Syndrome

$$\boldsymbol{z} = \left(\begin{array}{c} \tilde{H}_{X} \boldsymbol{e}_{Z} \\ \tilde{H}_{Z} \boldsymbol{e}_{X} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{z}_{Z} \\ \boldsymbol{z}_{X} \end{array}\right)$$

- Assume X and Z error components occur independently
- ▶ Infer each separately using GF(2) BP
- Use \tilde{H}_Z and z_X to get \hat{e}_X ; prior probs $P(e_X^{(j)} = 1) = p_X + p_Y (= 2p/3)$
- Use \tilde{H}_X and \mathbf{z}_Z to get $\hat{\mathbf{e}}_Z$; prior probs $P(e_Z^{(j)} = 1) = p_Y + p_Z (= 2p/3)$

$$\begin{array}{c} P(e_{X}^{(1)}) \longrightarrow \\ P(e_{X}^{(n)}) \longrightarrow \\ \hline \\ P(e_{X}^{(n)}) \longrightarrow \\ \hline \\ H_{Z} \longrightarrow \\ \hline \\ H_{Z} \longrightarrow \\ \hline \\ P(e_{Z}^{(1)}) \longrightarrow \\ P(e_{Z}^{(n)}) \longrightarrow \\ \hline \\ H_{X} \longrightarrow \\ \hline \\ \hline \\ GF(2) BP \longrightarrow \\ \hline \\ \hline \\ \hat{e}_{Z} \longrightarrow \\ \hline \\$$

Pros and cons

- Lower complexity than GF(4) decoding
- Fewer 4-cycles; must still be 4-cycles if DC though as $\tilde{H}\tilde{H}^{T} = 0$

Ignores correlations between error components

$$P(e_Z^{(j)} = 1 | e_X^{(j)} = 1) = \frac{p_Y}{p_X + p_Y} \left(= \frac{1}{2} \right)$$

$$P(e_Z^{(j)} = 1 | e_X^{(j)} = 0) = \frac{p_Z}{1 - (p_X + p_Y)} \left(= \frac{p}{3 - 2p} \right)$$

$$P(e_X^{(j)} = 1 | e_Z^{(j)} = 1) = \frac{p_Y}{p_Y + p_Z} \left(= \frac{1}{2} \right)$$

$$P(e_X^{(j)} = 1 | e_Z^{(j)} = 0) = \frac{p_X}{1 - (p_Y + p_Z)} \left(= \frac{p}{3 - 2p} \right)$$

Existing decoders - random perturbation³

Perturbation is

- $p_I
 ightarrow p_I \ p_X
 ightarrow (1+\delta_X) p_X \ p_Y
 ightarrow (1+\delta_Y) p_Y \ p_Z
 ightarrow (1+\delta_Z) p_Z$
- δ_X, δ_Y, and δ_Z uniformly distributed over [0, δ]

³Poulin, Chung, QIC 2008 (arXiv:0801.1241)

Existing decoders - enhanced feedback (EFB)⁴

⁴Wang et al., IEEE Trans. Inf. Theory 2012 (arXiv:0912.4546)

Existing decoders - supernode⁵

 Modification to GF(4) BP for DC CSS codes

- As $\operatorname{tr}(\omega x) + \omega \operatorname{tr}(x) = \bar{x}$, can define $\tilde{z} = \tilde{H} \boldsymbol{e} = \boldsymbol{z}_X + \omega \boldsymbol{z}_Z$
- Use classical GF(4) BP to infer
 e from ž
- Can view as grouping checks c_i and c_{i+m/2} into a "supernode"
- Reduces complexity and number of 4-cycles

⁵Babar et al., IEEE Access 2015

New decoders - adjusted

 Extends previously proposed perfect matching decoder⁶

⁶Delfosse, Tillich, IEEE ISIT 2014, (arXiv:1401.6975)

New decoders - augmented

- Previously proposed for classical codes⁷
- \blacktriangleright Can be based on GF(2), GF(4), or supernode decoder
- Fraction of rows duplicated is augmentation density δ
- Duplicates check nodes and their connections in factor graph
- Actually introduces more 4-cvcles

⁷Rigby et al., EURASIP JWCN 2018

New decoders - combined

Combine adjusted and augmented decoders for CSS codes

Results - bicycle

- ▶ [[400, 200]] DC CSS code⁸
- Construct $n \times n$ circulant A
- $\blacktriangleright H_0 = [A \quad A^T]$

$$\blacktriangleright H_0 H_0^T = A A^T + A^T A = 0$$

• Remove (n-m)/2 rows to get \tilde{H}

- Distance likely < row weight w</p>
- ▶ w = 20 used
- *H* yields 2,737 4-cycles

 $^8 MacKay,$ Mitchison, McFadden, IEEE Trans. Inf. Theory 2004 (arXiv:quant-ph/0304161)

Results - bicycle

- ► N = 100 attempts
- Supernode > GF(4) > GF(2)
- Adjusted matches supernode
- Augmented GF(2) OK, but not great
- Random perturbation and EFB similar
- Augmented GF(4), augmented supernode both perform better
- Combined decoder performs well too

Results - bicycle

- ▶ *p* = 0.008
- Roughly linear reduction in FER with N on log-log
- Only require ~ 25 attempts with augmented/combined to match rand pert and EFB with 100

Results - Quasi-cyclic

- ▶ [[506, 240]] non-DC CSS code⁹
- Construct base matrices $J \times L$ matrix \mathcal{H}_X and $K \times L$ matrix \mathcal{H}_Z
- Elements belong to $\{0, 1, \dots, P-1\}$
- Get $\tilde{H}_X(\tilde{H}_Z)$ from $\mathcal{H}_X(\mathcal{H}_Z)$ by replacing each element with shifted $P \times P$ identity
- Possible to select \mathcal{H}_X and \mathcal{H}_Z such that $\tilde{\mathcal{H}}_Z \tilde{\mathcal{H}}_X^T = 0$
- Can also ensure that \tilde{H}_X and \tilde{H}_Z are free of 4-cycles
- Used P = 23, J = K = 6, and L = 22

⁹Hagiwara, Imai, IEEE ISIT 2007 (arXiv:quant-ph/0701020)

Results - Quasi-cyclic

- Cannot use supernode based decoders
- Performance of augmented GF(2) decoder is underwhelming
- Suggests augmentation alleviates^t effect of 4-cycles
- Augmented, random perturbation, and EFB all perform similarly

Summary

- Adjusted decoder successfully reintroduces correlation
- Augmented and combined decoder perform well
- Outperform random perturbation and EFB for DC CSS
- Similar performance on non-DC CSS
- Fighting 4-cycles with more 4-cycles