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1. Introduction

In an interferometer like SUSI the optical path difference (OPD) z is swept around the
point z = 0. The fringe signal appears as a “wave packet” centered on z = 0 with a
characteristic envelope function. The area under this envelope function is proportional to
the fringe visibility.

In the case of quasimonochromatic radiation the observed fringe signal is

s(z) = SσNσησ|γ(σ)| cos[2πzσ + α(σ)] (1.1)

where σ is the “spectroscopic wavenumber” (σ = λ−1 = c−1ν).1 The other quantities in
this equation are:

Sσ The overall spectral response of the optical system, including atmospheric transmis-
sion, transmission through the optics, detective quantum efficiency, etc.

Nσ The spectral flux from the star, integrated over the apparent disk.

ησ A visibility loss factor that accounts for the degradation of the fringe visibility due to
atmospheric effects, instrumental aberration, etc. This is strictly a stochastic quantity
and in a more careful analysis should be treated as such; here I assume that we can
use the mean loss factor.

γ(σ) The complex degree of coherence of the star.

α(σ) The phase of the complex degree of coherence.

For convenience define
I(σ) = SσNσησ (1.2)

for σ ≥ 0 and I(σ) = 0 for σ < 0.

1The spectroscopic wavenumber is a proxy for the optical frequency, and avoids the necessity of writing
factors of c everywhere. For optical and infrared radiation the wavenumber is conveniently expressed in units
of inverse micrometers, thus a wavelength of 500 nm corresponds to 2.00 µm−1.
The circular or angular wavenumber k = 2π/λ = 2πσ is often used, particularly in the context of the wave
equation. Like the “ordinary” frequency (f or ν) and the circular frequency ω it is easy to confuse the two kinds
of wavenumber!
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The goal of stellar interferometry is to derive angular information about the source from
the observed fringe visibility. Indeed, according to the van Cittert-Zernike theorem the com-
plex degree of coherence (essentially the normalized complex fringe signal) is the Fourier
transform of the intensity distribution of the source on the sky. The transform depends ex-
plicitly on the wavenumber, so it must be known in order to obtain information about the
source.

It is often convenient to use the “analytic signal”

v(z, σ) = I(σ)γ(σ)e−2πiσz (1.3)

The actual signal can always be recovered by taking the real part of the corresponding
analytic signal.

In the case of quasimonochromatic radiation there is no difficulty. However, when
broadband light is used there will be a range of wavenumbers (or wavelengths) and the
question arises, how do we define the effective wavenumber?

This turns out to be a rather subtle question, as there are several different ways of defin-
ing an effective wavenumber. Three alternative definitions are discussed in the following
notes.

2. The conventional definition of the effective wavelength for
broadband radiation

We first consider the rather general problem of determining the effective wavelength of a
wave packet. When a wavepacket is observed with an interferometer having no dispersion
it is immediately obvious that the fringes have a more or less well defined period or wave-
length. If the bandwidth is wide the envelope of the fringe packet will be small and only a
few fringes will be seen. Conversely, if the bandwidth is small the fringes will extend over a
considerable range of optical path difference. If ∆λ is the bandwidth and λ the wavelength
(I am deliberately not being too precise here) the width in delay space is approximately
λ2/∆λ. This of course is the coherence length of the radiation. We look at this problem in
more detail.

When a broadband detector is used the fringe signal v(z, σ) must be integrated over the
bandwidth:

V (z) =
∫ ∞

−∞
I(σ)γ(σ)e−2πiσzdσ (2.1)

This is obviously the Fourier transform of I(σ)γ(σ).
First consider the case when I(σ)γ(σ) is symmetric about some wavenumber σe. Using

the shift theorem,

V (z) = e−2πiσ0z
∫ ∞

−∞
I(σe + s)γ(σe + s)e−2πiszds (2.2)

By symmetry I(σe + s)γ(σe + s) is an even function of s [I(σe + s)γ(σe + s) = I(σe −
s)γ(σe − s)], and it follows that the integral in Eq. (2.2) is real. Denoting this integral by
by the real function E(z),

V (z) = e−2πiσeE(z) (2.3)
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From this it is clear that E(z) is the envelope function and the fringes will have a wavelength
λe = 1/σe.

In general, however, I(s + σe)γ(s + σe) will not be an even function of s. In this case
it is not immediately obvious how one might define an effective wavenumber and envelope
function.

The problem can be illustrated somewhat artificially using the example of our symmetric
bandpass. It is true that

V (z) = e−2πiσ′E′(z) (2.4)

where σ′ is any wavenumber (this follows from the shift theorem) and the envelope function
E′(z) is now complex. It is of course trivial to show that

E′(z) = e−2πi(σe−σ′)E(z) (2.5)

but the point is that we cannot, simply by inspection, determine σe by pulling out a phase
factor from V (z). We need a procedure by which we can find the “correct” envelope func-
tion from the infinite set of all possible envelope functions.

Using the argument given by Mandel (L. Mandel, JOSA 57, 613, 1967) the true enve-
lope function is the one which “fluctuate[s] as slowly as possible.” The envelope function
can be written as

E(z) = P (z) + iQ(z) (2.6)

where P (z) and Q(z) are real functions. Following Mandel’s reasoning, E(z) will be as
smooth as possible when the imaginary component Q(z) is as close to zero as possible.

The product I(σ)γ(σ) ≡ R(σ) can be written in the form

R(σ) = S(σ) + A(σ) (2.7)

where S(σ) and A(σ) are the symmetric and anti-symmetric parts of R(σ). That is,

S(σe + s) = S(σe − s) (2.8)

A(σe + s) = −A(σe − s) (2.9)

These functions of course depend on our choice of σe. The Fourier transform of R(σ) will
be

R̃(z) = e−2πi(σe−σ′)[S̃(z) + iÃ(z)] = [P (z) + iQ(z)] (2.10)

From this we see that Q(z) and A(σ) are a Fourier transform pair. From the power theorem,
if |A|2 is minimized, then |Q|2 will also be minimized, so we seek a way of making A(σ)
as close to zero as possible.

Multiply both sides of Eq. (2.7) by (σ − σe) and integrate over σ. The factor (σ − σe)
is anti-symmetric about σe and consequently

∫ ∞

0
(σ − σe)S(σ)dσ = 0 (2.11)

from which it follows that
∫ ∞

0
(σ − σe)R(σ)dσ =

∫ ∞

0
(σ − σe)A(σ)dσ (2.12)
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and the condition ∫ ∞

0
(σ − σe)R(σ)dσ = 0 (2.13)

is equivalent to ∫ ∞

0
(σ − σe)A(σ)dσ = 0 (2.14)

thus making the imaginary part of the envelope function E(z) “as small as possible.” It
follows from Eq. (2.13) that

σe =
∫∞
0 σI(σ)γ(σ)dσ∫∞
0 I(σ)γ(σ)dσ

(2.15)

Eq. (2.2) can now be used to with this value of σe to calculate the analytic signal V (z). The
modulus |V (z)|will be the envelope function. Eq. (2.15) is essentially identical to Mandel’s
Eq. (34), which defines the effective frequency ν0 (Mandel’s analysis is rigorous compared
to the rather handwaving argument given here).

3. The effective wavelength for |V |2 measured with a scanning
interferometer

The phase and amplitude of the actual fringe signal is corrupted by atmospheric effects.
When the fringes are detected by sweeping the OPD the power spectrum of each sweep
is, however, an estimate of I2γ2. These power spectra are then averaged and are used to
estimate the fringe visibility.

The relation between the observed squared visibility and the complex degree of coher-
ence is given essentially by Eq. (5.3) in Ireland’s thesis (the integration is incorrectly over
wavelength in the thesis). With some obvious changes in notation this can be written as

|V (σ0)|2 =
∫∞
0 I2(σ)|γ(σ)|2dσ∫∞

0 I2(σ)dσ
(3.1)

where the quantity on the left is the wavenumber-averaged square of the fringe visibility.
Expand |γ(σ)|2 in a Taylor series around the effective wavenumber σ0:

|γ(σ)|2 = |γ(σ0)|2 + 2γ(σ0)γ′(σ0)(σ − σ0) + · · · (3.2)

and Eq. (3.1)

|V (σ0)|2 = |γ(σ0)|2 + 2γ(σ0)γ′(σ0)
∫

I2(σ)(σ − σ0)dσ∫
I2(σ)dσ

+ · · · (3.3)

It immediately follows that, to first order,

σ0 =
∫

I2(σ)σdσ∫
I2(σ)dσ

(3.4)

The accuracy of the approximation can be estimated from the magnitude of the next term in
the Taylor’s series:

ε ≈ [(γ′)2 + γγ′′]
∫

I2(σ)(σ − σ0)2dσ∫
I2(σ)dσ

(3.5)
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and for precise work one can improve the estimate of σ0 by using successive approxima-
tions.

Note that σ0 is the first moment of I2(σ), and will differ from the conventional effective
wavenumber σe, which is the first moment of I(σ).

4. The first moment of the power spectrum

As mentioned above, the observed squared visibility, |V |2, is found by integrating the power
spectrum of the observed fringe pattern and the power spectrum is the integrand appearing
in Eq. (3.1). Since the power spectrum is available in the “data pipeline” we can easily
calculate its first moment:

σ1 =
∫∞
0 I2(σ)|γ(σ)|2σdσ∫∞
0 I2(σ)|γ(σ)|2dσ

(4.1)

This differs from the definition of σ0 by the presence of the extra factor |γ|2 in the two
integrals.

Unlike σ0, the first moment is an observable since it can be trivially calculated from the
power spectrum in the course of the data analysis. If we can find a relationship between σ0

and σ1 the measured σ1 can be used as a “sanity check” that everything is OK.2

If the source is unresolved |γ|2 = 1 and it is obvious that in this case σ0 = σ1. Conse-
quently, when observing unresolved stars σ1 can be used to directly estimate the effective
wavelength. In the case of SUSI, measurements of most stars made with the 5 meter base-
line fall into this category, so 5 meter measurements of σ1 can provide the sanity check just
mentioned.

In the more general case where the object is partially resolved, we can use the expansion
Eq. (3.2) to relate σ1 to σ0. To simplify the notation set

βn(σ0) =
1
n!

dn

dσn
[|γ(σ)|2]

∣∣∣∣
σ=σ0

(4.2)

and
σ1 =

N

D
(4.3)

The numerator becomes

N =
∫ ∞

0
I2(σ)[|γ(σ0)|2 + β1(σ − σ0) + · · ·]σdσ

= |γ(σ0)|2
∫ ∞

0
I2(σ)σdσ + β1

∫ ∞

0
I2(σ)σ2dσ − β1σ0

∫ ∞

0
I2(σ)σdσ + · · ·

(4.4)

From Eq. (3.4) ∫ ∞

0
I2(σ)σdσ = σ0

∫ ∞

0
I2(σ)dσ (4.5)

and

N = |γ(σ0)|2σ0

∫ ∞

0
I2(σ)dσ + β1

∫ ∞

0
I2(σ)σ2dσ − β1σ

2
0

∫ ∞

0
I2(σ)dσ + · · · (4.6)

2The characteristics of an optical filter, for example, may change with time.
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The denominator is

D =
∫ ∞

0
I2(σ)[|γ(σ0)|2 + β1(σ − σ0) + · · ·]dσ

= |γ(σ0)|2
∫ ∞

0
I2(σ)dσ + β1

∫ ∞

0
I2(σ)σdσ − β1σ0

∫ ∞

0
I2(σ)dσ + · · ·

= |γ(σ0)|2
∫ ∞

0
I2(σ)dσ + β1σ0

∫ ∞

0
I2(σ)dσ − β1σ0

∫ ∞

0
I2(σ)dσ + · · ·

= |γ(σ0)|2
∫ ∞

0
I2(σ)dσ + · · · (4.7)

and to first order,

σ1 = σ0 +
β1(σ0)
|γ(σ0)|2

[∫∞
0 I2(σ)σ2dσ∫∞

0 I2(σ)dσ
− 1

]
(4.8)

When the gradient of |γ|2 = 0, σ0 = σ1. This of course will be true at the maxima of |γ|2,
including the maximum at the origin. This formula breaks down when |γ|2 = 0, but see the
comments in the next section.

Given a measured value of σ1, Eq. (4.8) can be used to find σ0 by successive approxi-
mation.

5. A caveat and an alternative approach

The underlying assumption used to derive the effective wavenumber is

|V |2 = |γ(σ0)|2 (5.1)

that is, we assume that the bandwidth-averaged value of the squared visibility has the same
functional form as the quasimonochromatic squared degree of coherence. It is easy to find
examples when this assumption is not true. Suppose that the object can be modelled as a
uniformly illuminated disk so

γUD(σ) =
2J1(πbσθ)

πbσθ
(5.2)

where b is the baseline and θ is the uniform disk angular diameter. Now suppose that we
measure |V |2 around the first zero of γ using a finite bandwidth. It follows from elementary
calculus that |V |2 can never be zero. This is an example of “bandwidth smearing” and has
been discussed elsewhere (Tango & Davis, MNRAS 333 642, 2002). Bandwidth smearing
becomes significant when the angular size of the source is comparable or larger than the
“coherent field of view” of the interferometer.

The discussion is not just an academic one. Different models for limb darkening predict
values for |γ|2 that are virtually indistinguishable when the star is only partially resolved.
The differences only become apparent when |γ|2 is measured beyond the first zero, and
this is precisely the region where bandwidth smearing is important. Indeed, one has to take
great care when interpreting such data to distinguish between bandwidth effects and true
limb-darkening.

Reflecting on Eq. (3.1) I realized that it is actually not necessary to define an effective
wavelength at all! Let γ(σ, θ, b) be the complex degree of coherence for some model, with
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θ now representing possibly a set of fitting parameters (angular diameter, limb-darkening
coefficients, etc.) and b is the baseline. Define a goodness-of-fit parameter for a set of N
visibility measurements:

χ2 =
N∑

i=1

1
w2

i

[
|Vi|2 −

∫∞
0 I2(σ)|γ(σ, θ, bi)|2dσ∫∞

0 I2(σ)dσ

]2

(5.3)

where wi is the usual statistical weighting factor. We then determine θ by minimizing χ2

using our favorite non-linear method.
This is admittedly rather more complicated than the alternative approach, which is to

minimize

χ2
simple =

N∑

i=1

1
w2

i

[
|Vi|2 − |γ(σ0, θ, bi)|2

]2
(5.4)

The advantage of this latter method is that, once σ0 has been determined for a range of spec-
tral types, one simply looks up or interpolates σ0 from a table. Indeed, following common
practice γ is set to γUD and a single fitting algorithm can then be used for any star as long
as it has a compact atmosphere. There is absolutely nothing wrong with this approach as
long as the star is only partially resolved. As a rule-of-thumb this method should be fine as
long as |V |2 >∼ 0.05. When |V |2 is small, or one is working beyond the first zero in the
visibility function, bandwidth smearing will be important and the “exact” value of χ2 given
by Eq. (5.3) should be used. Since I2(σ) depends on the spectral type of the source one
either has to do the fitting on a case-by-case basis or to link the fitting routine to a library of
spectra.


