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(a) Holographic hexagon state. (b) Holographic pentagon code.

Figure 4. White dots represent physical legs on the boundary. Red dots represent logical input
legs associated to each perfect tensor.

Definition 3. Consider a tensor network composed of perfect tensors which cover some

geometric manifold with boundary, where all the interior tensor legs are contracted. A

holographic state is a state interpretation of such a tensor network, where physical de-

grees of freedom are associated with all uncontracted legs at the boundary of the manifold.

We now provide an example of a holographic quantum code. As in a holographic

state, we consider a uniform tiling of the hyperbolic disc, this time by pentagons, with four

pentagons adjacent at each vertex. A perfect tensor with six legs is placed at each pentagon,

so that each tensor has one additional uncontracted open leg. This additional tensor leg

is interpreted as a bulk index or logical input for the tensor network (see figure 4b). The

entire system can be viewed as a big tensor with logical legs in the bulk and physical legs

on the boundary. We then have the following theorem:

Theorem 1. The pentagon-tiling tensor network is an isometric tensor from the bulk to

the boundary. We call it the holographic pentagon code.

We can prove this theorem by noting that if we order the tensors into layers labeled by

increasing graph distance from the center, each tensor has at most two legs contracted with

the tensors at the previous layer (this property is a consequence of the “negative curvature”

of the graph). Therefore, even if we regard the pentagon’s bulk logical index as an input

leg, the total number of input legs is at most three, and we may therefore regard each

tensor as an isometry from input legs to output legs. Applying the perfect tensors layer by

layer, and recalling that the product of isometries is an isometry, we obtain an isometry

mapping all the logical indices in the bulk to the physical indices on the boundary.

We can view this isometry as the encoding transformation of a quantum error-

correcting code, which we call a holographic code. The number of logical v-dimensional spins

is the number Nbulk of pentagons in the tiling, and the number of physical v-dimensional
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These do the job…

…but are they the right notions?
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Wishlist for the tensor network
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''



Not so fast!

Which regions ! are allowed?
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If ℋ and " are Hilbert spaces, 
and the dimension of " is 
smaller than that of ℋ, then 
there are no isometries from ℋ
to ". 
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Convex regions definitely work, see for yourself:
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BIG problem

{7, 3}

where are 
the convex 
subsets?



We need a weaker condition than convexity!⟹
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vertices



Dual graph
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Definition. A subgraph of a 
graph is convex if for every pair of 
vertices in the subgraph, every 
shortest path between them lies 
entirely in the subgraph.



convex



not convex



require that a 
cutoff is a region 
having a convex 
dual graph



Conjecture. If an area consisting 
of a union of finitely many tiles is 
convex, then it has a convex dual 
subgraph.

convex ⟹ graph-convex



For example here:
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To prove  is otony, it is  s ufficie nt to  che ck tha t .S ;(I) C_ ,~(S +) for I C S +. This  is  
c le a rly the  ca s e  if I = T(a )  9 S + or 1 = S (a ) .  S +, fo r a  pos itive  a . Le t 1 corre s pond 
to the  inte rva l (Co; c l) C_ •+, Co, c 1 c R+ in the  re a l picture . The n  

\ C I] \C1 - -C 0 /  

S ( IlT ( ~ I. S +, O  < Co < cl < co  a nd by a s s umption, He nce , l=  
\ ~ /  \ 1  ' J /  

. ~ ( I)  C_ .A~(S+). Cova ria nce  o f the  ne t is  obvious . 

Ad (ii).  In the  re a l picture , I~+ is  the  ima ge  o f S +. S ince  

D ( t ) . R + = R + ,  Vt ~ ,  

7 ~ (a ). ]R +=(a ;c x~)C _ I~+,  a > 0 ,  

S ( a ) . ~ + =  (0 ;- la )  C ~ + ,  a > 0 ,  

(i) a nd (iii) o f De finition 2.2 fo llow by cova ria nce  o f the  ne t a nd is otony. 
Fina lly, by cova ria nce  a nd loca lity, 

~r(R o ).~ (S +)T r(R o )* = . ~ ( R o  " S +) = ~ ( S _ )  c_ A(S+)', 
s o tha t (ii) o f De finition 2.2. holds . This  comple te s  the  p roo f o f the  le mma . 

We  now re s trict our a tte ntion to a n a lge bra  J ~  a nd a  re pre s e nta tion 7r 0 o f the  
Moe bius  group a s s ocia te d with "the  va cuum s e ctor" o f a  conforma l fie ld the ory. Tha t 
is , we  a s s ume  the  e xis te nce  o f a  unique  "va cuum ve c tor" inva ria nt unde r the  a ction 
o f P S U(1  ; 1). 

De fin ition  2.5. Le t . ~  be  a  s e pa ra ble  Hilbe rt s pa ce , 7r 0 a  unita ry re pre s e nta tion o f 
the  Moe bius  group on ~ which a cts  prope rly on  a v o n  Ne uma nn a lge bra  ,A~. We  
de note  by {~ ( I)}z c s 1  the  conforma l ne t cons tructe d in Le mma  2.3. Le t us  a s s ume  
tha t 

(i) the  s pe ctrum o f the  ge ne ra tor o f rota tions  o f P S U(1  ; 1) is  pos itive  (pos itive - 
energy representation). 
(ii) The re  e xis ts  a  unique  ve c tor ~2 C . ~  inva ria nt unde r P S U(1 ; 1), (va cuum 

ve ctor). 
[ . ~ l  

(iii) g2 is  cyclic  for the  von  Ne uma nn a lge bra  91 := U ~/~( )~ ge ne ra te d by 
the  ne t {, ~ ( I) }ic s 1 .  Ic S  1 J 

If prope rtie s  (i)-(iii) a re  s a tis fie d, we  s a y tha t {3d ; 7to; J ~; f2} de te rmine s  the  
vacuum s e ctor o f a conformal fie ld theory, or, e quiva le ntly, the  va cuum re pre s e nta tion 
o f the  conforma l net {~(I)}ic s 1 .  

In a  pos itive -e ne rgy re pre s e nta tion, the  ge ne ra tors  o f tra ns la tions  a nd o f s pe cia l 
conforma l tra ns forma tions  ha ve  the  following s pe ctra l prope rtie s . 

Le m m a  2.6. The  s pe ctrum  o f the  ge ne rator o f trans lations  is  always  pos itive  in a 
pos itive -energy representation 7r o o f P S U(1  ; 1). The  s pe ctrum  o f the  generator o f 
special conformal trans formations  is  negative . 

Proof. A unita ry re pre s e nta tion 7r 0 o f P S U(1 ;  1) lifts  to  a  unita ry re pre s e nta tion 
7r 0 o f S U(1 ; 1) s uch tha t 7 r0 (-l) = 7r0(~). The  pos itive -e ne rgy condition me a ns  
tha t the  s pe ctrum o f the  ge ne ra tor o f rota tions  R(~) is  pos itive  (cf. Appe ndix I fo r 
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