
PHYS 1901: OSCILLATIONS, WAVES & CHAOS
Lecture Notes (Part 2): A Brief Introduction to Chaos Theory

1 Chaos

Chaos is the term used to describe theapparently complex behaviour of what we consider to be simple,
well-behaved systems. Chaotic behaviour, when looked at casually, looks erratic and almost random.
Before the development of chaos theory, such behaviour would have been attributed to one of two reasons:

1. Complexity. For example, a system with many moving parts (a box of gas, a galaxy of stars) has
many “degrees of freedom” (variables needed to specify the state of the system at any given time).
Such a system obviously has the possibility of showing very complicated behaviour.

2. Noise. If the behaviour of the system is strongly influenced by outside, random effects (e.g., tem-
perature fluctuations, mechanical vibrations, etc.) then it might show complicated and unpredictable
behaviour.

Chaos provides a third explanation for complicated behaviour. We know that a third explanation is nec-
essary because we sometimes see complicated, apparently random behaviour is systems with only a few
degrees of freedom that are not significantly affected by noise.

2 Sensitive dependence on initial conditions

The defining feature of chaotic behaviour is thesensitive dependence on initial conditions. Consider the
following quotation:

Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective positions of the beings which compose it, if moreover
this intelligence were vast enough to submit these data to analysis, it would embrace in the
same formula both the movements of the largest bodies in the universe and those of the lightest
atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.

Pierre Simon De Laplace (1820)

In other words, provided we know the initial conditions of a system with sufficient accuracy, we can
predict its future behaviour. Clearly this would be impractical in most cases, but it sounds plausible for
simple systems (only a few degrees of freedom) that are not affected by noise. The first statement that such
predictability might not always be possible, even for simple systems, is attributed to Poincaré:

If we knew exactly the laws of nature and the situation of the universe at the initial moment,
we could predict exactly the situation of that same universeat a succeeding moment. But even
if it were the case that the natural laws had no longer any secret for us, we could still only
know the initial situation approximately. If that enabled us to predict the succeeding situation
with the same approximation, that is all we require, and we should say that the phenomenon
had been predicted, that it is governed by laws. But it is not always so; it may happen that
small differences in the initial conditions produce very great ones in the final phenomena. A
small error in the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon.

Jules Henri Poincaré (1913)

A trivial example of the sensitive dependence on initial conditions is a ball at the peak of a hill. The
ball could roll either way, and this clearly has a big influence on its future. However, the sensitivity to
initial conditions only arises for one particular case. If the ball starts on one side of the hill, the sensitivity
disappears. To describe motion as chaotic, we require sensitivity to initial conditions for a wide range of
initial conditions.
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To be even more precise, it turns out that chaos involves anexponential divergence of trajectories. Here,
a trajectory refers to a particular way in which the system might evolve. If a system is chaotic then two
trajectories that differ by∆x0 in their initial conditions will, after timet, differ by

∆x(t) = ∆x0e
λt. (1)

Here,λ is called the Lyapunov exponent and must be positive for chaotic behaviour.
Note that the future behaviour of a chaotic systemis predictable, but only if the state of the system is

known to infinite precision. In practice, this is never possible, and so any real prediction is useless after a
certain time (how long?).

3 The ingredients for chaos

It turns out that for a system to show chaotic behaviour, two things are necessary:

1. The system must have at least three degrees of freedom. Forexample, a simple pendulum and a
mass on a spring both have only two degrees of freedom. In eachcase, the state of the system (i.e.,
what the system is doing at any given moment) can be completely described by one position and one
velocity. Adding a periodic driving force adds one degree offreedom (to describe the system at time
t, we need to specify the phase of the driving force at that time). Making a single pendulum into a
double pendulum adds two degrees of freedom (the position and velocity of the second pendulum).

2. There must be nonlinearity in the system. In a linear system, all the variables (position, velocity,
pressure, etc.) appear in the equations to the first power (ornot at all). If we “kick” a linear system
twice as hard then the response will always be twice as large.In reality, all physical system are
nonlinear at some level and linearity is only an approximation.

4 The Duffing nonlinear oscillator

The equation for a simple harmonic oscillator is linear:

m
d2x

dt2
+ kx = 0.

This remains true, even when we introduce damping that is proportional to speed:

m
d2x

dt2
+ b

dx

dt
+ kx = 0.

To make the equation non-linear, we can modify the restoringforce:

m
d2x

dt2
+ b

dx

dt
+ kx + βx3 = 0.

Note that we added a term withx3 rather thanx2 because the latter does not change sign asx passes
through zero. This equation is now nonlinear but the system will not exhibit chaos because it has only two
degrees of freedom. But now we can add a periodic driving force

m
d2x

dt2
+ b

dx

dt
+ kx + βx3 = Fmax cos(ωdt)

Now the system has one extra degree of freedom, since at any given time we need to specify the position
and speed of the mass (x and dx

dt
), and also the phase of the driving force (ωdt). This system is called the

Duffing oscillator and it exhibits chaotic behaviour for some (but not all) values of the parameters (m, k, b,
β andωd).
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5 The pendulum

The equation for a pendulum is
d2θ

dt2
+

g

L
sin θ = 0,

which is nonlinear (except at small amplitudes, whensin θ ≈ θ). The physical pendulum (for example, if
the string is replaced by a solid rod) has a similar equation:

d2θ

dt2
+

mgL

I
sin θ = 0,

Both these systems have only two degrees of freedom and so will not exhibit chaos. Again, we can add a
periodic driving force. We could do this by placing a charge on the bob and apply an alternating electric
field, as simulated in the laboratory. A physical pendulum can also be driven by applying a periodic torque
at the pivot point. A driven pendulum has three degrees of freedom and nonlinearity, and it exhibits chaos
for some (but not all) values of the parameters.

We can also produce chaos with no driving at all, in a double pendulum. This is seen in the system in
the ground-floor corridor of the Physics Building.

6 Visualizing chaotic behaviour

We are used to plotting position or velocity versus time. It is also helpful to plot velocity versus position
(this is called a phase diagram). For an undamped harmonic oscillator, this traces a circular trajectory.
For a damped harmonic oscillator, the trajectory spirals intowards the origin as the system loses energy.
For nonlinear systems, we see much more complicated patterns. For example, we sometimes see a period
doubling in which the system goes through two cycles before repeating itself, as shown in the left-hand
figure. This is not chaos, but is often shown by a system that isapproaching chaotic behaviour. For a
chaotic system (right-hand figure), the trajectory does notrepeat and eventually covers a large part of the
phase diagram.

For a chaotic system, the phase diagram is very complicated.It is useful to instead plot a point at
regular time intervals. Such a diagram is called a Poincarésection. For example, in a periodically driven
system we can plot the position and velocity at exactly the same point in the drive cycle. The Poincaré
section for a periodic oscillator is just a single point, andfor a system that has undergone period doubling
it is a pair of points. For a chaotic system it is a complicatedpattern, such as the one shown below, which
is for a periodically forced pendulum. Note that this has finestructure and looks very similar when you
zoom in. This property of invariance under a change of scale is called self-similarity, and the structure is
called a fractal.
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7 Differential equations and maps

Differential equations (DEs) are central to physics. Most laws in physics, such as Newton’s Second Law,
are differential equations. (So are Maxwell’s equations inelectromagnetism, Schrödinger’s equation in
quantum mechanics and Einstein’s field equations in generalrelativity.)

Let us look at the motion of a particle and examine the role played by the DE. Newton’s Second Law
says that the acceleration of an object at any instant is determined by the forces acting on it:

d2x

dt2
= F/m. (2)

The forces usually depend on the position and velocity of theobject (x and dx
dt

). Sometimes we can
solve the DE and write down an explicit solution for positionat all future times. For example, an object
undergoing simple harmonic motion has the DE

m
d2x

dt2
+ kx = 0.

which has a sinusoidal solution:
x(t) = A cos(ωt + φ).

Another simple example is an object undergoing constant acceleration (e.g., in a uniform gravitational
field), which has the DE

d2y

dt2
= a;

d2x

dt2
= 0.

The solution is motion in a parabola:

x(t) = x0 + uxt; y(t) = y0 + uyt + 1

2
at2.

It is important to realise that these are special cases: in most situations, we cannot write down the solution
to the DE explicitly.

What does the object itself do? It does not solve the DE and “decide” to follow a sinusoid or a parabola.
All it can do is react to the forces acting on it at each instant. If we want to calculate the trajectory of the
object, we must do the same, as follows. The position of the object a short time from now, at timet + ∆t,
is given by itscurrent position plus thechange in its position during that small interval (v∆t):

x(t + ∆t) = x(t) + ∆t
dx

dt
.

Note that this follows directly from the definition of the derivative:

dx

dt
= lim

∆t→0

x(t + ∆t) − x(t)

∆t
.
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So that tells us where the object will be a short time from now.But what will its velocity be? The same
type of reasoning tells us that the velocity of the object at time t + ∆t is given by itscurrent velocity plus
thechange in its velocity during that small interval (a∆t):

(

dx

dt

)

t+∆t

=

(

dx

dt

)

t

+ ∆t
d2x

dt2
.

Again, this follows from the definition of the second derivative.
So now we know how to calculate both the position and velocityof the object a short time from now,

provided we know the acceleration. Do we have to keep going with higher and higher derivatives? Well, no,
because we know that the acceleration is determined by the forces via Newton’s Second Law (Equation 2).
The difficulty arises because the forces themselves also depend on position (and sometimes velocity). To
calculate the trajectory of a particle using a computer is therefore an iterative process that is done in a series
of small steps.1

Calculating the trajectory of a system by iteration, as described above, allows us to study quite compli-
cated systems. For example, we can observe the chaotic behaviour that arises when the DE is nonlinear.
This iterative process also reminds us ofmaps in mathematics, and it is not surprising that these maps can
also show chaotic behaviour. Indeed, studies of the so-called Logistic Map:

xn+1 = µxn(1 − xn)

by Robert May (now Lord May, who was a student and then a lecturer and professor in this School of
Physics), were of great importance in the development of chaos theory.

1Solving DEs with computers involves some clever tricks and is one of the topics covered in the Unit of Study COSC 1903 (Intro.
to Computational Science), which is offered in Semester 2.
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