Modified belief propagation decoders for QLDPC codes

 arXiv:1903.07404, PhysRevA.100.012330Alex Rigby, JC Olivier, and Peter Jarvis

Outline

- Belief propagation (BP) decoding for classical LDPC codes
- BP for QLDPC codes
- Existing modifications to BP
- New modified decoders
- Some results

Classical decoding

- Linear code $\mathcal{C} \subset \operatorname{GF}(q)^{n}$ with parity-check matrix H
- Transmit codeword $\boldsymbol{x} \in \mathcal{C}$ across channel
- Receive $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{e} \in \mathrm{GF}(q)^{n}$
- Infer most-likely error consistent with syndrome $\boldsymbol{z}=\mathrm{Hy}=\mathrm{He}$

$$
\hat{\boldsymbol{e}}=\underset{\boldsymbol{e} \in \mathrm{GF}(q)^{n}}{\operatorname{argmax}} P(\boldsymbol{e} \mid \boldsymbol{z})=\underset{\boldsymbol{e} \in \mathrm{GF}(q)^{n}}{\operatorname{argmax}} P(\boldsymbol{e}) \delta(H \mathbf{e}=\boldsymbol{z})
$$

- Probability $P(\hat{\boldsymbol{e}} \neq \boldsymbol{e})$ of a decoding error is the frame error rate (FER)
- NP-complete

Belief propagation

- Instead make a symbol-wise estimate $\hat{\boldsymbol{e}}=\left(\hat{e}_{1}, \ldots, \hat{e}_{n}\right)$ where

$$
\hat{e}_{j}=\underset{e_{j} \in \operatorname{GF}(q)}{\operatorname{argmax}} P\left(e_{j} \mid \boldsymbol{z}\right)
$$

- Can obtain $P\left(e_{j} \mid \boldsymbol{z}\right)$ through marginalization:

$$
P\left(e_{j}=a \mid \boldsymbol{z}\right)=\sum_{e: e_{j}=a} P(\boldsymbol{e} \mid \boldsymbol{z}) \propto \sum_{e: e_{j}=a} P(\boldsymbol{e}) \delta(H \boldsymbol{e}=\boldsymbol{z})
$$

- Assume error components are independent:

$$
P\left(e_{j}=a \mid \boldsymbol{z}\right) \propto \sum_{e: e_{j}=a} \delta(H \boldsymbol{e}=\boldsymbol{z}) \prod_{l=1}^{n} P\left(e_{l}\right)
$$

- Can approximate these marginals using belief propagation

Belief propagation - inside the black box

- Iterative message passing on graph $G=(V, C, E)$ defined by H
- Error components \longleftrightarrow error nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- Rows of $H \longleftrightarrow$ check nodes $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- Edge $\left\{c_{i}, v_{j}\right\} \in E$ if $H_{i j} \neq 0$
- E.g., $[7,4,3]$ Hamming code

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \longleftrightarrow
$$

- Estimate $\hat{P}\left(e_{j} \mid \boldsymbol{z}\right)$ made in each iteration
- Converges to exact value if G is a tree, but no cycles \Rightarrow bad distance
- Keeps going until $\hat{\boldsymbol{z}}=H \hat{\boldsymbol{e}}=\boldsymbol{z}$ or max iterations reached
- Can perform well if graph is sparse and has few short cycles

Stabilizer code decoding

- Stabilizer code \mathcal{Q} with stabilizer $\mathcal{S}=\left\langle M_{1}, \ldots, M_{m}\right\rangle \subset \mathcal{P}_{n}$
- Transmit codeword $|\phi\rangle \in \mathcal{Q}$ across Pauli channel
- Receive $E|\phi\rangle$ where error $E \in \mathcal{P}_{n}$
- Measure syndrome \boldsymbol{z} where $z_{i}=\delta\left(\left\{E, M_{i}\right\}=0\right)$
- Optimal decoder infers

$$
\hat{A}=\underset{A \in \mathcal{P}_{n} / \mathcal{S}}{\operatorname{argmax}} P(A \mid z)
$$

- \#P-complete ${ }^{1}$
- Resort to inferring $\hat{E}=\hat{E}_{1} \otimes \cdots \otimes \hat{E}_{n}$ where

$$
\hat{E}_{i}=\underset{E_{i} \in \mathcal{P}_{1}}{\operatorname{argmax}} P\left(E_{i} \mid \boldsymbol{z}\right)
$$

- Can approximate these marginals using BP by making a link to classical codes over GF(4)
${ }^{1}$ Iyer, Poulin, IEEE Trans. Inf. Theory 2015 (arXiv:1310.3235)

GF(4) BP

- Map $\mathcal{P}_{1} \leftrightarrow \mathrm{GF}(4)$ with

$$
I \leftrightarrow 0, X \leftrightarrow 1, Y \leftrightarrow \bar{\omega}, Z \leftrightarrow \omega
$$

- Map generators M_{1}, \ldots, M_{m} of stabilizer \mathcal{S} to rows of $m \times n \operatorname{GF}(4)$ matrix H
- E.g., Steane code

$X I X I X I X$	$(1010101$		
$I X X \mid I X X$	0110011		
I I I XXXX	0001111		
$Z\|Z\| Z \mid Z ~+~$	$\omega 0 \omega 0 \omega 0 \omega$		
\| Z			$0 \omega \omega 00 \omega \omega$
\|		Z Z Z	(000 $0 \omega \omega \omega$)

- Map error $E \in \mathcal{P}_{n}$ to element of $\boldsymbol{e}=\mathrm{GF}(4)^{n}$
- Syndrome is

$$
\boldsymbol{z}=\operatorname{tr}(H \overline{\boldsymbol{e}})
$$

where $\operatorname{tr}(x)=x+\bar{x}[\operatorname{tr}(0)=\operatorname{tr}(1)=0$ and $\operatorname{tr}(\omega)=\operatorname{tr}(\bar{\omega})=1]$

GF (4) BP

- GF(4) BP using \boldsymbol{z} and H to find $\hat{\boldsymbol{e}}=\left(\hat{e}_{1}, \ldots, \hat{e}_{n}\right) \leftrightarrow \hat{E}=\hat{E}_{1} \ldots \hat{E}_{n}$
- Initial probabilities are

$$
\begin{aligned}
& p\left(e_{j}=0\right)=P\left(E_{i}=I\right)=1-p \\
& p\left(e_{j}=1\right)=P\left(E_{i}=X\right)=p_{X} \\
& p\left(e_{j}=\bar{\omega}\right)=P\left(E_{i}=Y\right)=p_{Y} \\
& p\left(e_{j}=\omega\right)=P\left(E_{i}=Z\right)=p_{Z}
\end{aligned}
$$

- Not quite standard classical $B P$ as $\boldsymbol{z}=\operatorname{tr}(H \overline{\boldsymbol{e}})$ rather than $\boldsymbol{z}=H \boldsymbol{e}$

Problems

- Degeneracy can cause issues with finding symbol-wise most likely error ${ }^{2}$
- E.g., $\mathcal{S}=\langle X X, Z Z\rangle, \boldsymbol{z}=(0,1) \Rightarrow E \in\{X I, I X, Y Z, Z Y\}$
- If $P\left(E_{1}\right)=P\left(E_{2}\right)$ then $P\left(E_{1} \mid \boldsymbol{z}\right)=P\left(E_{2} \mid \boldsymbol{z}\right) \Rightarrow \hat{E}_{1}=\hat{E}_{2}$
- Stabilizer generators commuting \Rightarrow unavoidable 4-cycles

[^0]
GF(2) BP

- For CSS codes, can use GF(2) BP instead
- $\mathcal{P}_{n} \leftrightarrow \mathrm{GF}(2)^{2 n}$ with $X_{1}^{u_{1}} Z_{1}^{v_{1}} \ldots X_{n}^{u_{n}} Z_{n}^{v_{n}}=X^{u} Z^{v} \leftrightarrow(\boldsymbol{u} \mid \boldsymbol{v})$
- Generators of \mathcal{S} map to rows of $m \times 2 n$ matrix $H=\left(H_{X} \mid H_{Z}\right)$
- If CSS, then can represent with X-only and Z-only generators

$$
H=\left(\begin{array}{c|c}
\tilde{H}_{X} & 0 \\
0 & \tilde{H}_{Z}
\end{array}\right)
$$

- E.g., Steane code again:
- \mathcal{S} abelian $\leftrightarrow \tilde{H}_{Z} \tilde{H}_{X}^{T}=0$
- Dual containing (DC) if representation with $\tilde{H}=\tilde{H}_{X}=\tilde{H}_{Z}$

GF(2) BP

- Errors $E \propto X^{\boldsymbol{e}_{X}} Z^{\boldsymbol{e}_{Z}} \leftrightarrow \boldsymbol{e}=\left(\boldsymbol{e}_{X}^{T} \mid \boldsymbol{e}_{Z}^{T}\right)^{T}$
- Syndrome

$$
\boldsymbol{z}=\binom{\tilde{H}_{X} \boldsymbol{e}_{Z}}{\tilde{H}_{Z} \boldsymbol{e}_{X}}=\binom{\boldsymbol{z}_{Z}}{\boldsymbol{z}_{X}}
$$

- Assume X and Z error components occur independently
- Infer each separately using GF(2) BP
- Use \tilde{H}_{Z} and \boldsymbol{z}_{X} to get $\hat{\boldsymbol{e}}_{X}$; prior probs $P\left(e_{X}^{(j)}=1\right)=p_{X}+p_{Y}(=2 p / 3)$
- Use \tilde{H}_{X} and z_{Z} to get $\hat{\boldsymbol{e}}_{Z}$; prior probs $P\left(e_{Z}^{(j)}=1\right)=p_{Y}+p_{Z}(=2 p / 3)$

Pros and cons

- Lower complexity than GF(4) decoding
- Fewer 4-cycles; must still be 4-cycles if DC though as $\tilde{H} \tilde{H}^{T}=0$
- Ignores correlations between error components

$$
\begin{aligned}
& P\left(e_{Z}^{(j)}=1 \mid e_{X}^{(j)}=1\right)=\frac{p_{Y}}{p_{X}+p_{Y}}\left(=\frac{1}{2}\right) \\
& P\left(e_{Z}^{(j)}=1 \mid e_{X}^{(j)}=0\right)=\frac{p_{Z}}{1-\left(p_{X}+p_{Y}\right)}\left(=\frac{p}{3-2 p}\right) \\
& P\left(e_{X}^{(j)}=1 \mid e_{Z}^{(j)}=1\right)=\frac{p_{Y}}{p_{Y}+p_{Z}}\left(=\frac{1}{2}\right) \\
& P\left(e_{X}^{(j)}=1 \mid e_{Z}^{(j)}=0\right)=\frac{p_{X}}{1-\left(p_{Y}+p_{Z}\right)}\left(=\frac{p}{3-2 p}\right)
\end{aligned}
$$

Existing decoders - random perturbation ${ }^{3}$

- Perturbation is

$$
\begin{aligned}
p_{I} & \rightarrow p_{I} \\
p_{X} & \rightarrow\left(1+\delta_{X}\right) p_{X} \\
p_{Y} & \rightarrow\left(1+\delta_{Y}\right) p_{Y} \\
p_{Z} & \rightarrow\left(1+\delta_{Z}\right) p_{Z}
\end{aligned}
$$

- δ_{X}, δ_{Y}, and δ_{Z} uniformly distributed over $[0, \delta]$

[^1]
Existing decoders - enhanced feedback (EFB) ${ }^{4}$

${ }^{4}$ Wang et al., IEEE Trans. Inf. Theory 2012 (arXiv:0912.4546)

Existing decoders - supernode ${ }^{5}$

- Modification to GF(4) BP for DC CSS codes

$$
\begin{aligned}
z & =\operatorname{tr}(H \overline{\mathbf{e}})=\operatorname{tr}\left[\binom{\tilde{H}}{\omega \tilde{H}} \overline{\mathbf{e}}\right] \\
& =\binom{\operatorname{tr}(\tilde{H} \overline{\mathbf{e}})}{\operatorname{tr}(\omega \tilde{H} \overline{\mathbf{e}})}=\binom{z_{Z}}{\boldsymbol{z}_{X}}
\end{aligned}
$$

- As $\operatorname{tr}(\omega x)+\omega \operatorname{tr}(x)=\bar{x}$, can define $\tilde{\boldsymbol{z}}=\tilde{H} \boldsymbol{e}=\boldsymbol{z}_{X}+\omega \boldsymbol{z}_{Z}$
- Use classical GF(4) BP to infer \boldsymbol{e} from \tilde{z}
- Can view as grouping checks c_{i} and $c_{i+m / 2}$ into a "supernode"
- Reduces complexity and number of 4-cycles

[^2]
New decoders - adjusted

- GF(2) based for CSS codes
- Reintroduce $X-Z$ correlations
- If $\hat{\mathbf{z}}_{X}=\boldsymbol{z}_{X}$ but $\hat{\mathbf{z}}_{Z} \neq \mathbf{z}_{Z}$,

$$
P\left(e_{Z}^{(j)}\right) \rightarrow P\left(e_{Z}^{(j)} \mid \hat{e}_{X}^{(j)}\right)
$$

- If $\hat{\mathbf{z}}_{Z}=\boldsymbol{z}_{Z}$ but $\hat{\mathbf{z}}_{X} \neq \boldsymbol{z}_{X}$,

$$
P\left(e_{X}^{(j)}\right) \rightarrow P\left(e_{X}^{(j)} \mid \hat{e}_{Z}^{(j)}\right)
$$

- Extends previously proposed perfect matching decoder ${ }^{6}$

${ }^{6}$ Delfosse, Tillich, IEEE ISIT 2014, (arXiv:1401.6975)

New decoders - augmented

- Previously proposed for classical codes ${ }^{7}$
- Can be based on GF(2), GF(4), or supernode decoder
- Fraction of rows duplicated is augmentation density δ
- Duplicates check nodes and their connections in factor graph
- Actually introduces more 4-cycles

[^3]
New decoders - combined

- Combine adjusted and augmented decoders for CSS codes

Results - bicycle

- [[400, 200]] DC CSS code ${ }^{8}$
- Construct $n \times n$ circulant A
- $H_{0}=\left[\begin{array}{ll}A & A^{T}\end{array}\right]$
- $H_{0} H_{0}^{T}=A A^{T}+A^{T} A=0$
- Remove $(n-m) / 2$ rows to get \tilde{H}
- Distance likely < row weight w
- $w=20$ used
- \tilde{H} yields 2,737 4-cycles

${ }^{8}$ MacKay, Mitchison, McFadden, IEEE Trans. Inf. Theory 2004 (arXiv:quant-ph/0304161)

Results - bicycle

- $N=100$ attempts
- Supernode $>\mathrm{GF}(4)>\mathrm{GF}(2)$
- Adjusted matches supernode
- Augmented GF(2) OK, but not great
- Random perturbation and EFB similar
- Augmented GF(4), augmented supernode both perform better
- Combined decoder performs well too

Results - bicycle

- $p=0.008$
- Roughly linear reduction in FER with N on log-log
- Only require ~ 25 attempts with augmented/combined to match rand pert and EFB with 100

Results - Quasi-cyclic

- [[506, 240]] non-DC CSS code ${ }^{9}$
- Construct base matrices $J \times L$ matrix \mathcal{H}_{X} and $K \times L$ matrix \mathcal{H}_{Z}
- Elements belong to $\{0,1, \ldots, P-1\}$
- Get $\tilde{H}_{X}\left(\tilde{H}_{Z}\right)$ from $\mathcal{H}_{X}\left(\mathcal{H}_{Z}\right)$ by replacing each element with shifted $P \times P$ identity
- Possible to select \mathcal{H}_{X} and \mathcal{H}_{Z} such that $\tilde{H}_{Z} \tilde{H}_{X}^{T}=0$
- Can also ensure that \tilde{H}_{X} and \tilde{H}_{Z} are free of 4-cycles
- Used $P=23, J=K=6$, and $L=22$

[^4]
Results - Quasi-cyclic

- Cannot use supernode based decoders
- Performance of augmented $\mathrm{GF}(2)$ decoder is underwhelming
- Suggests augmentation alleviates effect of 4-cycles
- Augmented, random perturbation, and EFB all perform similarly

Summary

- Adjusted decoder successfully reintroduces correlation
- Augmented and combined decoder perform well
- Outperform random perturbation and EFB for DC CSS
- Similar performance on non-DC CSS
- Fighting 4-cycles with more 4-cycles

[^0]: ${ }^{2}$ Poulin, Chung, QIC 2008 (arXiv:0801.1241)

[^1]: ${ }^{3}$ Poulin, Chung, QIC 2008 (arXiv:0801.1241)

[^2]: ${ }^{5}$ Babar et al., IEEE Access 2015

[^3]: ${ }^{7}$ Rigby et al., EURASIP JWCN 2018

[^4]: ${ }^{9}$ Hagiwara, Imai, IEEE ISIT 2007 (arXiv:quant-ph/0701020)

