Photonics for long baseline interferometry

Jean-Philippe Berger European Southern Observatory

The initial push

An obvious sense of progress (I)

An obvious sense of progress (II)

Monnier et al. 2015

Actual image of Altair from the CHARA Interferometer

۵۵ (mas)

 $\Delta \alpha$ (mas

10

Context

Scientific drivers turn into technical requirements

Stellar and circumstellar environments +AGN

Planet formation

Exoplanet detection and characterisation Understand GRAVITY in the strong regime

- Imaging (NT)High resolution
 - spectroscopy
- Visible to mid IR
- Sensivity
- Imaging (NT)
- High contrast
- Mid infrared

- High contrast
- NIR-MIR

- Sensivity
- Imaging
- High contrast
- Phase reference
- imaging/astrometry

Opportunities driving R&D

CHARA

NPOI

4 x 8 m UT 4 x 1.m AT Bmax = 160m

Instruments:

PIONIER: 4T (H, R~40) AMBER: 3T (H,K, R ~12000) MIDI: 2T (N R~ 300) 6 x 1 m Telescopes Bmax = 330m

6 x 0.12 Siderostats (+ 4 1x1.8 Keck O?) Bmax = 79m (437m)

Instruments:

CLIMB: 3T (H, K, R~5) MIRC: 4-6T (H,K, R ~40) PAVO: 3T (R R~ 100) VEGA: 3T (B,V,R ~1500 -30000)

Instruments:

V,R: 4-6T, R ~ 80

DARWIN-TPF

8-10m class AO corrected telescopes

Functional diagram of an optical interferometer

Beam routing strategies

- Minimising losses
- Minimising # of pixels
- Minimising crosstalk
- Minimising chromaticity
- Ensuring photometric calibration

Le bouquin++ 2014

Beam combining functions

Beam combining functions

The PIONIER visitor instrument at VLTI

PIONIER at VLTI

Berger et al. 2010, Lebouquin et al. 2011

Functions in a long baseline optical interferometer

Benisty et al. 2007

Imaging science

Monnier++ 2014

More telescopes needed + spectral resolution

Débris disk science: high precision visibilities xxx: figure debris disk

bet_pic (PIONIER -- H band` 1.10 Uniform disc/star: 1.45 ± 0.04 ± 0.05 % 0.50 1.05 1.00 0.95 0.90 0.85 0.80 д_а 1×10^{7} 2×10^{7} 0 3×10 4×10 Spatial frequency [1/rad]

Ertel et al. 2014

Calibration is key

Understanding polarisation propagation

Angularly close calibrators (< 1deg)
Important margin for progress.
Scientific polarisation measurements

Lazareff et al. 2012

Exoplanet science: precision closure phase Monnier 2007 Predicted CP signal

Renard et al. 2008

Closure Phase $\Phi_0(1-2)+\Phi_0(2-3)$ (1-2-3) $\Phi_0(3-1)$

Reconstructed spectra

Requested CP precision ~ 0.01 deg

Exoplanet science: precision closure phase Absil et al. 2012

- Systematics not entirely understoo
 - Residual atmospheric fluctuation phase effects
 - Chromatic effects dominating (atmosphere, finer dispersion)
 - Mitigation with multiple calibrator strategy and medium resolution
 - Increase photon efficiency
 - Crosstalk, polarisation Best CP precision ~

Zhao et al. 2014 **0.1 deq**

GRAVITY: Hunting for the Galactic Center black-hole

Galactic Center

GRAVITY: science case

1.4

1.0

GRAVITY concept

Key Photonics developments

- K band (2-2.4 micron) cryogenic integrated optics
- Metrology compatible IO
- Fluoride fibers polarisation control
- Fluoride fibers differential delay lines

GRAVITY at Paranal

Polarisation control Fiber differential fiber delay line

Metrology injection Acquisition Camera Fiber Control Uni Guiding receivers Calibration Uni

DDL: stroke 4mm, resolution 1micror

FPR: 180 deg amplitude accuracy 2 degree

The revolution of avalanche IR detector arrays FUI-RAPID: SOFRADIR, IPAG, ONERA, LETI, LAM

• Pixel size of 30µm

- Almost flat Quantum Efficiency from 0.4 to ~3 / 3.2µm !
- Frame rates of 1600 Hz, full frame ! The fattest NIR detector ever made (i think).
- Noise of ~2 electrons per frame !

Operated in a compact Pulse-Tube Cryo-cooler at ~80K (first one at Paranal) -> No nitrogen re-feeling.

ESO announcement: 15042

Also:

Promises of photonics for coherent combination

Science directions

The facility context

CHARA

NPOI

MROI

30-40 m class telescopes

PFI

High dynamic range: nulling

Sana ++ 2014

Imaging: the 10 telescopes ceiling?

- Wafer size limitation: higher index
- Losses limitation

Labeye 2008 (LETI)

- Switchyards
- Hybridation 3D-2D
- Direct imaging
- Large format (512) low noise detectors

High dynamic range: nulling

Lacour ++ 2013

Chromatic and polarisation control

Infrastructure photonics developments

- Fiber beam transportation
- Delay lines

larger. Here we demonstrate a monolithic waveguide as long as 27 m (39 m optical path length), and featuring broadband loss rate values of $(0.08 \pm 0.01) \text{ dB m}^{-1}$ measured over 7 m by optical

Integrated spectral dispersion

Lecoarer ++ 2009 Efficiency Integration with combiners

More developments

Polarisation control - Scientific polarisation

Low-loss visible and MID-IR combiners

Switchyards

On-chip photonic modulation

Hybridation

APD matrices with higher number of pixels

Conclusion

- Gigantic progress of photonics detector technology enable combination of ~ 8T: we should be ok for existing facilities
- ... but mostly in the near-infrared (good alternatives in visible e.g VISION)
- Breaking Limitations in dynamic range (closure phase, nulling) will require pushing technology and calibration strategy
- PFI sets new frontier in terms of imaging, phasing requirements
 - (re-)activate R&D (beam propagation, delay, coherent spectral resolution)
 - Prototyping facility needed (e.g not easy to use VLTI for R&D)