Discretely rotation-invariant tensors

When does a tensor give rise to holographic states?

from the original paper:

from the original paper:

special kind of tensor*

*no bulk indices

e.g. perfect

e.g. perfect

 $\forall A, B$

e.g. blockperfect

∀*A*,*B*:

A, B contiguous

These do the job...

...but are they the right notions?

Ingredients:

1. a **tiling** of the disk

2. a finite area **region** made up of tiles

> a **tensor** to put in the tiles

3.

a finite area **region** made up of tiles

3. a **tensor** to put in the tiles

2. a finite area **region** made up of tiles

 $\gamma \leq \gamma$

 $\mathcal{H}_{\gamma} \hookrightarrow \mathcal{H}_{\gamma'}$

Wishlist for T

1.
$$T_{\gamma}^{\gamma'}: \mathcal{H}_{\gamma} \hookrightarrow \mathcal{H}_{\gamma'}$$
 is an isometry

2.
$$T_{\gamma'}^{\gamma''}T_{\gamma}^{\gamma'} = T_{\gamma'}^{\gamma''}$$

3. $T_{\gamma}^{\gamma \prime}$ maps a holographic state to a holographic state

$T_{\gamma}^{\gamma\prime}$ maps a holographic state to a holographic state

 $T_{\gamma}^{\gamma\prime}$ maps a holographic state to a holographic state

Wishlist for the tensor network

1.
$$T_{\gamma}^{\gamma \prime}$$
: $\mathcal{H}_{\gamma} \hookrightarrow \mathcal{H}_{\gamma \prime}$ is an isometry

2.
$$T_{\gamma'}^{\gamma''}T_{\gamma}^{\gamma'} = T_{\gamma'}^{\gamma''}$$

Not so fast!

Which regions γ are allowed?

If \mathcal{H} and \mathcal{K} are Hilbert spaces, and the dimension of \mathcal{K} is smaller than that of \mathcal{H} , then there are no isometries from \mathcal{H} to \mathcal{K} .

<u>Convex</u> regions definitely work, see for yourself:

{3,∞}

{5,4}

BIG problem

where are the convex subsets?

Definition. A subgraph of a graph is *convex* if for every pair of vertices in the subgraph, every shortest path between them lies entirely in the subgraph.

require that a **cutoff** is a region having a *convex dual graph*

Conjecture. If an area consisting of a union of finitely many tiles is convex, then it has a convex dual subgraph.

 $convex \implies graph-convex$

For example here:

{3,∞}

convex

Conjecture. $\#(in) \le \#(out)$

convex

Wishlist for the tensor network

Wishlist for the tensor

isometry!

Wishlist for the tensor

isometry!

blockperfect

something more general?

Definition 2.5. Let \mathscr{H} be a separable Hilbert space, π_0 a unitary representation of the Moebius group on \mathscr{H} which acts properly on a von Neumann algebra \mathscr{A} . We denote by $\{\mathscr{A}(I)\}_{I \subset S^1}$ the conformal net constructed in Lemma 2.3. Let us assume that

(i) the spectrum of the generator of rotations of PSU(1; 1) is positive (*positive*-energy representation).

(ii) There exists a unique vector $\Omega \in \mathcal{H}$ invariant under PSU(1; 1), (vacuum vector).

(iii) Ω is cyclic for the von Neumann algebra $\mathfrak{A} := \left\{ \bigcup_{I \subset S^1} \mathscr{H}(I) \right\}^{\prime\prime}$ generated by the net $\{\mathscr{H}(I)\}_{I \subset S^1}$.

Definition 2.5. Let \mathscr{H} be a separable Hilbert space, π_0 a unitary representation of the Moebius group on \mathscr{H} which acts properly on a von Neumann algebra \mathscr{A} . We denote by $\{\mathscr{A}(I)\}_{I \subset S^1}$ the conformal net constructed in Lemma 2.3. Let us assume that

(i) the spectrum of the generator of rotations of PSU(1; 1) is positive (*positive*-energy representation).

(ii) There exists a unique vector $\Omega \in \mathcal{H}$ invariant under PSU(1; 1), (vacuum vector).

(iii) Ω is cyclic for the von Neumann algebra $\mathfrak{A} := \left\{ \bigcup_{I \subset S^1} \mathscr{A}(I) \right\}^{\prime\prime}$ generated by the net $\{\mathscr{A}(I)\}_{I \subset S^1}$.

<u>translation</u>: holographic state should be invariant under symmetry group of the tessellation

Wishlist for the tensor

discretely rotation invariant!

Summary

1. $T_{\gamma}^{\gamma'}: \mathcal{H}_{\gamma} \hookrightarrow \mathcal{H}_{\gamma'}$ is an isometry 2. $T_{\gamma\prime}^{\gamma\prime\prime}T_{\gamma}^{\gamma\prime}=T_{\gamma}^{\gamma\prime\prime}$

