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Abstract

Theoretical and Numerical Investigation of the Physics of Mi-
crostructured Optical Fibres

We describe the theory and implementation of a multipole method for calculating the modes
of microstructured optical fibers (MOFs). We develop tools for exploiting results obtained
through the multipole method, including a discrete Bloch transform. Using the multipole
method, we study in detail the physical nature of solid core MOF modes, and establish a
distinction between localized defect modes and extended modes. Defect modes, including
the fundamental mode, can undergo a localization transition we identify with the mode’s
cutoff. We study numerically and theoretically the cutoff of the fundamental and the second
mode extensively, and establish a cutoff diagram enabling us to predict with accuracy MOF
properties, even for exotic MOF geometries. We study MOF dispersion and loss properties and
develop unconventional MOF designs with low losses and ultra-flattened near-zero dispersion
on a wide wavelength range. Using the cutoff-diagram we explain properties of these MOF
designs.

Étude Théorique et Numérique de la Physique des Fibres Op-
tiques Microstructurées

Nous détaillons la théorie et l’implémentation d’une méthode multipolaire pour le cal-
cul de modes de fibres optiques microstructurées (FOM). Nous développons des outils pour
l’exploitation de résultats obtenus par la méthode multipolaire, dont une transformée de Bloch
discrète. À l’aide de la méthode multipolaire, nous étudions en détail la nature physique de
modes de FOMs à cœur plein. Nous distinguons entre modes de défaut localisés et modes
étendus. Les modes de défaut, y compris le mode fondamental, peuvent subir une transition
de localisation que nous identifions à la coupure du mode. Nous étudions numériquement
et théoriquement la coupure du mode fondamental et du second mode, puis établissons un
diagramme de régime opératoire nous permettant de prédire avec précision les propriétés de
FOMs même aux géométries complexes. Nous étudions la dispersion et les pertes des FOMs
et proposons un nouveau type de FOM à faible pertes et à courbe de dispersion ultra plate,
proche de zéro sur une vaste plage de longueur d’ondes. En s’appuyant sur le diagramme de
régime opératoire, nous expliquons les propriétés de ce nouveau type de FOMs.
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Chapter 1

Introduction

With the invention of lasers and the development of optical fibres able to carry light over
hundreds of kilometres came the advent of a new era of worldwide high speed telecommu-
nications, with consequences reaching from benefits in everyday life to the reshaping of the
world economy. The first visible effects were cheaper transcontinental phone connections, and
the latest certainly the “Internet revolution”. Although one can bemoan the fact that the
technologically unprecedented possibilities for people and populations to communicate don’t
yet seem to have brought better understanding and tolerance between cultures, the optimist
will say that this is only a matter of time. Indeed it is easy to forget (especially for younger
generations) that optical fibres “transparent” enough to make long haul data transfer possible
were invented only about 30 years ago or that the first transatlantic optical fibre was laid less
than 20 years ago.

For a decade, the speed (or bandwidth) at which a single optical fibre could carry data
seemed pretty much unlimited. Every now and then the bandwidth of telecommunication
networks became too small, but it appeared that the limitation was not so much due to
the intrinsic limits of the fibre, but much more to the limited speed of the signal sources
and receivers, so that increasing the bandwidth was for a long time a matter of improving
sources and receivers. Intrinsic limits to the bandwidth of optical fibres had been predicted
as early as the 1970s, but seemed as theoretical and out of reach as the speed of light for
aeroplanes. Research on increasing the bandwidth of optical networks in those times was
more a question of how to get the best out of fibres through injecting more information, e.g.
through multiplexing, than a question of improving optical fibres. Of course the new data
injection principles found required new types of fibres, but these were merely more or less
adapted versions of the original step index fibre.1 Given the incredible possibilities offered by
existing fibres, there was little eagerness to try to find something radically new, as there was
little reason to believe that anything better could ever exist.

It is only in recent years, with the exponentially increasing demand for bandwidth (es-
sentially due to the popularization of the Internet and multimedia contents) along with the
progress made in high speed electronics and optoelectronics, that the intrinsic limits of op-
tical fibres were reached. New, higher density data injection is now possible, but because of
non-linear effects, polarization mode dispersion and other effects we will detail in the next
Chapter, good old optical fibres can’t keep pace anymore.

1What we claim here is that the fibres were based on the same principle of guidance as step index fibres,
which doesn’t in any way detract from the work and ingenuity needed for the task of designing such fibres.

15
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Fortunately, at about the same time, the principles of photonic crystals were discovered,
leading to the suggestion of radically new mechanisms of light guidance. In the early 1990s
the idea of optical fibres using photonic crystal claddings emerged, and after a few years the
first photonic crystal fibre was demonstrated. The very first experimental work on these fibres
already showed that they could have unprecedented properties and overcome many limitations
intrinsic to step index fibres. With photonic crystal fibres, almost everything seemed feasible,
from guiding light in vacuum, hence overcoming all limitations inherent to interactions between
light and matter, to achieving dispersion properties unthinkable with step index fibres, from
enhancing non-linear effects through extreme confinement of light to minimizing the same non-
linear effects through very large core single mode fibres. The discovery of these possibilities
brought prospects of totally new fields of application for fibre optics, such as optical fibres
for high power applications, optical fibres for non-conventional wavelength ranges (e.g. far
infrared, ultra violet), revolutionary optical fibre sensors, particle guidance through hollow core
optical fibres, extremely versatile dispersion management, compact high precision metrology,
and low-threshold non-linear optics.

Unsurprisingly, the field of photonic crystal fibres became extremely popular, and soon
numerous research groups around the world started drawing all kinds of photonic crystal
fibres, with hollow or solid cores, with regular or irregular structures, using silica or polymers.
Inevitably the pioneers of the field all gave those fibres different names –photonic crystal fibres
(PCF), microstructured optical fibres (MOF), crystal fibres (CF), holey fibres (HF) – each
having different connotations; we will discuss the meaning of each of these in the next Chapter.
In the present thesis we will concentrate on one type of photonic crystal fibres, called solid
core microstructured optical fibres (solid core MOFs). At the beginning of our work, the first
of these fibres had appeared only three years earlier, so that their study was still in its infancy.
Some of their most promising properties had already been discovered either experimentally or
through early models of their guidance mechanism, but numerous unknowns remained:

• The first models of the guidance in these fibres assumed the photonic crystal cladding
to extend from the fibre core to infinity. The effect of the finite width of the photonic
crystal cladding in real fibres could not be accounted for. There was no estimate what-
soever of tunneling losses due to the finite width of the cladding, and to a great extent
it remained unknown whether these fibres could have low losses compatible with appli-
cations. More generally, the influence of the diameter of the photonic crystal cladding
on mode properties was completely unexplored.

• One of the first properties of solid core MOFs discovered is that they can be single-mode
over an infinite range of wavelengths. But since losses are inevitable in these fibres, all
modes are actually leaky. Given that there are in fact an infinity of leaky modes, the
definition of a “single mode fibre” was to be clarified. A clear distinction between the
few guided or confined modes, and the remaining cladding modes was yet to be drawn.

• Early fibres were more or less designed through trial and error or using early models
with limited predictive capabilities, and only a few values of hole size and hole to hole
spacing had been tried. The full range of these parameters had still to be explored with
regard to losses, dispersion, confinement and number of modes. Further, the domain of
validity of the early models was to be clarified.

From the above list it becomes clear that some unknowns weren’t so much unexplored because
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of the youth of the field but more because of the lack of an accurate and versatile tool to model
MOFs with finite cross section.2

In the framework of the present thesis we have developed a rigorous formulation for MOFs
with finite claddings. The formulation enables the precise and efficient computation of modes,
their losses and chromatic dispersion. Using this tool, we have explored in detail properties of
solid core MOFs. In particular, from a systematic analysis of MOF modes, we have establis-
hed a clear criterion for the distinction between cladding and confined modes, clarifying the
question of the definition of the number of modes.

We have studied the confinement and losses of modes with varying MOF geometry (hole
diameter and spacing, width of the cladding), and have discovered that mode properties don’t
necessarily converge with increasing cladding diameter, even for apparently confined modes.

The study has brought us to define modal cutoff in MOFs, taking the form of a mode
transition from confined to unconfined states. We have studied extensively the second mode
cutoff, and established the first precise cutoff diagram marking the limits between single and
multi-mode guidance in MOFs.

We have shown that unlike step index fibres and contrary to popular belief, solid core MOFs
have a fundamental mode cutoff. We have studied the latter numerically and analytically, using
an asymptotic analysis of the mode before and beyond cutoff. This has brought insights into
the physics of the cutoff and has led us to partition the parameter space of MOFs into three
regions corresponding to different operation regimes. Qualitative and quantitative properties
of the fundamental mode differ significantly from one region to another, and it is only in one
of these regions that mode properties differing significantly from those of step index fibres can
be achieved. We have drawn the contours of this region in parameter space, and have found all
published results concerning MOFs with unconventional properties to be within this region.

We have found the map of the different operation regimes to be of great generality and
of fundamental interest in designing innovative MOFs. It further gives an answer to the
question of validity of the well known “effective index” model and of models using the supercell
approximation.

Finally, we have studied the fundamental mode chromatic dispersion systematically along
with losses and had to face the truth that most promising dispersion properties are found close
to the fundamental mode cutoff and hence are associated with large losses. Using the map of
operation regions, we developed unconventional MOF designs overcoming this difficulty, and
designed new types of solid core MOFs associating highly desirable dispersion properties with
very low losses.

The remainder of the present thesis is arranged as follows:
Chapter 2 is a general technical introduction to microstructured optical fibres. We review

the principles and main properties of conventional step index fibres as well as characteristics
desirable for applications, with an emphasis on telecommunication applications. We give
a short overview of photonic crystals and how they can be used to achieve novel types of
waveguides. We introduce the different types of photonic crystal fibres and what can be
expected from them. Finally, we discuss the concept of leaky modes.

Chapter 3 presents the multipole method we use to model MOFs. We briefly evoke other
methods available for the simulation of MOFs, their main advantages and limitations. We
then use an heuristic approach to understand the physics behind the multipole method before
tackling the slightly tedious task of deriving the formulation mathematically.

2Note that the lack of accurate model is certainly a consequence of the youth of the field.
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In Chapter 4 we examine the numerical implementation of the multipole method. We
discuss the algorithm used to solve the equation given by the multipole method, the choice
of parameters to guarantee accurate results and the use of symmetry properties. We briefly
present the software resulting from these considerations before checking simulation results
through self-consistency tests and through comparisons with experimental data and with re-
sults obtained through other numerical methods.

Chapter 5 introduces two numerical tools we have developed to exploit the results given
by the multipole method. The first tool, derived from Poynting’s theorem, lowers the limit of
the smallest losses the multipole method can compute. The second tool, which we have called
Bloch transform, is similar to the Fourier transform but is tailored to project MOF modes on
a basis of Bloch waves rather than plane waves. We define the Bloch transform in the context
of the multipole method, noting that is could be used with other models, and derive a few
of its properties. The most useful property of the Bloch transform is that it can be used to
follow modes with accuracy and enables us to draw conclusions regarding the physical nature
of modes.

Chapter 6 is a survey of modes encountered in solid core MOFs. We show that the Bloch
transform is a powerful means of identifying modes. We analyse the behaviour of various modes
with varying MOF size. This leads us to distinguish between two fundamentally different types
of modes: extended modes, resulting from resonances of Bloch waves, and defect modes, which
are confined in the core. A secondary result with some practical consequences is that increasing
the cladding width does not necessarily give lower losses if the outer holes are not of the same
size as the inner holes.

Chapter 7 is a detailed study of modal cutoff in solid core MOFs. We study the evolution
of the second mode with varying fibre parameters and discover that the mode can be in two
qualitatively very different states, one confined in the core, the other extending over the whole
cladding. We analyse in detail these two states as well as the transition leading from one to
the other. The locus in parameter space of the transition appears to be largely independent of
the number of rings of holes surrounding the core, whereas the transition becomes increasingly
sharp with increasing number of rings. This enables us to define a precise transition point
which we identify with the second mode cutoff. We establish the “phase-diagram” of the second
mode, showing the locus of the cutoff as a function of fibre parameters. We determine the
precise limit of the endlessly-single mode regime. A similar study for the fundamental mode
shows that there is a fundamental mode cutoff, with properties differing slightly from those
of the second mode cutoff. We use two asymptotic models to get insights into the physics of
MOF mode cutoff, giving us a better understanding of mode properties on each side of the
cutoff but also near cutoff. The results from the asymptotic analysis lead us to define a cutoff
point and a cutoff region for the fundamental mode. It appears that three operation regimes
with very different mode properties can be distinguished. Only two of these are of practical
interest, one with strong mode confinement and another with broader field distributions. The
former is of interest for single mode guidance with strong confinement, whereas the latter, the
cutoff region, is where highly adjustable chromatic dispersion can be achieved. We provide a
map of the parameter space summarizing the operating regimes of MOFs, and show for a few
examples how this map can be used for deterministic MOF design. Finally, we discuss the
validity of other MOF modeling tools in each region of operation.

Chapter 8 deals with dispersion properties of solid core MOFs. The chapter consists
of two of our recent papers we have included ‘as is’ and commented on in the light of the
operating regime diagram from the preceding chapter. The first paper is a general analysis
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of the dependence of chromatic dispersion and losses on fibre parameters, including fibre size,
concluding with the observation that most previously-suggested, near-zero dispersion-shifted
MOF designs would not be usable in practice because of prohibitive losses. The second paper
suggests innovative MOF designs achieving both low losses and desirable dispersion properties.



Mise en bouche: Laksa de Cigale des Mers et Shiitake 20

Mise en bouche :

Laksa de Cigale des Mers et Shiitake
Morton Bay Bug and Shiitake Laksa

Pour 6 personnes :

4 cigales de mer cuites
4 champignons

«shiitake» (ou lentin
comestible)

1 citron vert
6 feuilles de citron vert
1 piment rouge frais de

taille moyenne
30 cl de crème de noix

de coco
un tiers de botte de

coriandre fraîche
4 cl de cognac

50 g de beurre clarifié
1 cuillerée à café
d’huile de sésame

16 grains de coriandre
poivre noir et poivre de

setchuan
sel

Et, éventuellement :
Sauce soja

Gingembre frais

Décortiquer les queues des cigales de mer, les couper en
dés de 5 mm de côté. Réserver. Concasser les carcasses

des cigales de mer, les faire revenir à feu vif avec le beurre
dans une sauteuse. Quand les carcasses sont bien colorées,
déglacer avec le cognac. Laisser réduire à sec puis ajouter
50 cl d’eau. Laisser frémir une demi heure. Passer le contenu
de la sauteuse au chinois, en pressant bien afin de recueillir
le maximum de jus. Faire réduire le jus jusqu’à n’en avoir
plus que 10 cl.

Enlever les graines et les parties blanches du piment. Le
hacher très finement au couteau. Parer et nettoyer les

shiitakes, les débiter en cubes de 5 mm de côté. Réserver 4
belles feuilles de coriandre, ciseler grossièrement le reste des
feuilles. Prélever le zeste du citron vert à l’aide d’un zesteur,
hacher le zeste finement. Presser le citron vert et réserver le
jus. Concasser les poivres.

Porter la crème de coco à frémissement avec les feuilles
de citronnier, les grains de coriandre, et la moitié du jus

de citron vert. Laisser infuser une dizaine de minutes. Passer
au chinois. Ajouter le zeste du citron, le jus de cigales de mer,
les champignons shiitake débités en cubes de 5 mm de côté,
le piment, l’huile de sésame et les poivres. Laisser infuser 5
minutes supplémentaires, à très petit frémissements. Ajuster
l’assaisonnement, éventuellement ajouter une pointe de gin-
gembre frais et quelques gouttes de sauce soja. Ajouter les
cubes de queues de cigale de mer et la coriandre feuille cise-
lée, laisser reposer une petite minute. Servir en petites tasses
individuelles, décoré d’une feuille de coriandre, d’une goutte
d’huile de sésame et éventuellement de zestes de citron vert.



Chapter 2

Optical Fibres, Photonic Crystals and
Leaky Modes

This Chapter is a technical introduction to microstructured optical fibres. Our aim is to
introduce the fundamental concepts and notions we will encounter throughout the thesis.
First, we review the principles and main properties of conventional optical fibres (CF). We
then give a short overview of photonic crystals (PC) and light guidance in PC defects. This
leads us to introduce the principles of guidance in photonic crystal fibres and more generally
in microstructured optical fibres (MOFs) or holey fibres. The finite width of the confining
structure of MOFs implies all guided modes are in fact leaky; in a final section we discuss
what leaky modes represent physically as well as mathematically.

2.1 Conventional Optical Fibres

2.1.1 Guidance Mechanism

Conventional optical fibres [3, 4] rely on total internal reflection to guide light. The simplest
optical fibre – the step index fibre – consists of a dielectric core with refractive index nCO

surrounded by another dielectric (called cladding) with refractive index nCL. Using a ray-
approach and the Snell-Descartes law, it is easy to see that if nCO > nCL, light propagating
in the core reaching the core/cladding interface is totally reflected back into the core as soon
as the angle between the direction of propagation and the core/cladding interface is small
enough.

More rigorously, we consider the infinitely long step index fibre with circular cross section
(radius ρ) depicted in Fig. 2.1. We consider light with free-space wavelength λ and wavenumber
k0 propagating along the axis of the fibre (z-axis). The studied system is invariant under any
translation in the z-direction, which implies that all fields must have a dependence of exp(ıβz)
along z. β is called the propagation constant. β is the common z-component of the wave vectors
in the core and in the cladding. Since the norm of the wave vectors in the core and in the
cladding are nCOk0 and nCLk0 respectively, β must be less or equal to nCOk0 to propagate in
the core and less or equal to nCLk0 to propagate in the cladding. If nCL < β/k0 < nCO, light
can propagate in the core, but not in the cladding: the light is trapped in the core. We will
sometimes also use the perpendicular wavenumber k⊥, defined by

k2
⊥ + β2 = n2k2

0, (2.1)

21
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nCL

β

nCOk0
k⊥

Cladding

ρ

z

nCO
Core

Figure 2.1: Conventional step index fibre.

where n is the local refractive index, and the numerical aperture (NA)

NA =
√

n2
CO − n2

CL. (2.2)

Note that the numerical aperture is equal to the sine of the fibre acceptance angle. The
acceptance angle is defined by the maximum angle from the z-axis a ray entering the fibre can
have and still be guided by the fibre. In other words light entering a fibre with an angle from
the z-axis greater than the acceptance angle will be refracted into the cladding and eventually
lost. Hence, the larger the numerical aperture, the easier it is to inject light into a fibre.

2.1.2 Fibre Modes

Considerations on total internal reflection or equivalently on possible propagation constants
in the core and the cladding give a necessary but not sufficient condition on β for light to be
guided. Indeed, we have seen that the only variation the fields can have along z is given by the
phase factor exp(ıβz). Between two arbitrary values z1 and z2 of z, the fields propagate and
undergo reflection at the core/cladding interface, but the transverse field distribution at z = z1

and z = z2 must only differ by the phase factor exp[ıβ(z2 − z1)]. This defines a resonance
condition, and only a discrete, finite set of transverse field distributions and associated β values
fulfill this condition. Mathematically speaking, the values β and their associated transverse
field distributions are eigenvalues and associated eigenfunctions of the propagation equation.
The value of β together with its field distribution constitute a mode of the fibre. There are a
finite number of modes with nCLk0 < β < nCOk0, these are called guided modes.

Note that the propagation equation also has solutions with 0 < β < nCLk0, i.e. outside
the range where total internal reflection occurs. These modes can propagate in the cladding,
and are called radiation modes. For these modes, the set of β is infinite and continuous.

Each mode has a specific field distribution, with its specific symmetry properties. From
symmetry considerations it can be shown that for circularly symmetric fibres, modes can be
either non degenerate or twofold degenerate. In the latter case two field distributions with
complementary symmetries are associated with the same propagation constant.

Considerations on the orthogonality of modes show that in an ideal fibre different modes
don’t interact. However, unavoidable defects in experimental fibres can cause mode coupling.
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2.1.3 Properties

Number of Modes

The number of guided modes depends on the fibre parameter

V = k0ρ(n2
CO − n2

CL)
1/2. (2.3)

The smaller this parameter, the fewer guided modes a fibre can carry. If at a given wavelength
V < 2.405, there is a single degenerate pair of modes guided by the fibre. Since there is only
one possible value of β, the fibre is said to be single-mode. The pair of guided modes, associated
with the same value of β, is referred to as the fundamental mode. Note that for a fibre to
be single-mode, it needs to be designed with a combination of small core size to wavelength
ratio and small difference in refractive indices between core and cladding. Conversely, a given
fibre always is multi-mode for sufficiently small wavelengths. Further it is worth noting that
however small the parameter V is, there is always a guided fundamental mode of the fibre.

Losses

In the ideal step index fibre attenuation of a guided mode while propagating is solely due to
material absorption. The intrinsic material absorption of pure silica for wavelengths between
approximately 0.8 µm and 1.8 µm is very small, and in theory light in that wavelength range
could be carried hundreds of kilometers without noticeable loss. Nevertheless, until the early
1970s material absorption in fibres was considerable, due to contamination by water or metallic
ions of the silica used to draw fibres. Since the work of Keck et al. [5] great improvements
have been achieved in avoiding contamination and nowadays fibres can be drawn in which
attenuation of modes is no longer limited by absorption, but by Rayleigh scattering from
nanoscopic fluctuations of the refractive indices [6]. This kind of fibre can have loss coefficients
as low as 0.18dB/km at λ = 1.55 µm, allowing the transmission of information over hundreds
of kilometers without amplification.

Of course, for intercontinental telecommunication networks, the distances which have to
be covered are still an order of magnitude larger than what is feasible with the best fibres.
To compensate for losses, signal amplifiers and regenerators (repeaters) are introduced at
intervals. Servicing these remains the main cost of long haul telecommunication links, and
the fewer repeaters needed, the cheaper telecommunication becomes.

Outside the low absorption wavelength range mentioned above, silica fibres are quite lossy.
This is of no concern for telecommunications, where the loss minimum has determined the
used wavelength, but other applications where guided optics would prove very useful, suffer
from these limitations. Optical fibres operating with acceptable losses at the carbon dioxide
laser wavelength (10.6 µm) would for example revolutionize industrial and surgical laser app-
lications. Note that for high power applications, the limiting factor is not as much the power
lost between the source and the target, but the temperature elevation in the fibre if losses are
due to absorption.

Dispersion

In telecommunication networks, information is transmitted as binary data, taking the form
of light pulses in optical fibres. In the field of optical waveguides, dispersion is a generic
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term referring to all phenomena causing these pulses to spread while propagating. There are
essentially four causes of dispersion:

• Inter-modal dispersion: In a multi-mode fibre different modes are associated with dif-
ferent values of β and hence different propagation velocities. This results, for a signal
exciting more than one mode, in pulse spreading or echoing, depending on the propaga-
tion length. The obvious solution to avoid inter-modal dispersion is to use single-mode
fibres.

• Material dispersion: All materials are intrinsically dispersive, i.e. the refractive index is
wavelength dependent. Spectrally, a pulse of light is associated with a superposition of a
whole range of frequencies, centered on the frequency of the modulated light source. Due
to material dispersion, each spectral component of the pulse will propagate at different
speeds, resulting in pulse spreading and deformation.

• Waveguide dispersion: Even without material dispersion, the solutions of the propa-
gation equation are wavelength dependent: the propagation constant of a given mode
is wavelength dependent. This leads to pulse spreading and deformation for the same
reasons as above.

• Polarization mode dispersion [7] is in fact the same phenomenon as inter-modal disper-
sion, but the relevant modes are here originally degenerate. We have seen that a single-
mode fibre in fact carries two degenerate modes. Because of anisotropic perturbations
(stress, bends, torsion...) the degeneracy between these modes is de facto lifted, and
inter-modal dispersion occurs. Until recently, the effects of polarization mode dispersion
were negligible, but with the bit-rates and propagation lengths aimed at today, and
since other sources of dispersion can be compensated for, polarization mode dispersion
becomes a significant problem.

Chromatic dispersion, or the dependence of the β of a given mode on wavelength, is the
dispersion resulting from the combined effects of material and waveguide dispersion, and is
the main contribution to dispersion in single-mode fibres. Chromatic dispersion is said to be
normal if shorter wavelengths propagate faster than longer wavelengths. In the opposite case
it is said to be anomalous.

In optical telecommunications, to maximize bandwidth it is essential that light pulses
keep their initial width. Indeed, if light pulses spread, they eventually overlap and light pulses
can’t be distinguished by the receiver. There are several ways of constraining the pulses to
keep their initial width. The first and most obvious is to design dispersionless fibres, through
compensating material dispersion with waveguide dispersion. This is generally possible at
only one wavelength, so that all information must be carried within a very narrow range
of wavelengths. Shifting the zero-dispersion wavelength in silica fibres while keeping single-
mode behaviour is generally achieved through sharp triangular index profiles of the core, with
additional layers of different refractive indices between the core and the cladding. However,
through such designs it is only possible to shift the zero-dispersion wavelength of 1.3 µm
towards longer wavelengths.

A second way of keeping a constant pulse width during propagation is to use solitons,
high power pulses for which the nonlinearity (more precisely the self phase modulation) of the
fibre exactly compensates the dispersion. For solitons to exist, the fibre must have a relatively
small anomalous dispersion. A third method of keeping the pulse width constant is to keep
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a small, well known normal dispersion in the fibres, and to add dispersion compensating
devices at each repeater. The latter can take the form of optical fibres with strong anomalous
dispersion, which exactly compensate for the normal dispersion resulting from fibres between
the repeaters. The reason for preferring the latter solution to optical fibres with strict zero
dispersion is twofold. First, through careful design it is possible to obtain an effective zero-
dispersion wavelength range (i.e. the range where the combined effects of dispersion and
dispersion compensation result in a negligible overall dispersion) much wider than the effective
zero-dispersion wavelength range of zero-dispersion fibres. The wider available wavelength
range enables wavelength multiplexing of information, i.e. encoding the signal with pulses
carried by different wavelengths (channels) on a single fibre, which multiplies the bandwidth.
Second, pulses carried in zero-dispersion optical fibres are subject to non-linear interactions,
even if their power density is not large. Indeed since dispersion is negligible at the carrier
wavelength, neighboring wavelengths will have a very long coupling length, multiplying the
effect of non-linear interaction. When using multiple wavelengths channels, these undergo non-
linear interactions (especially four-wave mixing) leading to channel cross-talk and information
loss. State of the art long haul telecommunication networks use fibres having small but non-
zero, normal dispersion around λ = 1.55 µm,1 and dispersion compensators at each repeater.
The operating wavelength λ = 1.55 µm was chosen for two reasons: it is the wavelength at
which losses in silica are smallest, and it corresponds to the wavelength range at which Erbium
doped fibre light amplifiers are most effective. These light amplifiers [8] were invented relatively
recently; they now replace electronic repeaters, enabling an all optical signal processing from
source to receiver.

Regarding polarization mode dispersion, there are mainly two ways of avoiding it. The first
is to use polarization maintaining fibres, the second is to use single-mode single-polarization
fibres. Polarization maintaining fibres are optical fibres in which a birefringence has been in-
troduced, generally through applying stress to the fibre during the drawing process or through
using elliptical cores. The degeneracy between the two fundamental modes is then lifted, and
since both modes have different polarization properties, they can be separated with polarizers
by the receiver, eliminating polarization mode dispersion. In practice the whole process is not
as straightforward as it sounds, and polarization maintaining fibres have numerous drawbacks.
In order to keep a good coupling efficiency between two fibres or between fibres and devices,
care must be taken to keep a precise alignment of the polarization axes, which is tricky gi-
ven the apparent circular symmetry of the fibres. Further, even with the birefringence, with
long propagation distances crosstalk between the two fundamental modes appears because
of residual imperfections, so that polarization mode dispersion is not completely eliminated.
Single-mode single polarization fibres are fibres which carry a single polarization. They are
produced in much the same way as polarization maintaining fibres, but they need a larger
birefringence. Their main drawback is that the same physical effect of eliminating one of the
two polarizations of the fundamental mode gives rise to leakage for the other polarization, so
that low loss single polarization fibres are not achievable with conventional optical fibres.

In the frame of telecommunications, current work to further improve dispersion mana-
gement – and hence bandwidth – concerns achieving fibres with a flat near-zero dispersion,
improvement of dispersion compensating devices and management of polarization mode di-
spersion.

1These fibres are called Non-Zero Dispersion Shifted Fibres, or NZ-DSF.
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For other fields of application other dispersion properties are sought. Anomalous and
zero-dispersion at wavelengths below λ = 1.3 µm in single-mode fibres can be useful for
super-continuum generation [9–12], ultrashort pulse compression, soliton generation and pro-
pagation.

Bend Loss

As soon as a fibre is bent, losses occur. In simple terms [3] the origins of bend loss can be
understood as follows. In an unbent fibre, the planes of equal phase are perpendicular to the
fibre axis. When the fibre is bent, these planes are no longer parallel. The phase velocity has
consequently to increase with increasing distance from the center of curvature, and eventually
reaches the local velocity of light. Fields in the cladding beyond the point where the phase
velocity is larger than the local velocity of light are no longer evanescent, they become radiative
and power is lost. From this simple approach we can understand that the further the mode
leaks into the cladding, the larger bend losses are. Modes with a significant amount of their
fields in the cladding will be more subject to bend loss than modes well confined in the
core. Since the mode area increases with wavelength, conventional optical fibres must keep a
reasonably small wavelength to core size ratio to keep bend losses acceptable. On the other
hand, the wavelength to core size ratio has to remain large enough when the fibre is required
to be single-mode. Note that a better confinement in the core and hence smaller bend losses
can be achieved through adding regions of depressed refractive index between the cladding
and the core (W-fibres). Although it is important to keep bend losses in mind when designing
a fibre, it is relatively easy to minimize them through proper design, so that they rarely are
of concern for applications.

Non-linearity

Non-linear optical effects always appear when the power density of light is large enough,
regardless of the material. Since in optical fibres light is well confined in a narrow core, non-
linear effects can appear even in straight silica at relatively modest injection powers. These
effects are generally a nuisance in long haul telecommunication networks, but can also become
useful for some applications.

As far as the negative aspects are concerned, there are three major non-linear effects in
optical fibres rising from the Kerr effect (four wave mixing, self phase modulation and cross-
phase modulation), and two due to scattering (stimulated Brillouin and Raman scattering).
We have already mentioned that four wave mixing leads to channel crosstalk in wavelength
multiplexed systems. Self phase modulation and cross phase modulation result in chirping of
the pulse frequency (the frequency at the beggining of the pulse differs from the frequency at
the end of the pulse), which, combined with dispersion, gives rise to signal deformation and
spreading, but also to a broadening of the spectrum and hence crosstalk. Four wave mixing
can be reduced through dispersion in the fibre, whereas the penalty due to phase modulation
effects tends to be less important if the dispersion is as small as possible.2 Both stimulated
scattering effects result in pulse power being scattered into frequency-shifted waves. In the case

2Note that with large chromatic dispersion, interaction between channels is diminished and hence crosstalk
modulation is reduced as well; there is no easy general rule regarding the ideal dispersion properties to minimize
cross phase modulation: Predicting and compensating cross phase modulation is far from easy and is a topic
of current research.
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of stimulated Brillouin scattering, the scattered wave propagates in the opposite direction to
the incoming signal, and above a certain power threshold more power is scattered back than
propagated forward. The stimulated Brillouin scattering threshold sets the upper limit of
power which can be propagated efficiently through an optical fibre. In the case of stimulated
Raman scattering, the scattered, frequency-shifted wave propagates in the same direction
as the incoming signal. In wavelength multiplexed systems, the Raman scattered signal of
one channel can hence overlap with another channel. Note that both scattering phenomena
generally increase with fibre doping. All these effects are of course power dependent, and
smaller power densities at same injection powers can only be of benefit.

Most of the previous effects can also be exploited to create devices. When controlled,
four wave mixing and cross phase modulation can be used for all-optical switching, frequency
conversion, pulse reshaping and other forms of optical signal processing. Self phase modulation
is essential for soliton propagation. Stimulated Raman scattering can be used for signal
amplification. Note that for applications, other non-linear effects are available. Very efficient
light amplification can for example be achieved through doping. Efficient second (and higher)
harmonic generation and other parametric processes may be obtained by breaking the inversion
symmetry of silica, e.g. through poling. The main restriction of applications using non-
linearities of conventional step index optical fibres is that the material interacting with light
must be able to be drawn into a usable fibre. In practice this severely limits candidate
materials, and most non-linear fibre applications either use the nonlinearities inherent to
silica or nonlinear material that can be introduced into silica through doping.

2.2 Photonic Crystals

The idea of photonic crystals originated in 1987 from work in the field of strong localization
of light [13] and of inhibition of spontaneous emission [14]. It was subsequently shown that
in periodic arrangements of –ideally lossless – dielectrics, the propagation of light can be to-
tally inhibited at certain wavelengths, regardless of propagation direction and polarization.
This inhibition doesn’t result from absorption but rather from the periodicity of the arrange-
ment, and is quite fundamental: in the frequency range where no propagation is possible (the
photonic band-gap), the density of possible states for the light vanishes, so that even spon-
taneous emission becomes impossible. Such periodic arrangements of dielectrics have been
called photonic crystals, or photonic band gap materials.3

2.2.1 One Dimension: Bragg Mirrors

The simplest device using the principles of photonic crystals is the one-dimensional photonic
crystal, well known under the name of the Bragg mirror or the multilayer reflector. It consists
of a periodic stack of two alternating dielectric layers. Light propagating in a direction normal
to the layers undergoes succesive reflection and transmission at each interface between layers.
With an appropriate choice of layer thickness and refractive indices, waves reflected from
each interface are in phase, whereas waves transmitted are out of phase. In that case, the
transmitted wave components cancel each other out, and only the interference of the reflected
components is contructive: the light is totally reflected. This works for a range of wavelengths.
Bragg mirrors have been in use for decades, it is only recently that they were regarded as being

3Note that photonic crystals can also result from periodic arrangements of conductors.
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a special case of photonic crystals. The classical way of analysing them, focused on Bragg
mirrors with a finite number of layers, uses reflection and transmission matrices at each layer,
and it is then quite straightforward to prove through recurrence relationships that reflection
can be perfect with an infinite number of layers. There is nevertheless another approach to
deal with a stack with an infinite number of layers, coming from solid state physics. If the
stack is infinite, it has a discrete translational symmetry. The Bloch Theorem then applies,
and solutions to the propagation equation in the stack are Bloch waves. Hence two wave
vectors differing by a vector of the reciprocal lattice associated with the periodic stacking
are physically the same: the dispersion diagram “folds back” along the limits of the Brillouin
zone. At the edge of the Brillouin zone, two solutions exist having same wave vector but
different frequencies, and in between those two frequencies no solutions exist at all. The
gap of frequencies for which no solutions exist is called a photonic band gap. Note that, until
recently, reflection on Bragg mirrors was thought to be possible only within a relatively narrow
range of angles of incidence. Recent work by Fink et al. has demonstrated the feasibility of
omnidirectional reflection with Bragg mirrors [15].

2.2.2 Photonic Crystals in Two and Three Dimensions

Photonic crystals with two or three-dimensional periodicity can be seen as a generalization
of Bragg mirrors. The simple approach with reflection and transmission matrices cannot be
applied analytically here, and this is probably why their properties were discovered relatively
recently, although, for example, important work on stacked grids for filtering in the far infrared
was carried out by R. Ulrich in the 1960s [16,17]. The Bloch approach can be used similarly,
and shows that band gaps can open up. The point of using periodicities along two or three-
dimensions is to open an omnidirectional band gap: for the Bragg mirror, band gaps usually
only exist for a narrow range of angles of incidence, and propagation parallel to the Bragg layers
can never be inhibited. With photonic crystals using a two-dimensional periodic arrangement
of parallel rods, band gaps can exist for all directions of propagation in the the plane of
periodicity, and for photonic crystals with three-dimensional periodicity, propagation of light in
all directions can be prohibited. When a band gap exists regardless of direction of propagation
and polarization, one speaks of a total photonic band gap.

Photonic crystals with two-dimensional periodic arrangements are usually either made of
parallel dielectric (or metallic) rods in air, or through drilling holes in a dielectric material. In
the frame of integrated optics, holes of a fraction of a micrometer etched in slab waveguides
are very promising for integrated photonic circuits, and have been succesfully demonstrated
experimentally. Photonic crystals with three dimensional periodicity are a bit more tricky to
achieve.4 Yablonovitz suggested drilling holes at three different angles into dielectric material.
The so called wood-pile structure has attracted much attention [18–23], and recent progress
with artifical inversed opals is promising [24,25].

Note that the term photonic crystal was originally introduced to refer to materials having
a photonic bandgap. It seems that it is now more and more often used to refer to any kind of
perodic arrangement of dielectrics or metals, with or without photonic band gaps. The latter
generalization of the term makes sense considering that in solid state physics, a crystal is
defined by the periodicity of its lattice, band gaps appearing as a consequence. Usual practice

4Nature, as so often, has demonstrated its supremacy in achieveing three dimensional photonic crystals
billons of years before man. They can be found in opals. Note that one, two and three dimensional photonic
crystals are also found elsewhere in nature: they give bright colours to beetles, butterflies, sea-mice and birds.
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is then to call photonic band gap material photonic crystals having a photonic band gap. In
the remaining chapters of the thesis we will avoid any confusion and speak of microstructures,
since sometimes the dielectric structures won’t even be periodic.

2.3 Guiding Light with Photonic Crystals

For frequencies within a total photonic bandgap, no propagation is allowed in an infinite
photonic crystal. If a defect is introduced in the infinite lattice, localized defect states for
frequencies within the band gap can emerge, similar to bound states associated with defects
in semiconductors. For three dimensional photonic crystal lattices, this can be a single point
defect: in that case light emitted within the defect will remain confined in the vicinity of
the defect. It could also be a linear defect, in which case light remains in the defect but can
propagate along it. Another way of looking at defect states is to consider the photonic crystal
to be a perfect mirror in a certain frequency range. If one drills a hole across the photonic
crystal, light injected in the hole will be reflected at the borders of the hole and propagate
within it, very similarly to what happens in optical fibres. Given that photonic crystals have
a high reflection coefficient even with a relatively small number of periods, the width of the
photonic crystal around the defect can be reduced to a few layers: we can hence imagine
optical fibres consisting of a micrometric core surrounded by a photonic crystal cladding only
a few times wider than the core. The resulting optical fibre is called a photonic crystal fibre
and has an important difference from conventional optical fibres: in the latter, the core, in
which light is guided, has to be of higher refractive index than the cladding. Using photonic
bandgap material for the cladding, reflection is guaranteed regardless of the refractive index of
the material inside the defect. A defect in a photonic crystal can hence confine and guide light
in low refractive index media, such as air, gas or vacuum. This opens up possibilities never
dreamt of before. An optical fibre guiding light in vacuum would have absorption losses and
non-linear effects reduced by orders of magnitude5 compared with solid core fibres, paving the
way for optical fibres for high power applications; material dispersion would become negligible,
giving rise to completely new forms of dispersion management; guiding highly confined light
in gas or liquids would enable new forms of non-linear fibres as well as a whole new family
of fibre sensors; even guidance of atoms, molecules or cells through hollow core optical fibres
would become possible [26].

If one seeks to guide light along a linear defect, it is not necessary to use a three dimensional
periodicity or a total photonic band gap. Indeed, considering Fig. 2.1 but with the cladding
now being a perfect mirror, k⊥ will be set by the size of the defect, and β will follow from
Eq. (2.1). If for the range of wave vectors given by these considerations no propagation is
possible in the photonic crystal, a guided mode will exist. This can be achieved with two
dimensional and even one dimensional (concentric) periodicities.

2.3.1 Bragg Fibres

The idea behind Bragg fibres is to use Bragg mirrors as a cladding of an optical fibre. Ac-
cordingly, a Bragg fibre is made out of a concentric arrangement of dielectrics, wound around
a core which might be hollow or not. W-fibres could be seen as an extreme case of a simple

5Material absorption, non-linear effects and material dispersion wouldn’t completely vanish because of the
evanescent part of the fields remaining in the photonic crystal.
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Bragg fibre. Theoretical studies have shown only recently that hollow core Bragg fibres could
be feasible, given the possibility of attaining large refractive index contrasts (e.g. 3 to 1.1
or 2.4 to 1.6, see Ref. [27]) between successive layers. The first working experimental hollow
core Bragg fibre has nonetheless been demonstrated recently, and had in some wavelength
ranges losses orders of magnitude smaller than any conventional optical fibre [28]. Further-
more, Bragg fibres can be single-mode, single-polarization even with full circular symmetry
and without birefringence [29,30].

2.3.2 Photonic Crystal Fibres, Microstructured Optical Fibres and Holey
Fibres

Strictly speaking, Bragg fibres are a particular type of photonic crystal fibres. The term
photonic crystal fibre is however mostly used to refer to fibres with a cladding consisting of a
two dimensional periodic array of inclusions. The most immediate advantage compared with
Bragg fibres is that lower refractive index contrasts are needed to achieve photonic bandgaps:
a lattice of air (or vacuum) holes in silica or polymer is sufficient.

Fibres with a lattice of microscopic holes running along the fibre axis can be manufactured
by drawing a preform with macroscopic holes. The holey preform can readily be obtained either
by stacking capillaries together, or through drilling (mainly for polymers) or extruding the
preform. In the drawing process, the overall shape of the preform is generally maintained, but
the diameter of the cross-section is scaled down from centimetric to micrometric dimensions.
Note that this process can be used to produce fibres with regular arrays of holes as well
as fibres with non-periodic arrangements of holes, either with a solid or a hollow core (see
Fig. 2.2). The general terms holey fibre and microstructured optical fibre (MOF) refer to any
kind of fibres with a set of inclusions running along the fibre axis, whereas the term photonic
crystal fibre is generally only used to refer to MOFs in which guidance results from a photonic
band gap effect. Note that some authors also use the term crystal fibre referring to MOFs in
which the inclusions form a subset of a periodic array, but for which guidance may or may
not result from photonic band gap effects.

Hollow Core MOFs

Light guidance in hollow core MOFs can only be achieved using the photonic band gap effect.
Hollow core MOFs are hence necessarily photonic crystal fibres. They offer the whole range
of benefits of hollow core fibres we have evoked above. Light guidance being possible solely
within a photonic band gap, the wavelength range in which these fibres guide light is very
narrow, only a few tens of nanometres for guidance in the infrared or the visible spectrum.
Further the accuracy of the periodicity of the lattice required to obtain a clear band gap
effect makes the manufacture of these fibres challenging. Experimental hollow core MOFs
have nonetheless been demonstrated using a cladding consisting of a hexagonal array of large
air holes in silica [31], as have been first applications [26].

Solid Core MOFs

For solid core MOFs it is often argued that guidance is due to modified total internal reflection:
in a solid core MOF, the “average” refractive index of the cladding is lower than the core
refractive index, leading to an equivalent geometry similar to those of conventional step index
fibres. Following this argument, there is no need to evoke photonic band gaps, and any
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Figure 2.2: Schematic representation of the cross-section of a typical solid core MOF (left)
and hollow core MOF (right) with holes on a hexagonal lattice and a single central core. We
will often refer to the microstructured part as the cladding. The jacket represents the physical
boundaries of the MOF, and can be a physical jacket e.g. for mechanical protection or simply
air. Note that the hexagonal lattice is also referred to as triangular lattice.

arrangement of holes – periodic or random – around a silica core results in a wave-guiding
structure. It is easy to see the limits of such an interpretation of guidance, raising the question
of what “average” means in this context: in the extreme case of a random hole distribution with
holes concentrating around a few spots, leaving wide straight pathways for light to escape, it
would be very surprising to find any kind of guidance. In fact, the “average” refractive index
referred to when explaining guidance with modified total internal reflection is not a geometric
average, nor for example a value coming from homogenization theories. It is actually not an
average at all, but is a value extracted from the band structure of the surrounding arrangement
of holes. It corresponds to an “effective index” associated with the largest possible value of
the propagation constant β for a given frequency in the microstructure: at a given frequency,
light with a component β of the wave vector along the axis of the holes larger than a specific
value βMAX cannot propagate in the microstructured part of the fibre. This is analogous to
total internal reflection in the case of step index fibres, where light with β > nCLk0 cannot
propagate in the cladding. The average, or effective, index of the cladding of a MOF is then
given by βMAX/k0. But since βMAX is a band property, it is slightly contrived to distinguish
the band gap between βMAX and β = ∞ from any other band gap limited by finite values
of β. Modified total internal reflection can therefore also be seen as a specific case of band
gap guidance. The only true difference with band gap guidance using other band gaps is
that the band gap between βMAX and β = ∞ always exists, regardless of frequency or the
exact structure of the cladding, so that guidance relying on this band gap is much easier to
achieve. Further this clarifies the idea that the effective index is in fact a property of the
infinite periodic lattice surrounding the core, and thus the concept of modified total internal
reflection must be used with circumspection when the holes around the core are not arranged
periodically. Note that we will discuss the model of modified total internal reflection and its
validity in detail in Chapter 7. The argument that modified total internal reflection guidance
is not fundamentally different from band gap guidance is further discussed in Ref. [32].

Guidance due to modified total internal reflection in solid core MOFs is much easier to
achieve than band gap guidance, and indeed the first MOF in which guidance was demons-
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trated had a solid core [33, 34]. All the new possibilities offered by photonic crystal fibres
hitherto mentioned were based on the fact that guidance could be achieved in a hollow core,
and guidance using photonic crystals in solid cores might seem uninteresting at a first sight.
Nevertheless, the study of the first experimental solid core MOFs showed that these possess
unique properties of their own, unachievable by conventional optical fibres. The most striking
among these is certainly their ability to be single mode over an infinite range of wavelengths.
In other words, for some solid core MOFs, however small the wavelength is compared with
the core size, only a single-mode is guided. This is fundamentally different from conventional
fibres where, at small wavelength to core ratios, multi-modedness is unavoidable. The import-
ance of this property is not as much linked to the possibility of having single-mode guidance
over a large range of wavelengths in a same fibre – most of the time the wavelength range at
which a fibre will be used is quite narrow – but rather remains in the converse property: for a
given range of wavelengths a solid core MOF with arbitrarily large core can be single-mode.
Possibilities offered by the resulting large core single-mode fibres are unprecedented: in the
field of telecommunications for example, where single-mode guidance is essential, if the core
is larger light can be injected with higher power without the power density reaching levels
at which non-linear effects become prohibitive, so that the distance between repeaters can be
greatly increased.

On the opposite side of the core size scale, it appears that because of the large index
contrast modes are very well confined in the core, even when the wavelength to core size ratio
is not small. This again differs from conventional fibres, where the fraction of the field in the
cladding at large wavelength to core size ratios is far from being negligible because of the very
small difference of refractive indices between the core and the cladding. Good confinement in
small cores enables higher power densities and hence accentuated non-linear properties.

The large available parameter space of solid core MOFs (position, size, shape of the holes,
refractive index of the inclusions if they are not holes) makes the waveguide dispersion, which
can have strong effects due to the high index contrast, highly configurable. Almost any disper-
sion curve seems accessible to MOFs with the correct design. The combination of endlessly
single-mode guidance and adjustable dispersion has led to solid-core, single-mode MOFs with
anomalous dispersion, to single-mode fibres with a zero-dispersion wavelength shifted down
to the visible, as well as to single-mode fibres with ultra-flat normal or anomalous dispersion
over a large wavelength range [35–39]. With the additional possibility of good mode confine-
ment, the configurable dispersion also gave rise to promising non-linear applications, either
impossible to achieve with conventional fibres or having much lower power thresholds than
in conventional fibres. These include temporal soliton formation and propagation [12,40–43],
super-continuum generation [10–12,40,41,43] and new types of stable spatial solitons [44].

Finally, given the ease with which a defect is introduced in the MOF lattice at the stage of
the preform, MOFs with multiple cores or MOFs with large form-birefringence are straightfor-
ward to produce. Most MOFs consist of an array of holes in which one hole has been left out,
playing the role of the core. With the symmetries of the lattice of holes generally used (mostly
six- or four-fold symmetries), this results in the fundamental mode being doubly degenerate,
as in conventional optical fibres [45]. If the core is now extended to two adjacent missing holes,
or if the symmetry around the core is reduced to two-fold symmetry (e.g. through changing
the size of two diametrically opposed holes [46], or with elliptical holes [47]), the degeneracy
is lifted and the fibre becomes birefringent: the MOF becomes polarization maintaining. The
resulting birefringence can be orders of magnitude larger than stress-induced birefringence in
conventional polarization maintaining fibres, so that coupling between the two modes is grea-
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tly reduced. Single-mode single-polarization fibres can be achieved in the same way. We have
already mentioned how important this could be in removing polarization mode dispersion.

The main advantage of MOFs with multiple cores compared to conventional multiple core
fibres is the ease whith which they can be produced. If the cores are separated by a large
number of lattice periods, the cores become independent, with negligible cross-talk, enabling
for example a spatial multiplexing of signals.6 If on the contrary the cores are separated by
a few layers only, modes guided in different cores are coupled. This can be useful e.g. for
sensors, and a bend sensor relying on multiple core MOFs has already been demonstrated [48].
Further, through filling one or more holes with polymers, liquids, or gas, or through writing
gratings into the MOF core, fibres with in situ adjustable properties as well as a great range
of sensors and other devices can be achieved [49].

To sum up, although solid core MOFs don’t seem as radically different from conventional
fibres as hollow core MOFs at first sight, the range of new prospects they offer and the
numerous fields in which they could outdo conventional fibres is at least as exciting as hollow
core guidance. Further, since guidance in solid core MOFs relies on modified total internal
reflection7 and not on the use of a very narrow band gap, solid core MOFs are also much
easier to realize than hollow core MOFs. Solid core and hollow core MOFs are both extremely
promising new types of fibres, with completely different properties and possible applications;
given their differences there is not much point comparing them directly. In the remainder of
this thesis we will concentrate on solid core MOFs.

2.4 Leaky Modes

2.4.1 Confinement Losses

In the solid core MOFs we will study, light guidance is due to modified total internal reflection
between the core and a microstructured cladding consisting of inclusions in a matrix. The
core and matrix material are generally the same, and hence have same refractive index. In
practice, the cladding has a finite width, as it consists of several layers of inclusions. Beyond
the microstructured part of the fibre, the matrix extends without any inclusions until the
jacket. If we consider the jacket to be far from the cladding and core, and hence neglect its
influence, guidance in the core is solely due to a finite number of layers of holes in bulk silica
extending to infinity. A priori, the cladding doesn’t “insulate” the core from the surrounding
matrix material since the holes are disjoint and the matrix is connected between the core and
the exterior. Physically we can imagine the light to leak from the core to the exterior matrix
material through the bridges between holes, and expect losses. In the frame of the modified
total internal reflection approach to guidance, in which the microstructured part of the fibre is
replaced by homogeneous material with an effective refractive index lower than the core, the
core is completely surrounded by the cladding. The exterior matrix material and the core are
then no longer directly connected. Nevertheless the width of the “effective cladding” is finite,
and hence tunneling losses are unavoidable. Regardless of the approach one uses to explain
guidance in MOFs, as long as guidance is due to a finite number of layers of holes, leakage
from the core to the outer matrix material is unavoidable. We will call the losses due to the
finite extent of the cladding confinement losses, or geometric losses.

6Note that the theoretical and practical feasibility of such multiplexing remains to be proved.
7...i.e. on a wide band gap existing for all materials.
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2.4.2 Modes of a Leaky Structure

Confinement losses being unavoidable, modes of a MOF decay while propagating. They are
no longer called guided modes, but leaky modes. The equations satisfied by the fields being
linear, losses are proportional to the field intensity. Simple mathematics show that in that
case the decay of the fields must be exponential along the direction of propagation. This is
reflected by the propagation constant β taking an imaginary part. Indeed, we have seen that
modes are characterized by a transverse field distribution invariant with z, which is modulated
by a phase factor taking the form exp(ıβz). For leaky modes, β is complex, and the phase
factor becomes exp(ı<(β)z) exp(−=(β)z) (< and = denoting the real and imaginary parts
respectively). For the mode to decay in the direction of propagation (which is the case with
leakage), the real and imaginary parts of β must be of the same sign.

This simple and elegant way of accounting for the decay of modes through a complex
propagation constant is nevertheless only the tip of the iceberg of dealing with leaky modes.
Indeed, using a complex propagation constant raises more difficulties than it provides simplifi-
cations. First, β being complex, the value of k⊥ (Eq. (2.1)) becomes complex as well. This has
two consequences: it complicates the choice of the square root in Eq. (2.1), and the fields of
the modes become divergent at large distances from the core. This in turn renders the modal
field distributions non square-integrable, so that dealing with them becomes mathematically
very delicate. As a consequence, leaky modes are not orthogonal in the usual sense and their
completeness is not self-evident [3]. The very notion of modes becomes unclear, since the lack
of orthogonality implies that two modes could interact: if for example the fundamental mode
and the second mode have an intrinsic crosstalk, their distinction would become totaly arbi-
trary. Finally we have seen that confined guided modes in the case of conventional step index
fibres are found for values of beta satisfying nCLk0 < β < nCOk0, and that for 0 < β < nCLk0

there is a continuum of radiating modes. Since there is no natural ordering in the complex
plane, we can no longer use such considerations to locate leaky modes. Further, the continuum
of radiating modes still exists and the range of β associated with radiating modes is not a
priori disjoint from the range of β of leaky modes. This seriously complicates the task of
finding leaky modes, since a leaky mode can be “lost” in the middle of a continuum of radia-
ting solutions to the wave equations. Some of the difficulties pointed out here have not been
overcome yet, and are the topic of current research. Since we use leaky modes throughout
this thesis, we will nevertheless explain in more detail what leaky modes represent physically
and mathematically, how some of the difficulties linked to their use can be circumvented, and
more generally how we can justify our approach.

2.4.3 Heurisitic Approach to Physical Properties of Leaky Modes

To fully understand the slightly disconcerting properties of leaky modes, we have to keep
in mind that modes are defined for a fibre that is infinitely long. The exponential decay of
the mode with increasing z being equivalent to an exponential growth with decreasing z, the
modal fields diverge when z approaches −∞. We show here how this implies that the fields
have to diverge radially in the cross section of the fibre.

For the sake of simplicity, we consider a step index fibre consisting of a core with refractive
index nCO and a cladding of finite size with refractive index nCL surrounded by the same
material as the core: beyond the cladding, the refractive index keeps a constant value nCO

everywhere (Fig. 2.3). In such a fibre, all modes are leaky because of tunneling losses [50,51].
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Figure 2.3: Leaky modes and radial divergence, a heuristic approach. See text for details.



CHAPTER 2. OPTICAL FIBRES, PHOTONIC CRYSTALS AND LEAKY MODES 36

We consider the fundamental (leaky) mode of that structure, propagating in the direction of
increasing z. In the core, its power density distribution is similar to that of the fundamental
mode of a lossless step index fibre. It is centrosymmetric with maximum value at the centre
of the core. In the cladding the fields are evanescent, the power density decays exponentially
with increasing distance from the core, until the exterior boundary of the cladding is reached.
The propagation constant and the norm of the wave-vector being the same in the core and
in the matrix surrounding the cladding, the amount of power which has reached the exterior
cladding boundary can radiate away, and it does so at an angle of

α = cos−1

( <(β)
nCOk0

)
. (2.4)

In terms of rays, a radiated ray originating from the cladding at z will arrive at a reference
position z0 > z at a radial distance

r(z) = ρCL + (z0 − z) tan α (2.5)

from the core centre. The whole power emitted from the cladding boundary in an infinitesi-
mally long cylinder of length dz at z is found in the cross-section located at z0 on an annulus
with radius r(z) and width dr = dz tanα. The power density in that annulus is hence the
total power radiated from dz at z divided by the area of the annulus 2πrdr. The total power
radiated from the infinitesimal cylinder being proportional to the total power density at z and
hence to exp(−2=(β)z)dz,8 outside the cladding the power density S(r) is proportional to

S(r) ∝ 1
r tanα

exp
[
−2=(β)

(
z0 − r − ρCL

tanα

)]
. (2.6)

The power density at the center of the core r = 0 at z0 being proportional to exp(−2=(β)z0),
the normalized power density outside the cladding at z0 is given by

S(r)
S(0)

∝ 1
r tanα

exp
[
2=(β)

(
r − ρCL

tanα

)]
. (2.7)

=(β) being positive, we see that the power diverges exponentially with increasing radial di-
stance.

Counter-intuitive though it may seem, the radial exponential growth of field distributions
is a fundamental property of leaky modes. Of course such a field distribution is physically
impossible. Real fibres nevertheless are always of finite length, and hence a reasoning similar
to the one above will have to be limited by the value zs of z at which the fibre starts. Doing
so, we would find an exponential growth in the cross-section of the fibre, but the exponential
growth would stop at r(zs), and for larger values of r the field would be strictly zero. Further
the total power flowing through a cross-section at any given z would be equal to the power
flowing through the cross-section at zs. The exponential growth in the cross-section is not in
contradiction with energy conservation: it is a direct consequence of it. This remains true in
the case of infinitly long fibres, but the power flow through any cross-section is then infinite.

8The factor 2 in the exponential comes from the power being a square function of fields.
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2.4.4 Mathematical Considerations

In the example we have considered above, we were led by intuition to the conclusion that the
losses due to tunelling were small, and that their influence on the mode should thus remain
small. Implicitly, we adapted the truly guided modes of a fibre with infinite cladding to
their lossy nature through letting β take a small imaginary part. Mathematically, this would
amount to letting the lossless boundary conditions become slightly lossy without reformulating
the whole problem. However, lossy boundary conditions, usually refered to as open boundary
conditions are mathematically not straightforward to deal with.

Until recently, the only rigorous way of treating open boundary conditions was to avoid
them: instead of considering the system consisting solely of the core and the cladding, with
lossy boundary conditions at the outer cladding boundary, we would consider the system
consisting of the core, the cladding, and the rest of the universe, so that energy conservation
is satisfied. The drawback of this approach is that the only modes which are solutions to
the problem lie in a continuum of real β values. The leaky modes, which allow us to analyse
the physics of fibres with finite and infinite claddings along parallel lines, are not a natural
solution to the physical problem englobing the fibre and its exterior.

In contrast, the solutions to the true open boundary problem are the leaky modes. Ho-
wever, with open boundary conditions the system doesn’t satisfy energy conservation. The
mathematical operators used are then no longer hermitian, and the mathematics of non-
hermitian operators is no picnic. First, eigenfunctions of non-hermitian operators don’t form
a complete orthogonal basis, but a set of non-orthogonal functions which may or may not be
complete. Decomposing a field on this set is hence not straightforward, and the usual tools in-
volving modal decomposition (i.e. almost all techniques in the theory of guided optics) cannot
be used. Second, deriving rigorously the solutions to the physical problem raises difficulties.
The work presented in this thesis is no exception in this regard, and the derivation we give
of the multipole method is in fact mathematically not rigorous: for some key points of the
derivation, we implicitly assume the fields to be square integrable, yet leaky modes aren’t.
More specifically, in the derivation of the Wijngaard identity, Appendix B, we use the Green’s
function

Ge = − ı

4
H

(1)
0 (kM

⊥r). (2.8)

The value of kM
⊥ is not determined at that point of the derivation, but for leaky modes kM

⊥ will
be complex with a positive imaginary part, so that the Green’s function will not be square
integrable. The convolution used in the remainder of the derivation then becomes dubious.
The derivation of the multipole method is rigorous for guided modes, but we cannot justify its
extension to leaky modes with rigorous mathematics. However, the agreement between results
obtained from the multipole method and results from other numerical methods or experiments
(cf. Sec. 4.7.3), even when involving leaky modes, somewhat legitimates the confidence we
have in the method.

Open boundary problems are a topic of current research. Recent work initiated by P. T.
Leung and K. M. Pang [52–59] suggests the set of leaky modes of a class of open boundary
problems, similar to the one considered here, forms a complete orthonormal basis if the space
of functions and its inner product are adequately defined. In the frame of their work, the
solution to the open boundary problem doesn’t include a continuum of eigenvalues, but solely
the discrete, complete set of leaky modes. It is not yet clear if guidance in MOFs is strictly
speaking a specific case of the class of problems studied by Leung et al. , but it might well be
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that the way to a rigorous derivation of multipole methods for leaky modes has already been
paved.

2.4.5 Spectral Considerations

There is a discrete infinity of leaky modes [3, 56]. For a step index fibre with infinite clad-
ding, propagation constants satisfying nCL < β/k0 < nCO give strictly guided modes. The
propagation constant of leaky modes being complex, we can not use this argument any more.
Nevertheless, we can assume that the “most confined” leaky modes of a fibre with finite clad-
ding are similar to the guided modes of the fibre with same parameters but with an infinite
cladding, the main difference being that the propagation constant takes a small imaginary
part. These modes would satisfy nCL < <(β)/k0 < nCO. For a solid core MOF, we could
replace nCL by the effective index of the cladding, as long as one can define such an effective
index. Otherwise, another lower bound can be used, namely the refractive index of the inclu-
sions ni. Indeed, if <(β)/k0 < ni, light is “likely to propagate” in the inclusions; there would
be no barrier between the core and the exterior, and hence losses should be extremely high.
On the contrary, for hollow core MOFs, light has to propagate in the hollow core and hence
we must have <(β)/k0 < 1. Note that when the imaginary part of β becomes very large, say
one order of magnitude less than <(β), considerations on ordering become dangerous, and
very leaky modes exist having values of <(β) well outside the mentioned boundaries. On the
other hand, a mode for which =(β) ∼ <(β) attenuates within a few wavelengths, and is hence
physically meaningless. Finally, it is worth noting that having nCL < <(β)/k0 < nCO does not
imply that the imaginary part of β is small.

The fundamental mode of a step index fibre with infinite cladding is the mode with largest
β. Consequently, it is also the mode with fastest decaying evanescent tail in the cladding. For
a fibre with a cladding of finite width, we can thus expect the losses of the fundamental mode
to be smallest, so that its propagation constant would have both, the smallest =(β) and the
largest <(β). When the similarity between solid core MOFs and step index fibres with finite
cladding holds, we can expect the same behaviour of the fundamental mode for MOFs. To
locate the fundamental mode of a MOF it is therefore a good idea to start to look for values
of β with small imaginary part, and with real part in the vicinity of k0nCO.
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Hors d’œuvre :

Escalope de Crocodile d’Estuaire
en Croûte d’Herbes, Petite Salade d’Herbes Fraîches

Herb Crusted Estuarine Crocodile, Herb Salad

Pour 6 personnes :

Pour le Crocodile :

300 g de queue de Crocodile
d’Estuaire

50 g de chapelure fine
120 g de beurre demi-sel

15 feuilles d’estragon
un quart de botte de

marjolaine
un quart de botte d’origan

5 branches de thym citronné
un tiers de botte de cerfeuil

5 feuilles de sauge
poivre noir
fleur de sel

Pour la salade :

60 g de jeunes pousses de
roquette

une demi botte de cerfeuil
un quart de botte de

marjolaine
un quart de botte d’origan

24 feuilles d’estragon
12 feuilles de basilic opale

5 g de ciboulette
2 branches de thym citronné

12 fleurs d’estragon
huile d’olive pour
assaisonnement

le jus d’un citron
fleur de sel

La salade

Laver et essorer la roquette. Préparer les herbes : ôter
toutes les tiges, ne garder que les feuilles. Bien mêler les

herbes et la salade, effeuiller les branches de thym citronné
par dessus.

Le crocodile

Préparer la panure d’herbe : travailler le beurre en pom-
made, hacher finement au couteau les herbes débarras-

sées de leurs tiges. Incorporer au beurre les herbes et la cha-
pelure. Abaisser en une couche de 2 mm d’épaisseur, entre
deux feuilles de papier cuisson, au rouleau à pâtisserie. Lais-
ser prendre au froid.

Détailler le crocodile en tranches de 4 mm d’épaisseur
à l’aide d’un couteau bien affûté. Disposer les tranches

de crocodile sur un plaque à pâtisserie recouverte de papier
cuisson. Saler à la fleur de sel, donner un tour de moulin
à poivre. Superposer sur chaque morceau de crocodile une
tranche de panure de même taille. Laisser colorer au grill
quelques minutes.

Servir une à deux escalopes de crocodile par assiette, ac-
compagnées de salade d’herbe arrosée d’un filet d’huile

d’olive et de jus de citron et saupoudrée de fleur de sel.



Chapter 3

The Multipole Method: Fundamentals

This Chapter and the related appendices are based on ref. [1]

3.1 Introduction

To develop the potential of MOFs, accurate modeling tools are necessary. A range of methods
has been developed, some of which use approximate scalar [60] or vector [61–63] treatments. A
common strategy is to apply in the transverse plane periodic boundary conditions, enforced for
example using plane wave expansions [64, 65]. However, such supercell treatments effectively
replace the necessarily finite MOF structure with an infinite one, and thus cannot address the
issue of the loss associated with propagation in a transversely-finite confining structure.

One method that somewhat accommodates for the shape of the expected modal field
expands it in terms of Hermite-Gaussian functions [66, 67]. However, these have an intrinsic
width, which ideally matches the width of the solution. Hence the method requires some a
priori knowledge of the solution, which may not be available.

Beam propagation methods use a numerical algorithm to simulate the propagation of a
coherent beam along a fibre [68, 69], from which the modes and their properties must be ex-
tracted a posteriori. Both scalar and vector versions are available, and fibres of any geometry
can be dealt with. One can calculate modal losses by observing the attenuation upon propa-
gation, but the propagation distance required increases as the loss decreases. Further, when
the wavelength to pitch ratio is not small, leaky modes are source of numerical instabilities
and inaccuracies, restricting the wavelength range over which beam propagation methods can
be used [47].

Finite element methods are another very versatile tool for the study of MOFs. They can in
principle deal with any MOF geometry of finite cross-section, including MOFs with anisotropic
or non-linear dielectrics. Recent work shows that confinement losses can be estimated [70,71].
However, the price of the high versatility of the method is that it is generally computationally
expensive.

Recently, L. Poladian et al. suggested a new method, the adjustable boundary condition
Fourier decomposition method or ABC-FDM, using polar-coordinate harmonic Fourier de-
compositions of fields inside the MOF, and a Fourier-Bessel expansion outside the MOF [72].
This method, intially published in the frame of the scalar wave equation, correctly models
the outward radiating leakage field, has no a priori limitations on the geometries it can deal
with, and has recently been extended to the vector wave equation [73]. An improved version

40
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of the method appeared even more recently which makes the method computationnaly very
competitive and hence extremely promising [74].

Here we extend multipole formulations for multicore conventional fibres [75] to treat MOFs.
A key aspect of the method described here is that it makes use of the circularity of the inclusi-
ons. It is therefore of high accuracy, converging sufficiently rapidly to be able to treat precisely
systems containing quite large numbers of inclusions. The formulation respects accurately the
symmetry properties of modes in MOFs having regularly arranged inclusions [45, 76], and
indeed has been adapted to take into account those symmetry properties to increase com-
putational efficiency. Furthermore, it yields both the real and imaginary parts of the mode
propagation constant, the latter giving the confinement loss associated with the finite extent
of the MOF’s set of confining inclusions. It can deal with the two types of MOF of current
interest: those with a solid core, surrounded with air holes, and those with an air core (a
cylindrical hole of somewhat larger radius), again surrounded by air holes, which tend to be
more numerous than in the solid core case. Finally, the multipole method has the frequency
ω as an input parameter, with the propagation constant β following from the calculation. It
is thus well-suited for calculations involving material dispersion. We stress that though we
only consider circular inclusions, the multipole method is not necessarily limited to these. Its
extention to non-circular inclusions would follow along lines suggested by Felbacq et al. [77].
We note that Yamashita et al. use a similar method for conventional multicore fibres [78].
However, they use a point matching technique at the inclusion boundaries, whereas we enforce
boundary conditions by projection onto an orthonormal basis. Further, multipole expansions
have already been used in the field of MOF studies to compute the far-field pattern emitted
from a dipole located in the core of a MOF [79].

3.2 Multipole Formulation

Our formulation is similar to that of Lo et al. [75], who considered the modes of high-index
cylindrical inclusions in a low-index background. Therefore, these structures have properly
bound modes, irrespective of the geometry. In contrast, here the inclusions have a low index,
and these therefore do not support bound modes. Rather, the modes arise from the geometry
of the inclusions and, for a finite cladding, they are not bound, but leaky. This difference
has important consequences for the method, and we therefore describe it in some detail here.
We concentrate on solid core MOFs, with the modifications for air core MOFs discussed in
passing.

3.2.1 Geometry

The geometry we treat is given in Fig. 3.1, which represents a transverse xy cut of the fibre,
which is infinitely extended along the z axis. It shows a silica matrix of (real) refractive index
nM, perforated with a finite number Ni of inclusions indexed by j and of diameter dj , whose
centers are specified by the vectors cj . The refractive index of inclusion j is nj .

Outside this hole region, the MOF is enclosed in a jacket (radius r > R0), whose index
n0 may be complex. One possibility is to take a jacket with refractive index of 1, simula-
ting a MOF in air or vacuum. This enables us to investigate modes confined between the
microstructured part of the fibre and the air region, as well as effects due to the finite nature
of the silica region surrounding fibres. More generally, our method can deal with any type of
cladding surrounding the structure.
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Figure 3.1: Geometry of the MOFs considered, together with the contributions to the fields
just outside a generic hole i. Regions of convergence of multipole expansions are indicated by
dashed lines. Note that
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OP is r. Solid lines indicate

physical boundaries, dashed lines indicate regions of convergence.

3.2.2 Choice of Propagating Fields

We characterize in the complex representation the electric and magnetic fields E and H in
the MOF by specifying the components Ez and Hz along the fibre axis, with transverse fields
following from Maxwell’s equations [3]. In fact, it is convenient to work with scaled magnetic
fields: K = ZH, where Z = (µ0/ε0)1/2 denotes the impedance of free space. Each mode is
characterized by its propagation constant β, and the transverse dependence of the fields

E(r, θ, z, t) = E(r, θ)eı(βz−ωt) , (3.1)

K(r, θ, z, t) = K(r, θ)eı(βz−ωt) , (3.2)

with ω denoting the angular frequency, related to the free space wavenumber by ω = kc. Note
that β is complex for leaky modes, the imaginary part of β accounting for attenuation along
the z axis. Here we will use the modes’ effective index, which is related to β by neff = β/k.

Each of the fields (V = Ez or V = Kz) satisfies the Helmholtz equation

(∇2 + (kM
⊥)2)V = 0 (3.3)

in the matrix, where kM
⊥ =

√
k2n2

M − β2, and

(∇2 + (ki
⊥)2)V = 0 (3.4)

in inclusion i, where ki
⊥ =

√
k2n2

i − β2. Care is required when computing complex square
roots. We will discuss this matter in Appendix A.

3.2.3 Multipole Method: Simplified Approach

The multipole method simply results from considering the balance of incoming and outgoing
fields. Its aim is to solve the problem of scattering from a system consisting of multiple
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Figure 3.2: Single inclusion in the matrix, with center at the origin. Si and So represent
sources. The dashed circles represent the borders of an homogenous annulus around the
inclusion.

inclusions. In this section we go through each step of the multipole method in a very simplified
manner, with simplified notations, to extract the physics behind the multipole method without
being blinded by too many new notations or too much mathematics.

Fourier-Bessel Series

We consider a single inclusion in the matrix (see Fig. 3.2), with center at the origin of the
coordinate system O. In cylindrical coordinates a field V (r, θ) is 2π periodic along the angular
coordinate (V (r, θ + 2π) = V (r, θ)). In any homogeneous annulus around the inclusion (deli-
mited by dashed circles in Fig. 3.2), for fixed r, V (r, θ) is a regular and 2π-periodic function
of θ, so that we can expand V (r, θ) in a Fourier series:

V (r, θ) =
∑

n∈Z
fn(r) exp(ınθ). (3.5)

Note that because V (r, θ) is regular in the annulus, the Fourier coefficients fn(r) are regular
functions of r. Using the Fourier expansion in the Helmholtz equation (Eq. (3.3)), we obtain

∑

n∈Z
∇2 (fn(r) exp(ınθ)) + (kM

⊥)2fn(r) exp(ınθ) = 0 (3.6)

⇔
∑

n∈Z

[
∂2fn(r)

∂r2
+

1
r

∂fn(r)
∂r

+
(

(kM
⊥)2 − n2

r2

)
fn(r)

]
exp(ınθ) = 0 . (3.7)

V (r, θ) being a continuous function in the annulus, we can equate the Fourier coefficients on
the right hand side and on the left hand side of Eq. (3.7). This yields the equation valid for
all n

∂2fn(r)
∂r2

+
1
r

∂fn(r)
∂r

+
(

(kM
⊥)2 − n2

r2

)
fn(r) = 0 . (3.8)
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With a linear change of variable u = kM
⊥r this equation becomes

∂2fn(u)
∂u2

+
1
u

∂fn(u)
∂u

+
(

1− n2

u2

)
fn(u) = 0 . (3.9)

Eq. (3.9) is the Bessel differential equation of order n. The functions fn(u) are hence linear
combinations of Bessel functions of the first and second kind of order n (Jn(u) and Yn(u)
respectively), or, equivalently, of Bessel and Hankel functions of the first kind of order n, the
latter being defined by H

(1)
n (u) = Jn(u) + ıYn(u):

fn(u) = AnJn(u) + BnH(1)
n (u) . (3.10)

Replacing fn(r) in the Fourier expansion Eq. 3.5, we have

V (r, θ) =
∑

n∈Z

(
AnJn(kM

⊥r) + BnH(1)
n (kM

⊥r)
)

exp(ınθ) . (3.11)

The expansion of the field V in Eq. (3.11) is called a Fourier-Bessel series. Any function
which is regular and satisfies the Helmholtz equation in an annulus can be expressed as a
Fourier-Bessel series.

Physical Interpretation of Fourier-Bessel Series

The Fourier-Bessel series can be split in two very different parts: the Bessel functions of the
first kind are regular everywhere, whereas the Hankel functions have a singularity at 0 where
they diverge. Further, Hankel functions of the first kind satisfy the outgoing wave equation,
whereas Bessel functions of the first kind don’t.

To understand the meaning of the two parts of the Fourier-Bessel function, we consider
the same annulus as above, but without inclusion. The whole space is now homogeneous. If a
source is placed inside the inner circle of the annulus (Si in Fig. 3.3), the field it radiates has
a singularity inside the inner circle of the annulus, and satisfies the outgoing wave condition.
In the annulus, it hence cannot be represented by Bessel series, but only by a superposition
of Hankel functions. Conversely, a source placed beyond the outer ring of the annulus (So in
Fig. 3.2) radiates a field which is regular in the annulus and in the region delimited by the
inner circle of the annulus. Its field expansion in the annulus can hence not contain Hankel
functions, but only Bessel functions.

Eq. (3.11) can be written as

V (r, θ) = R(r, θ) + O(r, θ) (3.12)

with

R(r, θ) =
∑

n∈Z
AnJn(kM

⊥r) exp(ınθ) (3.13)

O(r, θ) =
∑

n∈Z
BnH(1)

n (kM
⊥r) exp(ınθ) . (3.14)

R is the regular part of V . It describes fields radiated from sources situated beyond the outer
circle of the annulus. O is the singular part of V . It describes fields radiated from sources
situated inside the inner circle of the annulus. Note that if a source is placed inside the
annulus, the field it radiates has a singularity in the annulus. A field radiated by a source
inside the annulus hence cannot be described by Fourier-Bessel series in that annulus.
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Change of Basis

In the local coordinate system with origin in So, the field radiated by So is an outgoing, singular
field. In an annulus surrounding So, the radiated field is described by a series of Hankel
functions Os(rs, θs), with (rs, θs) being local coordinates associated with So. In the coordinate
system with center O, the same field is regular and incident in the annulus surrounding O
and excluding So: the nature of the field depends on the system of coordinates. We can
construct a linear operator associating the outgoing field in one coordinate system to the
resulting incoming field in another coordinate system. We define the operator H by

R = HOs , (3.15)

where R is the regular field in an annulus around O (Eq. 3.14). In practice, operator H

will be represented by a matrix linking the Fourier-Bessel coefficients An of R to the Fourier
Bessel coefficients Bn of Os. The coefficients of the matrix are well known, and given by Graf’s
theorem as we will see in the mathematical derivation of the multipole method.

Fourier-Bessel Series and one Inclusion: Scattering Operator

We now put the inclusion back in the annulus, and consider fields originating outside the
annulus, e.g. from So. In the annulus, the field radiated from So is regular and follows from
Eq. 3.15. The field reaching the inclusion will be scattered. The scattered field radiates away
from the inclusion: there are now sources inside the region delimited by the inner circle of the
annulus. The scattered field is hence described in the annulus by an outgoing field O while
the incoming field is associated with R. Since we only consider linear scattering, R and O are
linked by a linear scattering operator, S, defined by

O = SR . (3.16)

Once H and S are known, we can compute the scattered field using Eq. (3.15) and (3.16).
In practice, the scattering operator is represented by a matrix linking the Fourier Bessel
coefficients An of R and Bn of O. For simple geometries of inclusions (e.g. circular inclusions),
the coefficients of the matrix can be expressed in exact analytic form. For inclusions with
arbitrary geometry, the matrix can be computed numerically.

Fourier-Bessel Series and Two Inclusions: The Multipole Method

We now consider two inclusions (1 and 2), and a source So exterior to both inclusions. R1, the
incoming regular field for inclusion 1 now results from the superposition of the field Os radiated
from So and the scattered field O2 from inclusion 2. Using the change of basis operators Hs,1

and H2,1 defined as in Eq. (3.15), we have

R1 = H2,1O2 + Hs,1Os . (3.17)

Similarly, R2, the regular incoming field for inclusion 2 is given by

R2 = H1,2O1 + Hs,2Os . (3.18)

The two equations above simply explicit that the incoming field on one inclusion results from
the superposition of the field radiated by the other inclusion and the source. Using the
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scattering operators S1 and S2 for inclusions 1 and 2 respectively, we have
{

O1 = S1(H2,1O2 + Hs,1Os)
O2 = S2(H1,2O1 + Hs,2Os) .

(3.19)

This linear system of equations links the two unknown scattered fields O1 and O2 to the
known source field Os through change of basis and scattering operators. Once the scattering
and change of basis operators are computed, one can hence deduce the fields scattered from
the system constituted of both cylinders through solving Eq. (3.19). It is straightforward to
generalize the technique used here to more than two cylinders.

In practice, all operators are represented by matrices and the fields O and R by the vectors
consisting of the Fourier-Bessel coefficients of the fields. The matrices are readily computed,
so that given the Fourier-Bessel expansion of a source Os, the Fourier-Bessel coefficients de-
scribing O1 and O2 follow from solving the matrix equations equivalent to Eq. (3.19). Once
O1 and O2 are known, the regular part of the field around inclusions 1 and 2 can be deduced
e.g. from the scattering matrices through Eq. (3.16). The fields are then known in any ho-
mogeneous annulus surrounding the inclusions. In fact it appears that the superposition of
outgoing fields Os, O1 and O2 describes the field accurately everywhere.

Using change of basis operators, we have resumed the computation of the field scatte-
red from a complex system consisting of several inclusions to the computation of scattering
operators of single inclusions. Guided modes of a structure consisting of several inclusions
correspond to non-zero fields around the inclusions in the absence of any exterior sources. To
find modes, one hence has to find inclusion-parameters for which Eq. (3.19) has solutions with
non-zero O1 and O2 in the absence of the Os term.

In the next few subsections we describe the multipole method more rigorously, explicitly
defining all required fields, operators and vectors, and detailing the domains of validity of
expansions. Further, we adapt the method to the case where the matrix containing the
inclusions is surrounded by a jacket.

3.2.4 Rigorous Formulation of the Field Identities

In the vicinity of the lth cylindrical inclusion (see Fig. 3.1), we represent the fields in the
matrix in local coordinates rl = (rl, θl) = r− cl and express the fields in Fourier-Bessel series.
With Jm(z) and H

(1)
m (z) being the usual Bessel function of order m and the Hankel function

of the first kind of order m respectively, we have for the electric field

Ez =
∑

m∈Z

[
AEl

mJm(kM
⊥rl) + BEl

m H(1)
m (kM

⊥rl)
]
eımθl (3.20)

and similarly for Kz, but with coefficients AKl
m and BKl

m . In (3.20) the Jm terms represent the
regular incident part1 REl of the field Ez for cylinder l since it is finite everywhere, including
in the inclusion, while the H

(1)
m terms represent the outgoing wave part2 OEl of the field,

associated with a source inside the cylinder. We thus have Ez = REl + OEl.

1The Bessel functions Jm are continuous and finite in a bound domain, the field they describe must therefore
have its origin in sources outside that domain.

2Hankel functions H
(1)
m satisfy the outgoing wave condition and diverge at 0; their contribution to the field

in an annulus surrounding an inclusion is therefore associated with fields originating in sources in or on the
inclusion, and radiating away from it.
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Local expansion (3.20) is valid only in an annulus extending from the surface of the cylinder
to the nearest cylinder or source (region (a) in Fig. 3.1). The same expression may be used
around the jacket boundary which we designate by the superscript 0 (region d in Fig. 3.1).

Another description of the fields is orginally due to Wijngaard [80]. He reasoned that a
field in a region can be written as a superposition of outgoing waves from all source bodies
in the region. If the waves originate outside the region, their expansion is in terms of J-
type waves, which are source free. Of course this physical argument can be supplemented
by rigorous mathematical arguments [75, 80, 81], as discussed in Appendix B. For MOFs, the
Wijngaard expansion takes the form

Ez =
Ni∑

l=1

∑

m∈Z
BEl

m H(1)
m (kM

⊥|rl|)eım arg(r−cl)

+
∑

m∈Z
AE0

m Jm(kM
⊥r)eımθ , (3.21)

and is valid everywhere in the matrix. Each term of the m series is an outgoing wave field
with a source at cylinder l, while the final term, indexed by 0, is the regular field originating
at the jacket boundary.

Equating (3.20) and (3.21), thus enforcing consistency, yields, in the vicinity of cylinder l,

∑

m∈Z
AEl

mJm(kM
⊥rl)eımθl =

N∑
j=1
j 6=l

∑

m∈Z
BEj

m H(1)
m (kM

⊥rj)eımθj

+
∑

m∈Z
AE0

m Jm(kM
⊥r)eımθ, (3.22)

since the H
(1)
m (kM

⊥rl) terms are common to both expansions. Note that the sum on the left hand
side of Eq. (3.22) is associated with the regular incident field for inclusion l, while the double
sum on the right hand side is associated with the outgoing field originating from all other
inclusions (j 6= l), and the last sum represents the field coming from the jacket. Eq. (3.22)
hence simply results from detailing the origin of the field incident on inclusion l.

Evaluating Eq. (3.22) is not straightforward because different terms refer to different orig-
ins. We therefore use Graf’s addition theorem [82] which lets us transform the origin of the
cylindrical waves. A full discussion is given in Appendix C, where we show that it may be
viewed as a change of basis transformation. For example the contribution to the local regular
field in the vicinity of cylinder l due to cylinder j (line b, Fig. 3.1) is

∑

n∈Z
AElj

n Jn(kM
⊥rl)eın arg(rl) =

∑

m∈Z
BEj

m H(1)
m (kM

⊥rj)eım arg(rj) , (3.23)

where

AElj
n =

∑

m∈Z
Hlj

nmBEj
m , (3.24)

Hlj
nm = H

(1)
n−m(kM

⊥clj)e−ı(n−m) arg(clj) , (3.25)

and clj = cj − cl, as shown in Appendix C.1. The physics behind Eq. (3.23) is quite intuitive,
and corresponds to the Change of Basis paragraph in Sec. 3.2.3: the right hand term is
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associated with an outgoing wave originated from sources inside inclusion j. In any annulus
not intersecting or including inclusion j, and in particular in an annulus centered on inclusion
l, this field is regular and satisfies the Helmholtz equation. It can hence be expressed in terms
of a series of Bessel functions, which is exactly what Eq. (3.23) does.

At this point we introduce the notation AElj = [AElj
n ], that lets us generate vectors of

mathematical objects. A similar notation is used for matrices, i.e., Hlj = [Hlj
nm]. In matrix

form, then, we represent the basis change (3.24) as

AElj = HljBEj . (3.26)

Similarly, the contribution to the regular incident field at cylinder l due to the jacket (line
e, Fig. 3.1) is ∑

n∈Z
AEl0

n Jn(kM
⊥rl)eın arg(rl) =

∑

m∈Z
AE0

m Jm(kM
⊥r)eımθ , (3.27)

where the change of basis (derived in Appendix C.2) is

AEl0 = Jl0AE0 , (3.28)

with
Jl0 =

[
Jl0

nm

]
=

[
(−1)(n−m)Jn−m(kM

⊥cl)eı(m−n) arg(cl)
]
. (3.29)

Accumulating these contributions for all cylinders and the jacket we have, in the annulus (a)
around cylinder l (see Fig. 3.1)

AEl =
Ni∑
j=1
j 6=l

AElj + AEl0 =
Ni∑
j=1
j 6=l

HljBEj + Jl0AE0, (3.30)

a result that holds for both the Ez and Kz fields.
In a similar way, the outgoing field in the vicinity of the jacket boundary due to cylinder

j (line c, Fig. 3.1) is
∑

n∈Z
BE0j

n H(1)
n (kM

⊥r)eınθ =
∑

m∈Z
BEj

m H(1)
m (kM

⊥rj)eım arg(rj) , (3.31)

with the change of basis represented by

BE0j = J0jBEj , (3.32)

where
J0j =

[
J0j

nm

]
=

[
Jn−m(kM

⊥cj)e−ı(n−m) arg(cj)
]
, (3.33)

as shown in Appendix C.3.
Adding the contributions for all cylinder sources we reexpress the first term on the right-

hand side of Wijngaard expansion (3.21) in a form valid just inside the jacket (region d)
Ni∑

l=1

OEl =
∑

n∈Z
BE0

n H(1)
n (kM

⊥r)eınθ = OE0 , (3.34)

where

BE0 =
Ni∑

l=1

BE0l =
Ni∑

l=1

J0lBEl, (3.35)

a result that also holds for both Ez and Kz.
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3.2.5 Boundary Conditions and Field Coupling

While the field identities of the previous section apply individually to each field component,
cross coupling between them occurs at boundaries. In what follows, it is most convenient to
formulate the boundary conditions in terms of cylindrical reflection coefficients as derived in
Appendix D. For circular inclusions, for the reflected fields outside each cylinder we have

BEl
n = REEl

n AEl
n + REKl

n AKl
n ,

BKl
n = RKEl

n AEl
n + RKKl

n AKl
n ,

(3.36)

where the expression for the reflection coefficients are given in Eqs (D.14) in Appendix D. The
reflection matrices are derived for each inclusion treated in isolation, and are thus known in
closed form for circular inclusions, in which case they are diagonal. For non-circular inclusions,
they could be replaced by either analytic expressions for other special cases, or numerical esti-
mates from a differential or integral equation treatment [77,83]. In these cases they generally
also have off-diagonal elements.

Equations (3.36) can be written as
[
BEl

BKl

]
=

[
REEl REKl

RKEl RKKl

] [
AEl

AKl

]
, (3.37)

or
B̃l = R̃lÃl , (3.38)

with REE,l = diag(REEl
n ) and similar definitions for the other reflection matrices. We also

need an interior form at the jacket boundary (point d in Fig. 3.1),

Ã0 = R̃0B̃0 (3.39)

where Ã0, B̃0 and R̃0 are defined as in (3.37)–(3.38), and the coefficients of R̃0 are given by
Eqs (D.10). In this form the outgoing field (B̃0) generated by all inclusions (line c) is reflected
by the jacket to generate the regular field (Ã0), which feeds into the incident field for inclusion
l (line e in Fig. 3.1). It is straightforward to adapt R̃0 to cases where multiple films surround
the hole region.

3.2.6 Derivation of the Rayleigh Identity

With the structure of the field coupling derived in the Section 3.2.5, we now form field identities
applying to the vector components Ãl and B̃l. From Eq. (3.30) we have

Ãl =
Ni∑
j=1
j 6=l

H̃
lj
B̃j + J̃

l0
Ã0 , (3.40)

where H̃
lj

= diag(Hlj , Hlj), and J̃
l0

= diag(Jl0, Jl0). Equation (3.40) is the representation
of the regular incident field at cylinder l in terms of outgoing components B̃j from all other
cylinders and an incident field contribution Ã0 from the jacket.

Combining (3.40) for all cylinders l = 1 . . . Ni and introducing A =
[
Ãl

]
and B =

[
B̃l

]
,

we derive
A = H̃B + J̃

B0
Ã0 , (3.41)
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where H̃ =
[
H̃

lj
]
for l, j = 1...Ni with H̃

ll ≡ 0 and

J̃
B0

=
[
J̃

l0
]
=

[
(J̃

10
)T , (J̃

20
)T , · · · , (J̃

Ni0)T
]T

, (3.42)

where the T indicates the transpose. Similarly, the vector outgoing field in the vicinity of the
jacket due to all the cylinders is given by

B̃0 =
Ni∑

j=1

J̃
0l
B̃l = J̃

0B
B (3.43)

from Eq.(3.35). Here
J̃

0B
=

[
J̃

0l
]

=
[
J̃

01
, J̃

02
, · · · J̃

0Ni
]
. (3.44)

Combining (3.38), (3.39), (3.41) and (3.43) and eliminating Ã0 and B̃0 we form a homoge-
neous system of equations (which represents the Rayleigh identity, and we will also call field
identity) in the source coefficients

[
I−R

(
H̃ + J̃

B0
R̃0J̃

0B)]
B ≡ MB = 0, (3.45)

where the right-hand side indicates the absence of external sources, and

R = diag
[
R̃1, R̃2, · · · , R̃Ni

]
. (3.46)

Non-trivial solutions to the homogeneous system (3.45) correspond to non-zero fields propaga-
ting in the z-direction. The solutions represent a non-zero field existing without any exterior
source of energy, in other words propagating (possibly leaky) fibre modes. We will see in the
next Chapter how this equation can be solved to obtain the modes of a MOF structure.



Note on the Field Distribution Figures

In subsequent chapters we will make an extensive use of figures showing the field distribution
of modes. In order to fully understand those figures it is worth knowing exactly what they
depict and how they were constructed. All field distribution and Bloch transform figures are
drawn in a normalized, linear colour scale. The brightest colour represents the maximum
value of the distribution within the depicted frame, the darkest represents the smallest value.
Fig. 3.3 represents the colour scale used. The aim is not to give quantitative results concerning
the values of the fields, but rather qualitative results on the geometry of the modal fields.
One thing this kind of representation can not be used for is for example to see the relative
importance between values taken by the Ez and Kz fields in order to get an idea on the rather
TE or TM nature of a mode. Further, since the plots don’t give any quantitative information,
scaled magnetic field distribution plots are rigorously identical to unscaled magnetic field
distribution plots. Since the reader is likely to be more familiar with the unscaled magnetic
field H, from chapter 5 on we will come back to the unscaled magnetic field notation H.

Field distribution plots represent the magnitude of the z components of the fields E or K,
or the real part of the z component of the Poynting vector S. In almost all modes we study,
the z components of E and K are not the most important in magnitude, the magnitude of the
transverse components of these fields is generally larger. The reason we depict the longitudinal
rather than the transverse components of the fields is that Ez and Kz are the components
we use in our multipole expansions. Ez and Kz directly reflect the multipole expansions they
are constructed from. The real part of Sz on the contrary is a more “physical” quantity, as it
reflects the density of power carried along the axis of the fibre: The <(Sz) plots show how the
power carried along the fibre is distributed in the cross section of the fibre.

The field distribution plots are constructed from the Fourier-Bessel expansions of the modes
(Eq. (3.20)), the coefficients of these expansions being given by the eigenvectors associated
to near-zero eigenvalues of Eq. (3.45). In most of our simulations, the jacket and the matrix
have same refractive index, so that the confinement is solely due to the cylindrical inclusions
around the core. In that case the boundary conditions at the matrix/jacket interface are
associated to an identity transmission matrix and a null reflection matrix. These don’t affect
the computation of modes, so that to speed up the computations we reduced the order of
truncation of the Fourier-Bessel series in the jacket to 1.3 This nevertheless had a small
side-effect on the field distribution plots: in these, the fields in the cladding and jacket are
computed using Bessel functions of order -1 to 1, so that the field appears discontinuous at and
dipolar beyond the matrix/cladding interface. This is only an artefact in the representation
of the fields and should not disconcert the reader.

3We could also have suppressed those matrices completely, but only at the cost of changing the eigenvalue
equation.
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Lowest value

Largest value

Figure 3.3: Colour scale used for field distribution and Bloch transform plots, unless otherwise
mentioned.

Finally, the field distribution figures, as almost all the figures in this thesis, are printed in
their black and white version, colour versions being available in the electronic version of the
thesis. The black and white figures do not result from a simple graphical colour to black and
white conversion, since this would have given a redundant and unreadable colour scale: The
colour version of the density plots use a continuous colour scale, whereas the black and white
version of the plots use a discrete colour scale, so that the plots are in fact filled contour plots.
Note that the colour version of the field density plots is much more readable than the printed
black and white version, especially when the number of inclusions becomes large.
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Entrée :

Daurade et Écrevisses
Sauce Écrevisse, Tomate «Cariocas»

Sea Bream and Yabbis, Yabbi Sauce and Tomato “Cariocas”

Pour 6 personnes :

Pour la daurade :

3 petites daurades
80 g de beurre clarifié

fleur de sel
poivre

Pour la sauce écrevisse :

24 écrevisses vivantes
5 L de court-bouillon

1 gousse d’ail
1 cuillérée à soupe d’huile

d’olive
50 g de beurre clarifié

50 g de beurre
3 cl de cognac fine de

champagne
1 cuillerée à café de concentré

de tomates
piment d’Espelette en poudre

sel
poivre

Pour les tomates «Cariocas» :

6 tomates cerise en grappes
huile d’olive

sel
sucre
poivre

Les tomates «Cariocas» [2]

Détacher les tomates des tiges en préservant le pé-
doncule. Les ébouillanter pendant 5 secondes. Avec la

pointe d’un couteau, inciser chaque tomate à mi-hauteur,
puis la peler sur sa partie inférieure. Retourner la peau res-
tante vers le haut. Les assaisonner de sel, de poivre du mou-
lin et de sucre. Les réserver 15 minutes à température am-
biante, puis les ranger dans une sauteuse en les maintenant
bien droites. Les recouvrir d’huile d’olive. Démarrer la cuis-
son sur le feu jusqu’à ce que l’huile frémisse, puis enfourner
à 90◦C pendant une heure. Les laisser dans la sauteuse jus-
qu’au moment de servir.

La sauce écrevisse

Porter le court-bouillon à ébullition. Plonger une demi-
douzaine d’écrevisses vivantes dans le court bouillon,

compter 3 minutes puis retirer à l’aide d’une écumoire. Ré-
iterer avec les autres écrevisses, toujours par demi-douzaines.
Laisser refoidir les écrevisses, puis décoriquer les queues de
18 d’entre elles. Réserver les 6 autres pour la décoration.

Piler les coffres d’écrevisses. Faire chauffer le beurre cla-
rifié et l’huile d’olive dans une sauteuse. Y ajouter la

gousse d’ail non épluchée et les coffres pilés ; laisser colorer
à feu vif en remuant fréquemment. Une fois les coffres bien
rouges, déglacer au cognac. Retirer la gousse d’ail et passer
le contenu de la sauteuse au moulin à légumes puis au chinois
en pressant bien afin d’extraire le maximum de jus. Verser
le jus obtenu dans une casserole.

Au moment de servir réchauffer à feu doux, incorporer
le beurre par petits bouts, lier avec le concentré de

tomates et assaisonner de piment d’espelette, de sel et de
poivre.
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La daurade

Écailler et vider les daurades. En lever les filets sans
retirer la peau, retirer les arrêtes à l’aide d’une pince à

épiler. Tailler les filets en «sifflets». Les essuyer sur du papier
absorbant. Faire chauffer le beurre clarifié dans une poêle à
feu vif. Déposer les filets de daurade, côté peau. Lorsque
le bord des filets blanchit, les retourner puis compter 20 se-
condes. Retirer les filets, les égouter sur du papier absorbant.

Tiédir les tomates cariocas, les égouter. Disposer sur
chaque assiette chauffée une tomate “Cariocas”, une

écrevisse, trois queues d’écrevisses décortiquées, un filet de
daurade saupoudré de fleur de sel et de poivre et un cordon
de sauce écrevisse. Servir.



Chapter 4

The Multipole Method:
Implementation

This Chapter is based on ref. [84]

4.1 Introduction

In the previous Chapter, we presented the development of a multipole formulation leading to
a matrix equation satisfied by modes of MOFs. Here we discuss how to use this formulation
to analyse propagation and field characteristics numerically, the choice of its parameters to
guarantee accurate results, and its numerical verification. The last is achieved through internal
consistency tests, and through a comparison both with other methods and with experimental
results.

The description of numerical strategies here is of necessity detailed, since the location
of modes requires the finding of an approximate zero of the determinant of a large complex
matrix. Such zeros are often difficult to distinguish from false minima at first sight, and it is
necessary to employ various validation criteria on the "modes" corresponding to the various
putative zeros to identify physically meaningful solutions. It is of course valuable to have
numerical or experimental values for similar systems to guide the mode search, and the curves
and tables we provide here and throughout the next chapters should provide a comprehensive
aid to future workers.

4.2 Geometry

In the examples used to illustrate the implementation of the multipole method as well as
in subsequent chapters we will concentrate – unless otherwise mentioned – on MOFs with
identical air holes in silica, arranged following a hexagonal packing1, as shown in Fig. 4.1.
The jacket is taken to have same refractive index as the matrix, so that guidance of modes is
solely due to a finite set of air holes in bulk silica. The dispersion properties of silica are taken
into account using Sellmeier expansions of the refractive index [4]. The hexagonal array of
holes is characterized by its hole to hole spacing or pitch (Λ). The holes all have same diameter
d. At the origin, a hole is missing: we will see that this defect in the hexagonal lattice can

1The hexagonal packing is also known as the triangular lattice.
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nm

matrix

Λ

hole

d

Figure 4.1: Geometry of the MOFs considered in most numerical studies of the forthcoming
chapters. The core is surrounded by Nr = 3 layers. Beyond the hole layers, the jacket is made
out of the same material as the matrix.

pin modes, and that under certain conditions the modes can be localized around the missing
hole, therefore also called the core or core region. Around the core are concentric, hexagonal
layers of holes, and we note Nr the number of layers, or rings. The set of holes around the
core is responsible for the confinement of modes: we will refer to it as the cladding structure
or the cladding when no confusion is possible with an actual dielectric cladding layer between
the matrix and the jacket. Note that this kind of MOF has C6v symmetry properties.

4.3 Mode Location

4.3.1 Solving the Rayleigh Identity

The homogeneous equation (3.45), the main result of the previous Chapter, corresponds to a
non-trivial field vector B only if the determinant of the matrix M is effectively zero. Once
the structure and wavelength are given, the matrix M depends only on β, or, equivalently, its
effective index neff. The search for modes therefore becomes a matter of finding zeros of the
complex function det(M) of the complex variable neff. To investigate this numerically, field
expansions such as (3.20) must be truncated, say to have m running from−M to M . In Fig. 4.2
we show a determinant surface in the neighbourhood of a well defined minimum, corresponding
to a mode with a well-characterized propagation constant neff = 1.43858501 + 4.986× 10−7i.
This example, and those following, refer to a structure as described in Section 3.2.1, with
a single ring of six equally spaced holes with d = 5 µm, Λ = 6.75 µm, λ = 1.45 µm, R0 =
14.25 µm and nM = 1.45, n0 = nM+10−8i and M = 5. The small imaginary part of n0 has been
introduced for mathematical convenience (to render fields square integrable, cf. Section 2.4).
Its existence is not essential in the computations presented here and its exact value does not
have a significant impact on results2, as we will understand in Chapter 7.

2A complete study of the impact of the imaginary part of n0 on the results of the computations shown here
can be found in T.P. White’s honours thesis [85].
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Figure 4.2: Logarithm of the magnitude of the determinant of M versus the real and imaginary
parts of the complex refractive index, for the MOF given in the text.

We know from a group theoretical study of waveguides by McIsaac [76], that the modes
of the fibres we are considering are either nondegenerate or doubly degenerate. Since det(M)
is the product of the eigenvalues of M, we must look for minima in which one or two of
the eigenvalues have magnitudes that are substantially smaller than the others. However, a
minimum of the determinant may also correspond to an artefact resulting from many eigen-
values being small simultaneously (what we call a false minimum). To distinguish these from
genuine solutions, we consider the singular values [86] of M, which, for our case, correspond
to the magnitudes of the eigenvalues. False minima can be distinguished by a singular value
decomposition at the putative minimum.

The null vectors corresponding to small singular values are approximate solutions to the
field identity (3.45). For non-degenerate modes, the null vector is unique to within an arbitrary
multiplicative constant. For a two-fold degenerate mode, we let the basis states be prescribed
by group theory (see Section 4.5.1), though any linear combination of these is equally justified.

4.3.2 Implementation

For this task we need an algorithm aimed at finding all the zeros of the determinant of M

in a region of the complex neff plane. The algorithm should be economical in function calls
as each evaluation of the determinant is computationally very expensive for large structures.
As shown in Fig. 4.2, the zeros are very sharp, so that a very accurate first estimate of the
zero is necessary for most simple root-finding routines. More specific algorithms for finding
zeros of analytic or meromorphic functions [87,88] have good convergence for simple structures
(with six cylinders for example) but fail for more complex structures, even with good initial
guesses: they need an accuracy in the Cauchy-like integrals which is numerically difficult
and expensive to reach as det(M(nneff)) is ill-behaved. Our present approach to root finding
seems computationally efficient. We first compute a map of the modulus of the determinant
over the region of interest, and then use the local minima of this map as initial points for
a mixed zooming and modified Broyden [89] algorithm (an iterative minimization algorithm,
guaranteed to converge for parabolic minima). The algorithm used makes it extremely unlikely
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to miss a zero of the determinant; further details of this method are given in Appendix E.
The initial scanning region has to be chosen in accordance with the physical problem

studied: if the fibre is air cored and air guided modes are sought, we choose <(neff) < 1,
whereas if the fibre has a solid core we usually choose to search for modes in a region where
<(neff) is between the optical indices of the inclusions and the matrix3. In the latter case
hundreds of modes may exist for small <(neff) which are of little interest because of their
high losses. We therefore often concentrate on a smaller neff scanning region near the highest
index of the structure. A scanning region for =(neff) giving good results in almost any case is
10−14 < =(neff) < 10−3. For imaginary parts lower than 10−14 numerical inaccuracies in the
imaginary part make the used algorithm unstable, and it is then required to set =(neff) = 0
and find the minima of the determinant on the real axis.

4.4 Computing Dispersion Characteristics

The above process of finding modes is carried out for a specific wavelength. We could reiterate
the search for modes for many different wavelengths to obtain dispersion characteristics, but
this process would be quite laborious. We have found two alternative methods to be of
value. One computes and identifies the modes for three or four different wavelengths, then
uses a spline interpolation to estimate the neff values for other wavelengths and refines the
estimate with the mixed zooming and Broyden algorithm. Each newly determined point of
the neff(λ) curve can be used to enhance the spline estimate. The second (and often more
efficient) method is to compute the modes for only one wavelength λ0, then slightly perturb
the wavelength to get neff(λ0 + δλ) using neff(λ0) as a first guess, and then use a first order
estimate of neff at the next wavelength. One can then compute neff(λ + mδλ) using a first
order estimate computed from the two preceding values. For both methods, the wavelength
step has to be chosen very small: for small steps more points are necessary to compute the
dispersion characteristics in a given wavelength range, but for large steps the first order guess
becomes inaccurate and the convergence of the zooming and Broyden algorithm unacceptably
slow. Having small steps and therefore numerous numerical values on the dispersion curve is
also of benefit when evaluating second order derivatives, as is necessary to compute the group
velocity dispersion.

Material dispersion can be included easily by changing the optical indices according to the
current wavelength at each step using, for example, a Sellmeier approximation [4] for silica.

The method described here can be adapted to study the change of neff of a mode for
any continuously varying parameter, for example cylinder radius, cylinder spacing or optical
index. One problem that can occur when following the evolution of a mode with a continuously
varying parameter is mode crossing. This results in wrong data, but can easily be detected
in most cases through a discontinuity of derivatives,4 and can also easily be eliminated by
restarting the algorithm with the correct mode on the other side of the crossing.

The correct choice for δλ strongly depends on wavelength and structure, so that no general
advice can be given. However, as a rough guide, satisfactory results have generally required
200 or more points on curves.

3cf. Section 2.4.
4...and a radical change of the Bloch transform, see Chapter 5.
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Figure 4.3: Minimum sectors for waveguides with C6v symmetry. Mode classes p = 1, 2, 7 and
8 are non-degenerate, while p = 3, 4 and p = 5, 6 are two-fold degenerate. Solid lines indicate
Dirichlet boundary conditions for the electric field, dashed lines indicate Neumann boundary
conditions.

4.5 Symmetries

4.5.1 Symmetry Properties of Modes

McIsaac [76] classified the electromagnetic modes of waveguide structures, according to the
symmetry properties of the configuration. This approach was previously exploited by Ya-
mashita et al. [78] for a modal analysis of conventional multicore fibres. The point group
most often encountered in MOF studies is C6v since it combines six-fold symmetry with mir-
ror symmetry (symmetries of the hexagonal lattice). This leads immediately to a number of
conclusions: any mode belongs to one of eight classes, and they are either non-degenerate
(classes 1, 2, 7, 8), in which case they exhibit the full symmetry of the structure, or two-fold
degenerate (classes 3, 4, 5, 6), in which case they exhibit the full symmetry in an appropriate
linear combination. Since the non-degenerate modes have the full symmetry of the structure,
their field only needs to be calculated in a minimum sector of 30◦, the edges of which must
coincide with a symmetry axis of the structure, with the field elsewhere following by symme-
try. The difference between the modal classes are that different boundary conditions apply to
the tangential component of the electric field at the edges of the minimum sector; these are
either Neumann (∂Ez/∂θ = 0) or Dirichlet (Ez = 0) conditions, or combinations of these (see
Fig. 4.3). For the degenerate mode classes the minimum sector is 90◦ (see Fig. 4.3).

Table 4.1 lists the first ten modes for the MOF we are considering, exemplifying all McI-
saac’s [76] eight mode classes. The losses in dB/m in column 3 are obtained from the imaginary
part of neff by

L =
20

ln(10)
2π

λ
=(neff)× 106, (4.1)

with λ in µm. In Table 4.1 the losses are large since more than one ring is necessary to achieve
losses compatible with practical usage; this is discussed further in Chapters 6 and 7.

We show the fields of the first three modes from Table 4.1 in Figs. 4.4–4.6. Fig. 4.4 shows a
mode with a vertical nodal line for Ez and a horizontal antinodal line. It must therefore belong
to class p = 3 in Fig. 4.3, one of a degenerate pair. Its companion (p = 4) is shown in Fig. 4.5.
The similarity between |Ez| in Fig. 4.4 and |Kz| in Fig. 4.5 is often evident in degenerate
MOF modes, but is not exact, since Ez and Kz satisfy different boundary conditions. The
non-degenerate mode (Fig. 4.6) displays the MOF’s full six-fold symmetry and has nodes of
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neff Loss Class Degeneracy
Real Imaginary dB/m p

1.445395345 3.15× 10−8 1.2 3, 4 2
1.438585801 4.986× 10−7 20 2 1
1.438445842 9.929× 10−7 37 5, 6 2
1.438366726 1.374× 10−6 52 1 1

1.430175 2.22× 10−5 840 8 1
1.4299694 1.577× 10−5 590 3, 4 2

1.429255296 9.337× 10−6 350 7 1

Table 4.1: Effective index, loss, mode class and degeneracy of the first 10 modes of the MOF
given in the text, calculated using M = 5.
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Figure 4.4: Normalized fields |Ez|, |Kz| and energy flow <(Sz) for the degenerate fundamental
mode class p = 3 for a six-hole MOF, with data described in the text in regard of Fig. 4.2,
neff = 1.445395345 + 3.15× 10−8i.

Ez at angles 0◦ and 30◦; it thus belongs to class p = 2 (Fig. 4.3).

4.5.2 Using the Symmetries

The incorporation of field symmetry in the multipole formulation has two benefits. Firstly, it
enables definitive statements to be made about the degeneracy of modes, even in the presence
of the accidental degeneracies which arise when normally distinct modal trajectories cross
each other. Secondly, it greatly reduces computational burdens, enabling accurate answers for
quite large MOF structures to be obtained rapidly on PC’s.

In applying the multipole formulation to large six-fold symmetric MOF’s, it is highly
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Figure 4.5: Similar to Fig. 4.4, but for degenerate fundamental mode class p = 4, neff =
1.445395345 + 3.15× 10−8i.
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Figure 4.6: Similar to Fig. 4.4, but for nondegenerate mode with p = 2, neff = 1.438585801 +
4.986× 10−7i.

advantageous to exploit the symmetry properties in Fig. 4.3 to reduce the size of the matrix
M. This can be achieved since only multipole coefficients for inclusions lying in the minimum
sector indicated in Fig. 4.3 need be specified; those for holes outside the minimum sector can
be obtained by multiplying by the appropriate geometric phase factor (related to exp(2πi/6)).
The resulting reduction in the order of the matrix M depends on the type of the mode, being
maximal for the non-degenerate modes in Fig. 4.3, and still being around 3.5 for degenerate
modes, leading to considerable reductions in processing time. See Appendix F for further
details.

4.5.3 Implementation

Using the symmetry simplifications the search for modes changes slightly. To obtain all the
modes we now have to check for each class of modes separately. This implies going through
the entire process of evaluating a determinant map and refining each local minimum once per
non-degenerate mode class and once for each degenerate pair of mode classes. For a structure
with C6v symmetry, six determinant maps have to be evaluated (classes 1, 2, 3, 5, 7 and 8, the
modes of classes 4 and 6 being deduced from those of class 3 and 5, cf. Fig. 4.3). But as the
matrix size is reduced by a factor ranging from 3.5 to more than 6, and the computations scale
as the size of the matrix cubed, the overall efficiency gain of using the symmetries remains
high. The gain is even higher when computing dispersion figures for a given mode, as only
one symmetry class is then concerned. Note that in many cases only the fundamental and
the second mode are of interest, which both belong to specific symmetry classes, so that the
scanning of all symmetry classes is often unnecessary.

4.6 Software and Computational Demands

We have developed a Fortran 90 code to exploit the above considerations.5 For symmetric
structures the suggested optimizations are used and the software can therefore deal, even on
PC’s, with large structures (modes for fibres with 330 holes have so far been computed on
current personal computers). Once the structure has been defined, the software is able to
find automatically all the modes within a given region of the complex plane for neff and can
optionally track a mode as a function of wavelength (to obtain dispersion characteristics) or
continuous changes of the structure (pitch, diameter of holes, refractive index of one or all

5Two completely different versions of the code with different, complementary features have been developed
separately and simultaneously by T. P. White and the author.
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holes...). Material dispersion can be included, if desired.
To validate our software against existing methods, we implemented a slightly more gene-

ral formulation than the one described here, making it possible to solve external scattering
problems as well as computing modes (a right hand term accounting for external sources is
then added to Eq. (3.45)). We also included in our implementation the possibility of using
jacket reflection matrices resulting from more than one dielectric interface: we can include a
cladding layer between the matrix and the jacket, and it would be straightforward to add any
dielectric concentric multilayer around the matrix.

Computational demands are relatively modest: the complete set of modes with M = 5 in
the region of interest 1.4 < <(neff) < 1.45 for the structure used in Fig. 4.2 and Fig. 4.4– 4.6
can be computed on a Pentium III (733MHz) personal computer in less than 3 minutes using
less than 2 Mb of memory. Of course the load rises for larger structures, but computing the
complete set of modes for a structure with Nr = 3 takes less than an hour (and about 15 Mb
memory) on a Compaq workstation. Note that often the complete set of modes is of little
interest and only properties of the fundamental or the second mode are sought. In that case
only one or two symmetry classes need to be gone through, and one often has some knowledge
of the approximative location of these modes, so that the size of the initial determinant map
can be significantly reduced: finding the fundamental mode of the largest structures presented
in this thesis has rarely taken more than an hour.6

Tracking modes along continuous parameters can be computationally more expensive:
some of the curves used in Chapter 7 to derive the phase diagrams have taken up to one
day of computation on a Pentium III (1 GHz), and some of the dispersion curves for large
structures presented in Chapter 8 where large values of M were needed for accuracy, have
taken several days to be computed on modern Alpha powered workstations.7

4.7 Validation and Self Consistency

4.7.1 Convergence and Wijngaard Test

The formulation of Chapter 3 requires the finding of modes satisfying the field identity (3.45),
which expresses the equality of two sets of field representations: a local expansion in the
neighbourhood of each cylindrical inclusion in the MOF (3.20) and a global or Wijngaard
expansion (3.21). The Wijngaard expansion is expressed in local coordinates using Graf’s
addition theorem, truncated to the chosen multipole order M and equated with the local
expansion (3.20). The two expansions for Ez and the corresponding expansions for the scaled
magnetic field component Kz only match perfectly for untruncated fields (M → ∞), and so
their numerical difference on cylinder surfaces can be used as a powerful indicator of truncation
errors and the quality of the matrix null vector location. We illustrate this with an example
shown in Figs. 4.7 and 4.8 of an air-core MOF. Fig. 4.7 shows significant field errors occurring
around the boundary of the larger central air hole. As well, the low frequency modulation of
the field discrepancies indicates some imprecision in the minimization of the determinant. In
Fig. 4.8, the multipole truncation order on the central hole has been increased8 to M = 19,

6Towards the end of the PhD., thanks to a better knowledge of MOF-modes, finding the fundamental mode
was rather a matter of minutes.

7See the Chapters 7 and 8 for details.
8Using different truncation orders for different inclusions is not implemented in the software written by the

author, and data and results related to Fig. 4.7 and 4.8 were provided by T. P. White.
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Figure 4.7: In the upper and lower parts of the figure, internal and Wijngaard expansions
are compared for respectively Ez and Kz, for an air core MOF, with M = 5 both for the
central air hole and all other air holes (54 air holes of diameter 4.0271 µm, core hole diameter
13.0714 µm, nM = 1.39, ni = 1.00, Λ=5.78157 µm, λ=3.846 µm.

while the truncation order on the smaller holes has been kept at 5. The decrease in field
matching errors is evident (note the change in scale in the lower panels between Figs. 4.7
and 4.8), as is a slight improvement in the quality of the determinant minimization, manifest
as a reduction in the low-frequency modulation. One clear sign of adequate convergence in the
formulation is obtained from these comparison plots. When enough terms are included, the
error term oscillates like the first neglected term in field expansions (i.e., like exp[i(M +1)θ]).

A second test of convergence is of course provided by the stability of neff with respect to
increase of M . This is illustrated in Table 4.2, where we also introduce

WE
l =

∫
Cl
|Elocal

z (θ1)−EWijngaard
z (θ1)|dθ1∫

Cl
|EWijngaard

z (θ1)|dθ1

, (4.2)

and similarly for Hz. WE
l is a measure of the accuracy of the equality between the local (3.20)

and Wijngaard expansions (3.21) of Ez around cylinder l. With increasing M , WE
1 decreases

while neff stabilises, as expected. Note that WE
l is comparable to a mean relative error of the

local expansion, taking as a reference the Wijngaard expansion of the field around inclusion
l . Assuming that both fields eventually converge to the true value of the field, we will
occasionally use WV

l (V = E or H) as an approximate a priori measure of the local relative
error of each field expansion on field V .

We have found that the choice of the truncation parameter M should be made such that
this quantity clearly exceeds (by a factor around 1.5) the largest argument of Bessel functions
on the boundary of inclusions. This guarantees that the cylindrical functions of largest order
in field expansions behave like the cylindrical multipoles of electrostatics to leading order, and
ensures rapid convergence with increasing M . This criterion is manifest in the case of Figs 4.7
and 4.8 where many more Bessel terms are necessary for the large central hole than for other,
smaller holes.
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Figure 4.8: As for Fig. 4.7, but with M = 19 for the core hole and 5 for all other holes. Note
that the Wijngaard and internal expansions now match to graphical accuracy.

M <(neff) =(neff)× 106 WE
1

3 1.43852886240663 6.918242988502046 9.7× 10−2

4 1.43838719374803 1.749096334333127 4.6× 10−2

5 1.43836672605884 1.373925319699950 1.5× 10−2

6 1.43836499998690 1.414928166193201 2.7× 10−3

7 1.43836493475660 1.416468499483090 9.3× 10−4

8 1.43836493461317 1.416459892560528 7.7× 10−4

9 1.43836493424529 1.416475747100788 2.5× 10−4

Table 4.2: Convergence of neff with M . Results are for the p = 1 mode of the MOF in Table4.1
at λ = 1.45µm. Here W from Eq.(4) gives the degree of accuracy of the equality between
Wijngaard and local expansions. The integrals are taken over the boundary of cylinder 1
situated at r = 6.75µm, θ = 0.
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Figure 4.9: Scanning electron micrograph of a cleaved end-face of the MOF fabricated by
Kubota et al. used in our comparisons. Figure supplied by H. Kubota.

Note that in cases where neff is close to nM, kM
⊥ and therefore arguments in Bessel function

can become small even with larger inclusions, and small values of M can become sufficient.
We will see in forthcoming chapters examples where values of M as small as 2 give results of
satisfying accuracy.

4.7.2 Comparison with Other Methods

A powerful way of validating a new formulation is also to compare its results with those of
a well-established method. A successful comparison of the results of our method with those
of the scalar and vector beam propagation methods, for a MOF fibre having a single ring of
inclusions, and with the imaginary part of neff = β/k0 of order 10−5, was already presented
in previous work [45].

As we also included in our software the extension of the present formalism to simulate
the diffraction of incident light by the structure, we were able to validate the code thoroughly
against results from other, well established, diffraction codes. Comparisons with a fictitious
source code [90] and other multipole like codes [77, 91] in conical incidence with complex or
real permittivities in various geometries gave excellent agreement of at least 8 decimal figures
on the radar cross section, validating each part of the code separately as well as in its entirety.9

4.7.3 Theory and Experiment

We compared results from our simulations with experimental data published by Kubota et
al [92]. The MOF used for their experiments was a silica fibre with approximately 7 rings
of air holes disposed in a very regular hexagonal lattice, the core being created by a missing
hole (Fig. 4.9). For our simulations we used the geometrical data as published, but varied
the number of rings from one to seven. We used the Sellmeier approximation for the index of
silica.

9The description of the examples and methods used as well as the results of these comparisions are available
on the enclosed CD-ROM, in French. See validation\validation.ps
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Figure 4.10: Loss of the first three modes as a function of number of rings for the structure
published by Kubota et al., at a wavelength of 0.76 µm. Only geometrical losses are included.

A first result is that there is no need to have a large number of rings to reach geometrical
losses of the order of losses of conventional fibres. Fig. 4.10 shows the loss figures for the first
three modes versus the number of rings at a wavelength of 0.76 µm. These figures only include
geometrical losses, absorption or Rayleigh scattering having not been included: they show the
limitations due to the confinement by a MOF structure.

With two rings, the fibre has a single-mode behavior for kilometric lengths, as only the
fundamental mode propagates without significant losses, but with more than two rings other
modes become virtually lossless. This is in agreement with the multi-mode behaviour observed
experimentally for seven rings of holes.10 Clearly, three rings of holes are theoretically enough
to ensure a guidance only limited by losses due to absorption or structural imperfections. We
confirm that the losses observed by Kubota et al. (7.1 dB/km at 850 nm) are not due to
the limitation imposed by the MOF geometry of the fibre but mainly to Rayleigh scattering,
structural imperfections and absorption.

The imaginary parts of neff corresponding to Fig. 4.10 are well below those able to be
determined directly by determinant minimization. Instead we must proceed through its eva-
luation by an energy flux argument, once the real part of neff has been determined to high
accuracy by determinant minimization. This method is discussed in Chapter 5.

We computed dispersion figures for the fundamental mode of the Kubota structure. We
first observed that the number of rings has very little influence on the actual dispersion curve,
as the fundamental mode is already well confined with one ring.11 We therefore used a
one ring structure in subsequent simulations to improve computational speed, without losing
significant accuracy for dispersion parameters. Although we observed a shift of the zero
dispersion wavelength to the 800 nm band, we did not find an exact agreement with the
experimental zero-dispersion wavelength of 810 nm. With the given geometrical data, we
found a zero dispersion wavelength of 889 nm. Kubota et al. found similar results with an
FDTD method. In order to explain the difference with experimental data, we have computed
the zero dispersion wavelength for different hole pitch and diameter: Fig. 4.11 is for varying
pitch with constant diameter, Fig. 4.12 is for varying diameter with constant pitch and Fig. 4.13

10We will discuss the definition of the number of modes in MOFs in Chapter 7.
11The influence of the the number of rings on the dispersion properties will be studied in Chapters 7 and 8
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Figure 4.11: Zero dispersion wavelength as a function of pitch for the structure published by
Kubota et al., with constant diameter d = 1.51 µm.
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Figure 4.12: Zero dispersion wavelength as a function of hole diameter for the structure
published by Kubota et al., with constant pitch Λ = 2.26 µm.

is for varying pitch and diameter with constant pitch/diameter ratio. These figures show that
a variation of about 15% in the pitch with constant diameter or 25% in the pitch with constant
diameter/pitch ratio is necessary to obtain the experimental zero dispersion wavelength. The
experimental fibres shown by Kubota et al. do not seem to have such high variations of their
geometrical characteristics, and it seems that other reasons for the poor agreement between
theory and experiment have to be found. We will discuss this in detail in Chapter 8.

Scientific curiosity encouraged us to simulate, whenever possible, the structures used in
every new publication concerning MOFs brought to our knowledge. Out of lack of space,
time and interest for the reader these comparisons are not detailed here. The agreement
between the multipole method and experimental results or other theoretical models were not
always satisfying, which was quite puzzling at the beginning. It appeared later that agreement
with some other theories using periodic or closed boundary conditions can not be reached in
some regions of the parameter space, and that only methods taking into account the finite
cross-section and the exact number of inclusions can accurately describe MOF modes in these
regions. We will detail this in Chapter 7.
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Figure 4.13: Zero dispersion wavelength as a function of pitch for the structure published by
Kubota et al., with constant diameter/pitch ratio d/Λ = 0.67.

More disconcerting is the disagreement with experimental results concerning dispersion
properties. We have seen in the example described above that experimental inaccuracy is
unlikely to explain these discrepancies. It is worth noting that when comparisons with other
theoretical models are possible (i.e. when the modes are well confined), the agreement between
these and the multipole method regarding dispersion characteristics is excellent12, so that to
our knowledge no theoretical tool is able to predict accurately dispersion properties of MOFs
to date. This suggests strongly that physical phenomena occur which have not yet been
taken into account. These could for example be linked to stress induced changes of refractive
indices resulting from the drawing process, or to effects related to the air-silica interfaces, and
definitely need further investigation.

12...i.e. all theoretical predictions are consistent, but disagree with the experimental results.
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Trou :

Granité du Vigneron
Winegrower’s Granita

Pour 6 personnes :

50 cl de vin rouge
100 à 200 g de sucre glace

Et, éventuellement :

cognac
citron

Les proportions de cette recette doivent être adaptées au
vin utilisé. Nous préconisons un vin d’avantage sur le

fruit et le sucre que sur le tanin. L’idéal est un vin dominé
par une syrah fruitée, gorgée de soleil. Ainsi la plupart des
Shiraz Australiens conviennent à merveille. Du côté de la
France, un Côte du Roussillon donnera généralement d’ex-
cellents résultats. Enfin on peut également partir de vins
doux (Banyuls, Maury, Porto, Madère, Port Australiens), en
diminuant la quantité de sucre.

Dissoudre du sucre glace dans le vin jusqu’à ce qu’il
ait un goût bien sucré (la sensation de sucré s’estompe

avec le froid). Ajouter, toujours au goût, jusqu’à quelques
centilitres de cognac et ajuster éventuellement l’acidité avec
un peu de jus de citron.

Verser dans un récipient de préférence métallique et à
large surface (un moule à gâteau convient bien). Lais-

ser prendre au congélateur. Après une heure, gratter à la
fourchette les bords et le fond du moule pour ramener les
cristaux en formation vers le centre. Recommencer toutes
les demi-heures jusqu’au moment de servir. Compter 4 à 6
heures selon le congélateur pour que la granité ait le temps
de prendre. Alternativement on peut aussi placer le mélange
en sorbetière, mais éviter alors de le préparer trop à l’avance :
Conservé au repos au congélateur il fige en bloc et perd son
côté fondant et «volatile».

Répartir dans six verres à vin et servir.



Chapter 5

Tools

A mode found by the multipole method is defined by an effective index and a set of Fourier-
Bessel coefficients. We have already seen how to use these to compute the fields in and outside
the MOF structure. In this Chapter we introduce other tools we will need to analyse modes
further.

5.1 Lowering the Loss Limit

As discussed in the previous Chapter, finding the roots of the mode equation (3.45) does
not permit an arbitrary precision for the imaginary part of neff. The absolute precision for
=(neff) is ultimately limited by the machine precision around <(neff) ' 1, which in the current
implementation is approximately 10−15. For modes with =(neff) . 10−14 the relative precision
becomes unacceptable, and for =(neff) . 10−15 one often has to set =(neff) artificially to zero
in order to find the mode. In such cases it becomes important to achieve a better estimate of
the losses through an indirect method.

Once the real part of neff has been determined to high accuracy by determinant minimiza-
tion, we can find an estimate of the loss coefficient through an energy flux argument. The loss
coefficient α is obtained through the conservation of the time averaged flux of the Poynting
vector S through a cylinder of elementary length δz centered at the origin and with a radius
R such that the cylinder includes all inclusions. We have:

∫∫

θ,ρ<R
<(S(ρ, θ, z)).uzρdρdθ = (5.1)

δz

∮

θ
<(S(R, θ, z)).urRdθ +

∫∫

θ,ρ<R
<(S(ρ, θ, z + δz)).uzρdρdθ

where uz, ur are the usual unit vectors of the local basis in cylindrical coordinates. As S varies
as e−αz, we have

S(ρ, θ, z + δz) ' (1− αδz)S(ρ, θ, z) (5.2)

so that (5.2) becomes

α

∫∫

ρ<R,θ
<(S(ρ, θ, z)).uzρdρdθ =

∮

θ
<(S(R, θ, z)).urRdθ . (5.3)

70
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Isolating α gives

α =

∮
θ <(Sr(R, θ, z))Rdθ∫∫

θ,ρ<R <(Sz(ρ, θ, z))ρdρdθ
(5.4)

where we have introduced Sz and Sr, components of S in cylindrical coordinates. The imagi-
nary part of the effective index is then given by

=(neff) =
α

2k0
. (5.5)

The integrals in Eq. (5.4) can then be computed numerically from the field expansions.
It is difficult to evaluate the precision of this method. Of course the precision will depend on

the precision of the numerical integration (which can be easily evaluated and readily improved),
but also on the precision of the field expansions, i.e. the accuracy of <(neff) and the truncation
of the Fourier-Bessel series .

When the direct evaluation of =(neff) through the determinant minimization is accurate
(=(neff) >> 10−14 and good Wijngaard test), both evaluation methods agree up to the pre-
cision of the numerical integration. For =(neff) < 10−14 we have no direct means to check
the accuracy of the results given by (5.4). Nevertheless we can get an estimate of the relative
error of the fields through the Wijngaard test, from which we can derive an estimate of the
relative error of α. Eq. (5.4) yields

δα

α
' δI1

I1
+

δI2

I2
(5.6)

where I1 and I2 are the integrals of the numerator and denominator of (5.4) respectively, and
δX represents the absolute error of X. From (5.4) we have

δI1 =
∮

δ<(Sr(R, θ, z))Rdθ (5.7)

=
∮

δ<(Sr(R, θ, z))
<(Sr(R, θ, z))

<(Sr(R, θ, z))Rdθ . (5.8)

In the last equation appears the relative error of <(Sz), which can be estimated through the
Wijngaard test. We have indeed seen that WE

i and WH
i can be interpreted as the relative

precision of Ez and Hz respectively, in the vicinity of inclusion i. Expressing Sz as a function
of Ez and Hz results in an expression involving neff, so that δ<(Sz)/<(Sz) will also depend
on the precision of neff. The latter being in general much better than the precision of the
fields, we will assume the errors come mainly from errors on Ez and Hz. Introducing WM =
max{WE

i ,WH
i }i=1,Ni , we have

δSz

Sz
. 2WM (5.9)

as Sz is the product of two E and H components. Eq. (5.8) becomes

δI1 . 2WM

∮
<(Sr(R, θ, z))Rdθ (5.10)

. 2WMI1 . (5.11)

The same arguments hold when evaluating δI2, so that the total relative error of α is

δα

α
. 4WM . (5.12)
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Note that the main hypothesis in this derivation is that the relative errors of the fields are
bounded above by W . This is not strictly true, and therefore Eq. (5.12) should only be used
as an estimate of the precision.

Our simulations have shown that errors due to other factors (mainly the numerical eva-
luation of the Bessel functions) limit the indirect evaluation of =(neff) to values above 10−20.
Note that this extremely low value corresponds to loss coefficients 8 orders of magnitude smal-
ler than the best possible absorption coefficients in silica, so that such small values can only
be of theoretical interest.

5.2 Bloch Transform

As mentioned in the first Chapter, the revival of interest in MOFs originated from the bur-
geoning field of Photonic Crystals, and the idea of guiding light through defects in photonic
bandgap structures. Even for solid core MOFs, where it is often argued that guidance results
from total internal reflection due to the lowered average index in the cladding region, conside-
rations concerning the band structure of the cladding structure prove to be very useful. Here
we develop a tool to analyse MOF modes in terms of Bloch modes of the periodic cladding
structure.

We first use the properties of an infinite periodic structure to introduce a function - the
Bloch transform - able to isolate Bloch vectors (see below) associated with a given field. We
then generalize the Bloch transform to finite structures and review some of its basic properties.
We briefly discuss the numerical implementation of the Bloch transform before showing a few
examples. Finally we analyse some of the properties of the Bloch transform in more detail.
As we will see in the remaining Chapters, the Bloch transform will enable us to differentiate
between two very distinct classes of modes, to gain insight into their physical nature and to
follow modes with varying fibre parameters with accuracy.

5.2.1 Definition

The Infinite Lattice

We consider an infinite 2D-periodic structure of inclusions centered on points of the periodic
lattice L. Fields propagating in that structure satisfy the Bloch-Floquet theorem, from which
there exists a Bloch vector kB such that

V (r + cp) = exp(ıkB.cp)V (r) (5.13)

where V is either Ez or Hz and cp ∈ L. We suppose we can expand V in terms of Fourier-Bessel
series centered on each inclusion. In regions where this expansion is valid1, we have

V (r + cp) =
∑

cl∈L

∑

n∈Z
Bn(cl)H(1)

n (k⊥|r + cp − cl|) exp(ın arg(r + cp − cl)) , (5.14)

where Bn(cl) is the nth Fourier-Bessel coefficient for the inclusion centered on cl. Using
Eq. (5.13) we have

V (r + cp) =
∑

cl∈L

∑

n∈Z
exp(ıkB.cp)Bn(cl)H(1)

n (k⊥|r− cl|) exp(ın arg(r− cl)) . (5.15)

1See Chapter 3.
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Changing the summation index to c′l = cl − cp in Eq. (5.14), and then equating the result to
Eq. (5.15) yields2

Bn(cl + cp) = exp(ıkBcp)Bn(cl) . (5.16)

Eq. (5.16) is the equivalent of the Bloch-Floquet theorem for multipole coefficients.
We now introduce the function

Bn(k) =
∑

cl∈L

exp(−ık.cl)Bn(cl) . (5.17)

If V satisfies the Bloch-Floquet theorem with Bloch vector kB, we have

Bn(k) = exp(−ık.c0)Bn(c0)
∑

cl∈L

exp(ı(kB − k).(cl − c0)) , (5.18)

with c0 ∈ L being an arbitrary vector of the periodic lattice L. This function takes the value
0 for k 6= kB +G and diverges for k = kB +G, where G is any vector of the reciprocal lattice,
i.e. a vector satisfying

∀cl ∈ L,G.cl ∈ 2πZ . (5.19)

Bn(k) has many similarities to a spatial Fourier transform, but instead of peaking at the
Fourier components of the field V , it only peaks at its Bloch vectors. We shall therefore call
it a Bloch transform.3

Finite structures

We have defined a Bloch transform for infinite periodic lattices, but in the case of MOFs we will
apply it to finite structures. In that case Bloch-Floquet’s theorem is no longer valid, and solu-
tions to propagating waves are not strictly speaking a superposition of Bloch-waves. Indeed,
the Bloch waves are not a complete set of functions for a finite structure. A complete set of
functions to describe fields in a finite domain with periodically arranged boundary conditions
inside that domain can be constructed by adding to the Bloch waves eigenfunctions related to
the domain boundaries. In other words surface states are needed in addition to volume states
to describe the modes [93]. Nevertheless if we take a large4 structure of periodically arranged
inclusions, we can expect the influence of the boundary states to be small, and the modes of
the structure to be predominantly a superposition of Bloch waves.

Similarly to the case of an infinite lattice, we define the Bloch transform for a finite
structure with Ni inclusions centered around cl:

Bn(k) =
Ni∑

l=1

exp(−ık.cl)Bn(cl) . (5.20)

2To go from the identity for the fields to the identity for the Fourier-Bessel coefficients we use the same
arguments as in Chapter 3.

3The term “Bloch transform” has been used in previous work by Allaire et al. [93] who developed a
complete Bloch transform analysis very similar to the Fourier analysis but using the Bloch functions of a
periodic structure as a basis. The Bloch transform we use here is not directly related to the one defined by
Allaire et al. Its relation to the Fourier transform is analysed in Appendix G.

4Compared with the wavelength.
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5.2.2 Basic Properties

Periodicity

We will from now on consider that the inclusions are centered on positions defined by a finite
subset of a periodic lattice L. In that case the Bloch transform will still have the periodicity
of the reciprocal lattice. Indeed the property of Eq. (5.19) will be satisfied by each vector of
the subset of L. When visualizing the Bloch transform we will therefore need to do so only
on the first Brillouin zone associated with the periodic lattice of the structure.

Peaks

If a mode is essentially located within the cladding region, i.e. does not concentrate on its
boundaries, we expect that it can be predominantly decomposed in terms of Bloch waves. We
can even expect the number of Bloch waves to be discrete, resulting from a selection effect
due to Fabry-Perot resonances from the boundaries. A MOF mode will therefore usually be
associated with several Bloch vectors. For each of those Bloch vectors, the Bloch transform
will no longer diverge as the sum is now finite. For the same reasons, the Bloch transform
will not vanish when k is not a Bloch vector. We will rather have peaks of finite width and
magnitude around the Bloch vectors. When increasing the number of inclusions, we can expect
these peaks to become narrower and larger in magnitude, as the structure becomes closer to
the infinite periodic structure. We will derive and quantify those effects in the following
subsections.

The most striking property of the Bloch transform is that the geometric distribution of the
peaks - the “shape” of the Bloch transform - is characteristic of a MOF mode, and is extremely
stable when varying the wavelength or the fibre parameters. We will see in the following
chapters that the field distributions and the Fourier-Bessel coefficients of the same mode can
vary considerably with varying fibre parameters, and that it can become extremely difficult
to identify similar modes of different yet comparable structures. Our simulations have shown
that the Bloch transform of a given mode keeps its shape regardless of the fibre parameters,
and that this shape is indeed the most precise and convenient way to differentiate and define
specific modes. It is difficult to prove this property without precisely defining a classification
of modes, but it can be understood through the fact that the Bloch transform decomposes
each mode in a natural basis for the structure. In fact we will use this property as an axiom,
defining the nature of a mode through the properties of its Bloch transform.

Bloch transforms of different orders

The Bloch transform defined in Eq. (5.20) is defined for a specific order n. We have seen that
if V is a Bloch wave associated with the Bloch vector kB, the Fourier-Bessel coefficients of all
orders obey Eq. (5.18). Nevertheless this equation does not imply that coefficients of a specific
order can not be zero5. If V is a superposition of Bloch waves of different kB, those waves
need not have the same relative magnitudes of Fourier-Bessel coefficients of different orders.
This leads to the conclusion that Bloch transforms Bn of different orders n do not necessarily
peak at the same values of k. To get the complete set of Bloch vectors associated with a field,

5And indeed, for modes of specific symmetry properties it can be shown that most of the Fourier-Bessel
coefficients are strictly zero.
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one needs to consider the Bloch transform of all orders. We therefore define the total Bloch
transform, which is the sum of the normalized Bloch transforms of all orders:

BT(k) =
∑

n

1
supk′∈R2(|Bn(k′)|) |Bn(k)| , (5.21)

where in practice n takes the values of all available orders, and the sup is taken to be the
numerical maximum in the first Brillouin zone. If a field V has some Bloch wave components,
BT(k) will peak at the corresponding Bloch vectors. The Bloch transforms of each order are
normalized so that all Bloch vectors can be easily visualized at once on a same plot of the total
Bloch transform. The counterpart to this is that the information on the relative importance
of the peaks of different orders is lost, and that neighbouring peaks can merge into a larger,
blurred peak. It will therefore be sometimes useful to go back to the Bloch transform of a
single order n.

Effective Angle of Propagation

We consider a mode with propagation constant β = neffk0, having clear Bloch components
(such as for example the mode of Fig. 5.1). A peak in the Bloch transform is associated to a
Bloch wave V with Bloch vector kB:

V (r) = exp(ıkBr)v(r) (5.22)

where v(r) has the periodicity of the lattice, and r is in the xy plane. The Bloch wave
propagates along the z-axis with propagation constant β, and perpendicularly to the z-axis
following the Bloch vector. In three dimensions we have:

V (r, z) = exp(ı(kBr + βz))v(r). (5.23)

V can be seen as a plane wave with wave vector (kB, βuz), modulated by v(r). The “effective
direction of propagation” of this wave makes an angle with the z-axis given by:

θ = tan−1

( |kB|
|β|

)
. (5.24)

We will call this angle effective angle of propagation of a Bloch wave. To get an idea of the
order of magnitude of the effective angle, we consider kB to be on the top edge of the Brillouin
cell, so that we have |kB| = 2π

√
3/(3Λ). In that case

θBZ edge = tan−1

(
λ

Λ

√
3

3neff

)
. (5.25)

Note that Bloch peaks on the edge of the Brillouin zone hence have smaller effective propa-
gation angles with decreasing λ/Λ.

5.2.3 Implementation

The implementation of (5.20) is straightforward. Indeed the sole point which has to be em-
phasized here is that the Bloch transform only involves complex exponentials, which makes its
computation much easier and much faster than the computation of field distributions, invol-
ving Bessel functions with complex arguments. Computing the Bloch transform distribution
over the first Brillouin zone is therefore extremely fast. The Bloch transform is thus not only
the best (in terms of accuracy and ease of identification) but also the computationally most
efficient way of identifying modes.



CHAPTER 5. TOOLS 76

Nr |Ez| |Hz| <(Sz) BT

4

10

Figure 5.1: Field maps and total Bloch transform of a mode consisting essentially of a su-
perposition of 6 Bloch waves. Note that the fields are depicted in the direct space (r-space),
whereas the Bloch transform is in the reciprocal space (k-space): the white hexagon on the
Bloch transform map depicts the edges of the first Brillouin zone.

5.2.4 Examples

Before analysing properties of the Bloch transform in greater detail, we illustrate the basic
properties seen in the previous sections with two examples. In both examples the MOFs are
made out of a cladding of hexagonally packed air inclusions in silica, the core being defined
by a missing hole.

Fig. 5.1 shows an example of a mode of symmetry class 1, constituted of a superposition
of 6 Bloch waves, for two MOFs with different number of rings Nr but with same pitch and
hole-diameter (Λ = 2.3µm, d/Λ = 0.15), and at the same wavelength (λ = 1.55µm). The
total Bloch transform shown was computed with the Ez Fourier-Bessel coefficients, but the
transform is the same to graphical accuracy when computed with the coefficients related to
Hz, as is expected from the interdependence of Ez and Hz through the scattering matrices.6

When analysing the Bloch transform for different orders, it appears that the peaks of the total
Bloch transform are essentially due to the orders n = −1 and n = 1.

We see that for Nr = 4 the peaks are quite broad, and as predicted become much narrower
for Nr = 10. For Nr = 4, secondary peaks are not negligible; this is partly related to the
importance of the surface and defect states for a system consisting of only 4 periodic layers,
but we will see in the last section of this Chapter that some of the secondary peaks are a natural
feature of the Bloch transform for finite MOFs, even for fields resulting from superposition of
sole Bloch modes.

For Nr = 10 on the contrary, peaks are well defined, and the importance of secondary
peaks is fading, suggesting that edge effects are becoming negligible. In both cases the main
peaks are close to the edge of the first Brillouin zone, indicating that each Bloch component
is close to a standing wave. We note that the exact position of the maxima of the peaks
is not the same in both cases, but that the “overall shape” remains constant. We further
note the predicted periodicity in the reciprocal space of BT(k): the peaks outside the first

6 Note that the Fourier Bessel coefficients of order 0 for Ez and Hz are not a priori related as REK+
0 =

RKE+
0 = 0. When the total Bloch transform is dominated by the order 0, the total Bloch transforms for Ez

and Hz can therefore differ substantially. We will see an example of such a case in Chapter 7.
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Λ |Ez| |Hz| <(Sz) BT

0.254µm

2.3µm

Figure 5.2: Fundamental mode of two MOFs with different pitch, but with same d/Λ = 0.3
and Nr = 8. The field distribution changes considerably between the two values of the pitch,
but the Bloch transform remains a single peak centered on the origin.

Brillouin zone are replicates of the peaks inside the first Brillouin zone, and do not contain any
additional information. Finally, we note that the Bloch transform has symmetry properties
induced by the symmetry properties of the mode.

Fig. 5.2 shows a second example illustrating how helpful the Bloch transform becomes
when trying to identify modes of MOFs having different yet comparable structures. Both lines
of contour plots shown in Fig. 5.2 relate to the fundamental mode of a MOF with Nr = 8 holes
of air inclusions in silica, with the same relative hole size d/Λ = 0.3 and at same wavelength
λ = 1.55µm, but with different values of the pitch. We see that the field patterns differ
considerably, but that the Bloch transform remains similar for the two values of the pitch:
there is only one peak centered on k = 0, only the width of the peak changes, being much
narrower for the wider mode than for the well confined mode. We will see in the next sections
that in such a case the width of the mode and the width of the Bloch transform are linked
through a Heisenberg-type relation.

5.2.5 Advanced Properties

To derive some analytical properties of the Bloch transform, we will consider a mode consisting
of a superposition of a finite number Nb of Bloch waves so that

∀l ∈ [1, Ni] , Bn(cl) =
Nb∑

j=1

B̂j
n exp(ıkj .cl) , (5.26)

where kj is the Bloch vector of Bloch wave j, whereas B̂j
n is the complex amplitude of Bloch

wave j associated with the Fourier-Bessel order n. We know that this kind of decomposition is
not exact in the case of finite structures, as surface states are neglected. To take into account
non-Bloch components, a term B̂0

n(cl) would have to be added to Eq. (5.26).



CHAPTER 5. TOOLS 78

Normalizing the Bloch Transform: Bloch Wave Decomposition and Parseval Iden-
tity

Until now we have only interpreted the location of peaks of the Bloch transform. Through
normalizing the Bloch transform we will also be able to give a meaning to the actual value of
Bn(k). Here we give two methods of making such a normalization, the comparison of which
will lead to a Parseval-like identity.

First we make explicit the value of the Bloch transform when k takes the value of one of
the Bloch vectors ki of the field:

Bn(ki) =
Ni∑

l=1

Nb∑

j=1

B̂j
n exp

(
ı(ki − kj).cl

)
(5.27)

= NiB̂
i
n +

Nb∑

j=1,j 6=i

B̂j
n

Ni∑

l=1

exp
(
ı(ki − kj).cl

)
. (5.28)

Under the rather strong assumptions that no ki − kj is too close to a vector of the reciprocal
lattice and that the number of inclusion is large enough,7 each sum over l in Eq. (5.28) takes
values much smaller than Ni, so that

Bn(ki) ' NiB̂
i
n . (5.29)

The value of the Bloch transform taken at a Bloch vector ki gives therefore an approximation of
the complex amplitude B̂i

n of the associated Bloch wave component in Eq. (5.26). Nevertheless,
as because of linearity only relative amplitudes in that decomposition have a physical meaning,
it is necessary to be able to compare the amplitudes to each other. Mathematically speaking,
we would eventually like to obtain

B̂i
n(∑Nb

j=1 |B̂j
n|2

)1/2
. (5.30)

One way of computing this would be to isolate and compute all the peaks of the Bloch
transform to get the complete set of B̂i

n, but this method would numerically be cumbersome
and approximate. Indeed isolating the exact position and value of the maximum of the Bloch
transform would need a refinement of each peak. Another method to make the normalization
would be to find an equivalence between the discrete sum over the values at the peaks and an
integral over the whole first Brillouin zone. To do so, we consider the integral

An =
∫∫

FBZ
|Bn(k)|2dk (5.31)

where the integral is taken over the first Brillouin zone (FBZ). With ∗ denoting the complex
7We will see in the next subsection that these two assumptions are connected.
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conjugation, we have

An =
∫∫

FBZ

∣∣∣∣∣
Nb∑

i=1

Ni∑

l=1

B̂i
n exp

(
ı(ki − k).cl

)
∣∣∣∣∣

2

dk (5.32)

=
∫∫

FBZ

(
Nb∑

i=1

Ni∑

l=1

B̂i
n exp

(
ı(ki − k).cl

)
)


Nb∑

j=1

Ni∑

m=1

B̂j∗
n exp

(−ı(kj − k).cm

)

 dk (5.33)

=
Nb∑

i,j=1

Ni∑

l,m=1

B̂i
nB̂j∗

n exp(ıkicl) exp(−ıkjcm)
∫∫

FBZ
exp (−ık(cl − cm)) dk . (5.34)

As (cl, cm) ∈ L2, cl−cm ∈ L, so that the exponential in the integral is invariant when adding
any vector of the reciprocal lattice to k. The domain of integration can be rearranged to a
rectangle using this periodicity, and it is then readily shown that the integral takes the value
AFBZδl,m where δ is the usual Kronecker symbol and AFBZ is the area of the first Brillouin
zone. If L is a hexagonal lattice with pitch Λ we have

AFBZ =
8
√

3π2

3Λ2
(5.35)

so that

An =
8
√

3π2

3Λ2

Nb∑

i,j=1

Ni∑

l=1

B̂i
nB̂j∗

n exp
(
ı(ki − kj)cl

)
(5.36)

=
8
√

3π2

3Λ2




Nb∑

i=1

Ni|B̂i
n|2 +

Nb∑

i 6=j
i,j=1

B̂i
nB̂j∗

n

Ni∑

l=1

exp
(
ı(ki − kj).cl

)

 . (5.37)

Under the same assumptions as above (large Ni and ki − kj not too close to a vector of the
reciprocal lattice), each sum over l in Eq. (5.37) takes values much smaller than Ni, so that

An ' 8
√

3π2

3Λ2
Ni

Nb∑

i=1

|B̂i
n|2 . (5.38)

We recognize here the denominator of Eq. (5.30), and obtain

B̂i
n(∑Nb

j=1 |B̂j
n|2

)1/2
' 2π

√
2 33/4

3ΛN
1/2
i

Bn(ki)
(∫∫

FBZ |Bn(k)|2dk)1/2
, (5.39)

which is much more straightforward to implement numerically than the method suggested
previously.

It would nevertheless be even easier to normalize the Bloch transform using a normalization
in the direct space, i.e. using the Bn(cl) coefficients. To do so, we now consider the sum

Sn =
Ni∑

l=1

|Bn(cl)|2 . (5.40)
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Using Eq. (5.26) we have

Sn =
Ni∑

l=1

(
Nb∑

i=1

B̂i
n exp(ıki.cl)

)


Nb∑

j=1

B̂j∗
n exp(−ıkj .cl)


 (5.41)

=
Ni∑

l=1

Nb∑

i,j=1

B̂i
nB̂j∗

n exp
(
ı(ki − kj).cl

)
. (5.42)

The sum is the same as in Eq. (5.36), and with the same assumptions than previously we
obtain

Sn ' Ni

Nb∑

i=1

|B̂i
n|2 . (5.43)

From Eq. (5.29) and (5.43) we derive

B̂i
n(∑Nb

j=1 |B̂j
n|2

)1/2
' Bn(ki)

(
Ni

∑Ni
l=1 |Bn(cl)|2

)1/2
. (5.44)

Through Eq. (5.39) and (5.44) we now have two ways of obtaining the normalized coefficients of
the Bloch wave decomposition (5.26). Note that both ways are equivalent, as from Eqs. (5.36),
(5.42) and (5.43) we obtain Parseval-type identities:

Ni∑

l=1

|Bn(cl)|2 =
√

3Λ2

8π2

∫∫

FBZ
|Bn(k)|2dk ' Ni

Nb∑

i=1

|B̂i
n|2, (5.45)

where the first identity is rigorous, as we used the assumptions only in deriving the second
one.

Width of the Bloch Transform Peaks: Heisenberg Uncertainty

We have predicted earlier that the width of the peaks centered on the Bloch vectors ki decreases
with increasing number of inclusions. Here we analyse this behaviour analytically, and show
that the width of the Bloch transform peaks is related to the width of modes through a
Heisenberg-type relationship. For this analysis we consider Eq. (5.26) with a single Bloch
component, i.e.

Bn(cl) = B̂1
n exp(ık1.cl). (5.46)

The Bloch transform is then

Bn(k) = B̂1
n

Ni∑

l=1

exp
(
ı(k1 − k).cl

)
. (5.47)

For the sake of simplicity we consider that the structure is limited by a parallelogram, so that
the set of cl is entirely described by

cl = c(α,β) (5.48)

= αu1 + βu2, (α, β) ∈ [1, Nα]× [1, Nβ] (5.49)
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where NαNβ = Ni and u1 and u2 are the vectors generating L which, in the case of a hexagonal
lattice with pitch Λ, are

u1 = Λx̂ (5.50)

u2 = (1/2)Λx̂ + (
√

3/2)Λŷ. (5.51)

Introducing δkx and δky as the x and y components of k1 − k, the Bloch transform becomes

Bn(k) = B̂1
n

Nα∑

α=1

Nβ∑

β=1

exp
(
ı(δkx(αΛ + βΛ/2) + δky(

√
3βΛ/2))

)
(5.52)

= B̂1
n

(
Nα∑

α=1

exp(ıδkxαΛ)

)


Nβ∑

β=1

exp
(
ıβ(δkxΛ/2 + δky

√
3βΛ/2)

)

 (5.53)

= B̂1
n exp(ı(3δkxΛ/2 + δky

√
3Λ/2))×

1− exp(ıNαδkxΛ)
1− exp(ıδkxΛ)

1− exp
(
ıNβ(δkxΛ/2 + δky

√
3Λ/2)

)

1− exp
(
ı(δkxΛ/2 + δky

√
3Λ/2)

) .

(5.54)

As we only consider the magnitude of the peaks, we take the modulus of the previous equation.
Through conventional trigonometric transformations we obtain

|Bn(k)| = |B̂1
n|

∣∣∣∣
sin(NαδkxΛ/2)

sin(δkxΛ/2)

∣∣∣∣
∣∣∣∣∣
sin

(
NβΛ(δkx +

√
3δky)/4

)

sin
(
Λ(δkx +

√
3δky)/4

)
∣∣∣∣∣ . (5.55)

The peaks of the Bloch transform along each direction are therefore of the same type as the
function

f(x) =

{∣∣∣ sin(ax)
sin(x)

∣∣∣ if x 6= mπ, m ∈ Z
|a| if x = mπ, m ∈ Z .

(5.56)

This function has main peaks of value a for x = mπ, m ∈ Z.8 These become narrower with
increasing a, and for a −→ ∞ their widths tend to zero. We therefore choose to develop the
function for small x to find the value of the half width x0, satisfying

f(x0) = a/2. (5.57)

We know that x0 is between 0 and the first zero of f(x), which occurs at π/a. With increa-
sing a, x0 tends to zero, but ax0 remains finite and bound by π/2, and the small argument
development must be used with care. Using Taylor series to the 5th order for sin(ax), while
using a first order expansion for sin(x), we obtain x0 with sufficient accuracy:

f(x0) = a/2 (5.58)

⇒ ax0 − (ax0)3

6
+

(ax0)5

120
' ax0

2
(5.59)

⇔ 1− (ax0)2

3
+

(ax0)4

60
' 0 . (5.60)

8Note that the f also has smaller secondary peaks at x ' (m + 1/2)π/a, m ∈ Z − {0,−1} of magnitude
decaying as a/(π|m + 1/2|). The magnitude of the first secondary peak is roughly 1/5 of the magnitude of the
main peak, and can barely be seen on the contour plots of section 5.2.4.
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Solving the latter equation gives

x0 ' 1.91
a

(5.61)

and thus the width of the peak of the Bloch transform is given by
{

δkxΛ ' 21.91
Nα

δkxΛ/2 +
√

3/2δkyΛ ' 21.91
Nβ

.
(5.62)

The result to be retained from this analysis is that the width along a given direction varies
as the inverse of the number of inclusions along that same direction. The exact value of the
proportionality constant will depend on the actual shape of the boundaries of the cladding
structure, but will remain of the order of 4. For a hexagonal arrangement of inclusions
delimited by a hexagonal shape, Nα ' Nβ ' Nr where Nr is the number of layers of holes.
Therefore we obtain

δkΛNr ' 4. (5.63)

Note that ΛNr represents the spatial width of the fibre, and δk the angular width of the mode.
Eq. (5.63) is a Heisenberg-type relation.

In the example chosen for this analysis, the field was a single Bloch wave. The result
holds for a superposition of Bloch waves for each peak associated to each Bloch vector. But
if the mode is not a superposition of Bloch waves, which is the case for a surface or defect
state, the relation has to be modified. In the case of a localized defect mode (e.g. the
mode for Λ = 2.3µm in Fig. 5.2), the magnitude of the Fourier-Bessel coefficients decays
exponentially away from the defect. In that case only the Fourier-Bessel coefficients associated
with inclusions close to the defect contribute significantly to the Bloch transform. In other
words the sums of Eq. (5.53) would be reduced to a sum over the inclusions where the field
is significant, which would lead to a corrected number of layers N ′

r in the Heisenberg relation
(5.63), reflecting the number of rings where the field is significant. The Heisenberg relation
is therefore a relation between the spatial extent of the mode and the width of the Bloch
transform peaks.

Through the above analysis, we also can quantify the assumptions made when normalizing
the Bloch transform. For the sums in Eq. (5.28) to be negligible, we needed a large enough
number of inclusions and ki − kj not to be too close to a vector of the reciprocal lattice.
These sums are similar to the one analysed for extracting the half-width, and using similar
arguments to those of this section, it appears that the sums become negligible roughly when

∀G ∈ L∗, ∀ i 6= j, |ki − kj + G|N1/2
i Λ & 4 (5.64)

where L∗ is the reciprocal lattice. The width of the first Brillouin zone being of the order of
2π/Λ, the distance between peaks, normalized to the width of the first Brillouin zone, should
therefore be greater than 2/(πN

1/2
i ).

Note that in the first example of Bloch transform we used in section 5.2.4 (Fig. 5.1) this
condition is only roughly satisfied.

5.2.6 Bloch Transform for Other Methods

The Bloch transform we have defined here is particularly well suited for use in combination
with the multipole method. For other MOF simulation models, the Bloch transform has to
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be adapted. Any transform able to isolate Bloch components of a mode should be suited,
and the simple Fourier transform of the fields is among them. Indeed, if a field has a Bloch
component of the form

V (r) = exp(ıkBr)v(r) (5.65)

where v(r) has the periodicity of the lattice L, its Fourier transform is given by

Ṽ (k) = δ(k− kB) ∗ ṽ(k) (5.66)

where Ṽ and ṽ are the Fourier transform of V and v respectively, and ∗ represents the convolu-
tion operator. Since v is L periodic, its Fourier transform is a discrete sum over the reciprocal
lattice L∗:

ṽ(k) =
∑

kp
′∈L∗

Apδ(k− k′p) . (5.67)

The Fourier transform of V becomes

Ṽ (k) =
∑

kp
′∈L∗

Apδ(k− kB − k′p) . (5.68)

This distribution has peaks at k = kB + kp where kp is a vector of the reciprocal lattice.
Since Bloch vectors are defined to within an arbitrary vector of the reciprocal lattice, all
peaks of this distribution correspond to Bloch vectors. It is sufficient to find a vector of the
reciprocal lattice kp associated to a non zero value of Ap to get the full information on the
Bloch components of the field.

Initially we wanted to use the Fourier transform of the fields to obtain the mode’s Bloch
components. It appeared that in order to get the field’s Fourier transform with sufficient
accuracy to extract the Bloch components, we needed a numerically prohibitive number of
points in the field maps. We therefore decided to exploit the analytic expansion we had of
the fields (the Wijngaard expansion, Eq. (3.21)), which led to the definition of the Bloch
transform. In cases where the Fourier transform of the fields is easier to obtain than the field
maps (e.g. plane wave methods), it would nevertheless be a natural choice to use the former.
We discuss the relation between Bloch and Fourier transforms further in Appendix G.
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Plat de Rôt :

Filet de Kangourou
Sauce Poivrade «Oz», Fruits et Légumes Glacés, Rose des Sables

Kangaroo Loin, “Oz-style” Poivrade Sauce, Glacé Fruits and Vegetables, Gypsum Flower

Pour 6 personnes :

Pour le kangourou :

800 g de filet de kangourou
50 g de beurre clarifié

Pour la marinade :

1 L de vin rouge
25 cl de vinaigre de vin rouge

1 oignon
2 échalottes

1 grosse carotte
1/2 botte de persil

5 gousses d’ail
1 cuillerée à soupe de poivre

grains
1/2 cuillerée à soupe de

grains de coriandre
2 clous de girofle

5 baies de genièvre
1 branche de thym

1 branche de romarin
1 feuille de laurier

1 petite branche de céleri
2 cuillerées à soupe d’huile

d’olive
une petite cuillerée à café de

paprika
25 «pepperberries» (baies

natives d’australie)

La marinade

Émincer grossièrement l’oignon, les échalottes, la carotte
et l’ail (sans peler ce dernier). Réunir l’ensemble des

ingrédients dans une terrine. Détailler le filet de kangourou
en 6 médaillons régulier. Les laisser dans la marinade au
moins 24 heures.

Les roses des sables [2]

Peler les pommes de terre et les laver, les essuyer, puis les
débiter en bouchons de 5 cm de haut environ. À l’aide

d’un économe, tourner les bouchons en ruban, si possible sans
interruption. Laisser les rubans de pomme de terre reposer
dans de l’eau fraîche jusqu’au moment de servir.

Au moment de servir, égouter et essuyer avec du papier
absorbant les rubans de pommes de terre. Faire fondre

le beurre clarifié, y tremper les rubans de pommes de terre.
Enrouler les rubans comme une rose et les déposer dans un
plat en Téflon. Glisser au four préchauffé à 220◦C, laisser
cuire 10 minutes en arrosant fréquemment les rubans de
beurre clarifié jusqu’à ce qu’ils deviennent colorés.

Les fruits et légumes glacés

Éplucher puis détailler en carrés de 5 cm de côté et de 6
à 7 mm d’épaisseur les navets, la courge, les pommes et

les poires. Arroser d’un peu de jus de citron les morceaux de
pommes, de poire et de navet, legèrement saler ceux de navet
et de courge. Faire revenir les carrés de pomme et les poire
séparement dans une poêle avec un peu de beurre clarifié
et une cuillerée à soupe de sucre en poudre d’abord à feu
vif pour les colorer puis à feu doux jusqu’à ce qu’ils soient
fondant. Maintenir au tiède.
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Pour la sauce poivrade
«Oz» :

2 cuillerées à soupe de
confiture de cassis

1 tomate
sel

pepperberries
30 g de beurre

Pour les fruits et lé-
gumes glacés :

2 gros navets
un quart de courge
2 pommes golden

2 poires pas trop mûres
100 g de sucre

1 dl de vinaigre de vin

Pour les roses des
sables :

6 grosses pommes de
terre à chair ferme

125 g de beurre clarifié
sel fin

Garniture :

raisins roses
fruits rouges

lanières de zeste
d’agrumes finement

prélevées

Cuire les carrés de courge à la vapeur en les laissant un peu
fermes. Cuire les navets dans le vinaigre additionné de trois
cuillerées à soupe de sucre à feu très doux. Laisser réduire
jusqu’au sirop, ajouter 10 cl d’eau puis laisser réduire à nou-
veau. Recommencer une ou deux fois, jusqu’à ce que les car-
rés de navets soient cuits. Quelques minutes avant de servir,
ajouter les carrés de courge et réduire le feu au minimum.
Tiédir les raisins et les fruits rouges.

La sauce poivrade «Oz»

Récuperer les médaillons de kangourous dans la ma-
rinade et les entreposer au froid. Porter la marinade à

ébullition avec la tomate coupée en morceaux. Dès le premier
bouillon écumer aussi souvent que possible. Une fois réduite
de moitié, passer au chinois, puis poursuivre la réduction,
jusqu’au sirop. Après la cuisson des médaillons de kangou-
rou, déglacer la poêle avec très peu d’eau et ajouter les sucs
de cuisson à la marinade réduite. Laisser réduire à nouveau
au sirop. Baisser le feu et incorporer la confiture de cassis
et le beurre par petits morceaux en remuant constamment.
Ajouter une vingtaine de pepperberries et ajuster l’assaison-
nement.

Le kangourou

Essuyer les médaillons soigneusement avec du papier
absorbant. Cuire les médaillons dans une poêle anti-

adhésive très chaude avec très peu de beurre clarifié. Juste
saisir les médaillons des deux côtés, le kangourou mariné de-
vant être d’une tendreté exceptionnelle, les morceaux doivent
rester bleu à saignant. Laisser reposer sous aluminium au
four à 60◦ juste le temps de terminer la sauce, et incorporer
le jus resultant du repos à la sauce.

Disposer dans chaque assiette un carré de chaque fruit
et de chaque légume, en formant un arlequin. Placer

la rose des sables, le médaillon de kangourou, un filet de
sauce, quelques pepperberries, les fruits rouges et les grains
de raisin tièdes. Décorer des quelques fines lanières de zeste
d’agrumes.



Chapter 6

Modes in MOFs

6.1 Introduction

The application of the multipole method as described in Chapters 3 and 4 to a given MOF
structure gives a very large number of modes, all of which are generally leaky1. Among these,
some modes - as for example the fundamental mode - are of much greater importance than
others for applications. Others may seem to have no importance at all at certain wavelengths
in certain structures, but may become useful, or a nuisance, at other wavelengths or in different
structures. In the next Chapters we will investigate this through following mode properties
with varying wavelength or fibre parameters, but to be able to do so, it seems a prerequisite
that these modes can be identified in a clear, unquestionable manner.

The usual classification for conventional fibres, using the HE, EH, TE and TM denomi-
nations, was established for waveguides of C∞v symmetry and for perfectly guided modes.
The use of this classification can be extended to leaky modes if these are considered as being
guided modes below cutoff [3, Sec. 24], but not to guides of symmetries other than C∞v.

In this Chapter, we discuss how to distinguish, identify and classify MOF modes, mainly
through the Bloch transform. It appears that MOF modes can be divided into two categories:
defect modes and edge dominated modes, having very different properties.

6.2 Identifying Modes

6.2.1 Differences to Conventional Fibres

For conventional fibres, modes are labeled HEν,m, EHν,m, TEm or TMm. The two first catego-
ries, HE and EH, denote modes which are the mth solution to a waveguide equation depending
on ν. This equation factorizes into two independent equations for ν = 0 and the mth solutions
of these two equations are the TMm and TEm modes. As a result, the effective indices of
modes of the same category and same ν follow the same order, regardless of the wavelength.
This order is kept for the real part of neff even below cutoff. One could consider classifying
modes of a MOF in a similar way, following the order of the real part of neff, but it appears
that mode crossing occurs, and that no simple order in the effective indices is preserved when
changing the wavelength or MOF parameters.

1Non-leaky modes can be carried by MOF structures with a low refractive index jacket (n0 < nM).

86
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In conventional fibres, the Ez and Hz fields of a given mode are of the form

Ez(r, θ) = f(λ)Jν(g(λ)r) exp(iνθ) (6.1)

where r and θ are the cylindrical coordinates with origin at the center of the core. For different
wavelengths the field maps are therefore related to each other through a simple scaling, and
modes can be identified through the scaled field maps. This is no longer possible for MOFs:
the relative weight of Fourier-Bessel coefficients of different inclusions can vary through several
orders of magnitude with varying wavelength, so that the same mode at different wavelengths
has no recognizable specific shape.

6.2.2 Similar Modes of Similar Structures

To give an idea of the difficulty of classifying modes ab initio, Fig. 6.1 gives a few examples
of modes encountered in MOFs. All modes are of symmetry class 1, for a structure with
d/Λ = 0.75 (frames B and H) or d/Λ = 0.45 (all other frames) and Nr ranging from 1 to 4.

Increasing the number of rings increases the number of modes (the number of possible
resonances of the cladding structure increases with the number of inclusions)2 and modifies
the modes, but one would expect that modes confined in the core remain similar with increasing
Nr. Mode A should therefore remain if we increase Nr, but when considering the modes of
the same structural parameters with Nr = 2, two modes (C and D) are similar to mode A.
For Nr = 3 we again have two modes (E and F) which have field distributions comparable to
mode A. For Nr = 4, three modes (G, I and J) could be seen as a generalization of mode A.

If we only consider the field maps, one would be inclined to say that modes C, E and G
are the most similar to mode A. This would be supported by considering the similar mode
for a structure with d/Λ = 0.75, shown in frames B and H. But if we consider the trajectory
of neff with varying Nr and expect a steady behaviour,3 the choice of mode I instead of G for
Nr = 4 seems a more “logical” choice.

Mode A is the mode of symmetry class 1 with the lowest losses for the considered MOF.
If this property was to be conserved with increasing Nr, modes D, F and J would be the
candidates for continuing mode A with increasing Nr.

As shown in this example a simple look at the field distributions and the effective indices
does not allow an obvious identification of modes. The increasing number of similar modes
with increasing Nr could lead to the suggestion that the approach of finding similar modes
for different values of Nr is not sensible. There is no obvious reason other than intuition
that a confined mode will remain confined with increasing Nr, or that we can define a one
to one ascending correspondence of modes with Nr. Indeed Nr is a discrete parameter, and
it is therefore difficult to see whether two modes for different values of this parameter are in
some way related. There could also be a mode splitting between two values of Nr, so that for
example modes G, H and I reduce to mode A if Nr is decreased.

Note that in the preceding paragraphs we used the notion of “confined modes” in an
intuitive way, arguing that a confined mode should remain confined with increasing Nr. One
would indeed expect the losses of a confined mode to decrease with increasing number of

2The number of leaky modes being a discrete infinity, it is actually the density of modes in neff space which
increases, cf. section 2.4.

3This might seem slightly arbitrary, but it is a priori not more arbitrary than looking at graphic similarities
in field maps... Our approach here is to demonstrate that simple arguments for classifying the modes are not
suitable.
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Nr |Ez| |Hz| <(Sz) |Ez| |Hz| <(Sz)

1 A: neff = 1.38820 + ı 5.36−3 B: d/Λ = 0.75, neff = 1.34654 + ı 6.47−4

2 C: neff = 1.38009 + ı 3.22−3 D: neff = 1.39744 + ı 1.45−3

3 E: neff = 1.39117 + ı 1.65−3 F: neff = 1.40110 + ı 6.30−4

4 G: neff = 1.38658 + ı 1.54−3 H: d/Λ = 0.75 neff = 1.34668 + ı 1.11−11

4 I: neff = 1.39638 + ı 8.89−4 J: neff = 1.40285 + ı 3.23−4

Figure 6.1: Selection of MOF modes with increasing number of rings. Except for frames B and
H all field maps are for d/Λ = 0.45. All modes belong to the symmetry class 1. (λ = 1.55µm,
Λ = 2.3µm.)
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A B C D E

F G H I J

Figure 6.2: Total Bloch transform of the modes of Fig. 6.1.

rings, as the tunneling width increases. “Better confined” modes should therefore somehow be
associated with lower losses. The examples of modes G and J contradict this intuition, and
raise the question of the definition of a “confined” mode when all modes are leaky.

6.2.3 Using the Bloch Transform

Fig. 6.2 shows the total Bloch transform of the modes shown in Fig. 6.1. Admitting that the
shape of the Bloch transform is characteristic of a mode, it now appears that modes A, D, F
and J are of the same type, and that the modes in frames B and H were indeed of the same
type as the one in frame A for a different hole size. Note that in this example the criterion
of the mode being the one with the lowest losses within the symmetry class 1 identified the
modes correctly, but other examples not shown here have proven that the order of mode
losses within a symmetry class is not a reliable criterion for identifying modes. The criterion
of field distribution to identify modes, however, seems completely unreliable: as shown in
this example, the field distribution of a mode with increasing Nr can change drastically. To
investigate this further and check the validity of the Bloch transform criterion, we attempted
to turn Nr into a continuous parameter (Section 6.3), by adding to a structure with Nr rings
an additional ring with inclusions having a refractive index going progressively from nM to 1.
Following the modes through this transformation gave us insights in how modes change when
rings are added. Two distinct behaviours emerged, leading to the notions of defect modes and
space-filling, edge dominated modes.

6.3 Continuous Growth of Rings

Starting from an arbitrary4 structure of air holes in silica, with Nr = 1, Λ = 2.3µm and
d/Λ = 0.15, we defined structures with increasing Nr. For each value of Nr we defined 6
structures differing only by the refractive index of the inclusions of the outer ring, taking the
values ni with i ranging from 0 to 5 and the values of ni given in Table 6.1. The values

4We chose d/Λ to have an a priori single-mode fibre, according to Birks et al. [60], with the aim of finding
a difference in behaviour between the fundamental and the second mode when increasing Nr.
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n0 nM (1.444023621818)
n1 1.428729141173
n2 1.373481986377
n3 1.222011810851
n4 1.070541635325
n5 1.015294480530

Table 6.1: Values of the refractive index of the inclusions of the outer ring. n0 is the refractive
index of silica at λ = 1.55 µm.

Figure 6.3: Real part of neff of modes of symmetry class 1 as a function of the corrected
number of rings Ñr

were chosen following a sigmoid distribution between nM and 1, so that the steps between
refractive indices are smaller near the extrema, as we suspected that the most radical changes
would happen when the inclusion “appeared” out of nowhere, the number of inclusions being
suddenly increased. We computed the modes for each of these structures at λ = 1.55 µm, and
followed the mode trajectories in neff space. To reflect the introduced continuity of Nr, we
define, for a structure with Nr layers of true holes (having refractive index 1) surrounded by
a layer of inclusions with index ni, the corrected number of rings Ñr as:

Ñr = Nr + 1− ni − 1
nM − 1

. (6.2)

6.3.1 Mode Trajectories and Identification

Fig. 6.3 and 6.4 show the real and imaginary part respectively of the effective indices of modes
of symmetry class 1 as a function of the corrected number of rings. We first note that, as
expected, the number of modes found in the neff region used increases with the number of
rings. Expecting a smooth behaviour of neff with Ñr for each mode, we also note that some
modes seem to be missing for a few values of Ñr, reflecting the fact that the number of points
computed in the initial determinant map was not large enough. Refining the determinant map
in the regions where modes are missing would give us these modes, but it turned out that
the available modes were enough for the intended study. Using figures 6.3 and 6.4 we tried to
follow mode trajectories with increasing Ñr to identify modes. This led straightforwardly to
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Figure 6.4: Imaginary part of neff of modes of symmetry class 1 as a function of the corrected
number of rings Ñr

the trajectory marked A in both figures, corresponding to modes depicted in Fig. 6.5, which
shows clearly that the shape of the total Bloch transform is conserved. From the analysis
of the Bloch transform we also established trajectory B, which does not seem as “smooth” as
trajectory A, and would probably not have been found considering solely the mode trajectories.
Fig 6.6 shows the modes of trajectory B: their Bloch transform is centrosymmetric, showing
an annulus around the center. This kind of Bloch transform can not be explained in terms of
a mode resulting from a discrete superposition of Bloch waves, and is therefore very likely to
be linked to the defect, although it seems not confined in the defect.

Another example of a mode which seems to be linked to the defect is the fundamental mode,
shown in Fig. 6.7. The fundamental mode is defined as the one having the largest <(neff) of
all modes, and has also the lowest loss.5 For the considered structures, it is a degenerate pair
of modes of symmetry classes 3 and 4. In contradiction to the previous modes, for which the
field distributions were extending over the whole cladding structure regardless of the number
of rings, the fundamental mode remains confined near the core with increasing Nr. Its total
Bloch transform shows a single peak centered on the origin, which implies a zero Bloch vector:
this implies that all multipolar coefficients are in phase, but as we have seen in Chapter 5,
the finite extent of the mode is related to Fourier-Bessel coefficients decaying away from the
defect, so that the mode is not a single Bloch wave but must be a defect mode.

6.3.2 Evolution of Mode Properties

As mentioned above, the mode trajectories A and B in Fig. 6.3 and 6.4 differ in the fact that
trajectory A is relatively smooth, whereas trajectory B shows peaks in the real and imaginary
parts of neff between two integer values of Ñr. These ripples in the trajectories are also found
for the fundamental mode. To investigate this further and analyse the decrease of losses with
Ñr we followed the mode of trajectory A and the fundamental mode with increasing Ñr up to
Ñr = 10. Fig. 6.8 shows the mode trajectories we obtained. Along the whole trajectory the
fields of mode A extend over the entire cladding region, whereas the fields of the fundamental

5The fact that the fundamental mode has the lowest losses was observed in all examples studied. Ne-
vertheless we are not aware of any theorem which would prove that this is the case for all imaginable MOF
structures.
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Ñr |Ez| |Hz| <(Sz) BT

2
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4

Figure 6.5: Modes of trajectory A of Figs. 6.3 and 6.4.

Ñr |Ez| |Hz| <(Sz) BT

2

3

4

Figure 6.6: Modes of trajectory B of Figs. 6.3 and 6.4.
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Ñr |Ez| |Hz| <(Sz) BT

2

3

4

Figure 6.7: Fundamental mode of the same structures as in Figs. 6.5 and 6.6. The modes
shown are of symmetry class 4, their degenerate counterpart of symmetry class 3 not being
shown.

mode remain confined around the core. For a confined mode one would expect to have an
exponential decrease of the losses with Nr.

First we only take into account integer values of Ñr (in which case Nr = Ñr). The decrease
of the losses with Nr seems almost exponential for both modes for Nr > 5, where the loss
curves in the semi-log plot are almost straight lines. Analyzing the same curves in a log-log
plot and fitting them to exponential or power rule functions showed that the decay of losses
can not be described by either of these functions. We will understand in Chapter 7 that
this results from an unfortunate choice of fibre parameters, but that losses of confined modes
generally decay exponentially with Nr, whereas extended modes have a more complex decay
which can locally be approximated by a power law.

We now consider all values of Ñr: The ripples in the trajectories between two integer values
of Ñr exist for both modes studied, although they are much stronger for the fundamental mode.
It was quite surprising at first to see that adding a layer of lower index inclusions, i.e. increasing
the effective thickness of the confining structure, results at first in an increase of the losses.
This effect can be explained invoking an index matching effect: when the outer inclusions have
a higher index than air, the outer layer has an averaged index which lies between that of the
jacket and that of the cladding, which can result in index matching behaviors similar to anti-
reflection coatings. The losses then decrease only if the effect of increasing the thickness of the
confining structure is more important than the index matching effect. With the interpretation
used, it can be predicted that an exterior layer with smaller holes could also increase the losses.
As experimental MOFs tend to have smaller holes in the outer layers because of the drawing
process, it is worth checking this effect. To do so, we added to a two layer structure a third
layer of holes with different diameters. Fig 6.9 shows the imaginary part of neff as a function
of de/d, where de is the diameter of the holes in the outer layer, and d is the diameter of all
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Figure 6.8: Real and imaginary part of neff as a function of the corrected number of rings for
the fundamental mode and the mode of trajectory A in Figs. 6.3 and 6.4.

other holes. We see that when adding a ring with increasing hole size, the losses increase at
first before decreasing towards the value of the losses for a larger number of rings. It is worth
noting that in the case shown, the holes on the outer layer need to be at least half as large as
the other holes before an actual decrease of the losses can be expected.

6.3.3 Extended and Localized Modes

Other modes found for the fibres all entered in one of the categories illustrated above: they
all appeared to be either modes resulting from a discrete superposition of Bloch waves or to
be defect modes which could be localized or space filling.

The first kind of modes seems to result from a superposition of Bloch waves selected by
resonance conditions between the borders of the cladding structure. The properties of those
modes should be largely unaffected by the presence, absence or nature of the defect, but must
be sensitive to the exact shape of the cladding structure’s boundaries. By increasing the size
of the shape by an integer number of layers, these modes remain, although the resonating
Bloch vectors can change slightly. The fields of these modes extend over the whole cladding,
regardless of the number of layers. These modes will not have an exponential decay of the
losses with the number of layers. We will call these modes extended modes.

The second kind of modes, the localized defect modes, must be quite sensitive to the nature
of the defect. Their fields decay away from the defect, they are likely to have an exponential
decay of the losses with increasing number of rings, and if the boundaries of the cladding are
far enough away from the core, their properties should be largely independent of the shape of
the cladding’s boundaries.

The remaining modes, appearing to be defect modes from their Bloch transform but which
extend in the whole cladding region, seem less well defined; they are certainly dominated by
the limits of the MOF structure as their fields reach the cladding boundaries, but it is not
clear how far they are indeed defect dependent. We will see in the Chapter 7 that these modes,
when varying the MOF parameters, can undergo a cutoff transition to become localized defect
modes. We will therefore call these modes extended transition modes.

The interpretation of the modes in terms of Bloch waves or defect modes can be easily
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Figure 6.9: Imaginary part of neff for a structure with two rings of holes of diameter d = 0.15Λ
and a third ring of holes of diameter de. Λ = 2.3 µm, λ = 1.55 µm. The point at de/d = 0
corresponds to the structure with two rings only.

checked by varying the boundaries of the cladding, or by altering the defect as the following
experiments show.

Shape Dependence

To check the mode dependence on the shape of the boundaries of the cladding structure, we
tried to find similar modes to the ones studied above for structures with same fibre parameters
but with different cladding boundaries. Fig. 6.10 shows the fundamental mode in a MOF with
three different cladding boundaries. Note that in the rectangular and non-symmetric cases
the degeneracy is lifted and two almost degenerate fundamental modes coexist, of which only
one is shown. As expected for a localized defect mode, the fields, the Bloch transform and the
effective index change only slightly for the different cladding shapes.

In contrast, the extended mode A used in the previous paragraphs does not survive intact
when the boundaries of the cladding are changed. Fig. 6.11 shows the modes found for the
considered structures which are most similar to mode A: note that the peaks of the Bloch
transform have similar positions in the Brillouin zone for all modes shown, but that some
peaks are missing, and that the new configuration of peaks now respects the symmetry of the
cladding boundaries rather than the symmetries of the lattice. For the rectangular cladding
boundary we could find two modes for which the Bloch transform peaks are a subset of the
Bloch transform peaks of mode A, but as these modes are not degenerate, their superposition
is not a mode of the MOF. Note also that the changes in effective index between the modes for
the different structures are much more important for these modes than for the fundamental
mode.

Defect Dependence

Fig. 6.12 shows mode A for a MOF with 5 rings of holes, with and without defect: the fields
as well as the effective index are only very slightly altered by the presence or absence of the
defect. Fig. 6.12 also shows the same mode for a structure with a displaced defect. The mode
is not affected by the position of the defect. As predicted, this kind of mode depends mainly
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|Ez| |Hz| <(Sz) BT

No symmmetries: neff = 1.436771 + ı 1.408× 10−4

Rectangular: neff = 1.436849 + ı 1.120× 10−4.

Hexagonal, Nr = 5, for comparison: neff = 1.436745 + ı 1.508× 10−4.

Figure 6.10: Fundamental mode for MOFs with different cladding shapes. For all structures
Λ = 2.3 µm, d/Λ = 0.15, λ = 1.55 µm.

on the boundaries of the cladding structure, and is only weakly affected by defects.
Fig. 6.13 shows the fundamental mode for a MOF with 5 rings of holes, with and without

defect, as well as the fundamental mode of a MOF with 6 rings of holes and a displaced
defect. When there is a defect, the mode remains localized around it. In the absence of a
defect, the mode fills almost the entire fibre and becomes an extended mode. In this example,
the difference in neff between the mode in a MOF with and without defect is surprisingly
small for both the real and the imaginary part. As we mentioned earlier the choice of fibre
parameters for these example was somewhat unfortunate, and we will see in Chapter 7 that
for other fibre parameters the defect becomes vital for defect modes.
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|Ez| |Hz| <(Sz) BT

No symmmetries: neff = 1.401741 + ı 4.128× 10−3

Rectangular: neff = 1.392219 + ı 1.930× 10−3.

Rectangular: neff = 1.393549 + ı 2.906× 10−3.

Hexagonal, Nr = 5, for comparison: neff = 1.393327 + ı 3.189× 10−3.

Figure 6.11: Modes equivalent to mode A for MOFs with different cladding shapes. For all
structures Λ = 2.3 µm, d/Λ = 0.15, λ = 1.55 µm.
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|Ez| |Hz| <(Sz) BT

Displaced defect: neff = 1.393212 + ı 3.2179× 10−3

No defect: neff = 1.393203 + ı 3.208× 10−3.

With central defect, for comparison: neff = 1.393327 + ı 3.189× 10−3.

Figure 6.12: Modes equivalent to mode A for MOFs with a central defect, a displaced defect
or no defect at all. For all structures Λ = 2.3 µm, d/Λ = 0.15, λ = 1.55 µm.
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|Ez| |Hz| <(Sz) BT

Displaced defect (6 rings): neff = 1.4368414 + ı 1.095× 10−4

No defect: neff = 1.436286 + ı 2.542× 10−4.

With central defect, for comparison: neff = 1.436745 + ı 1.508× 10−4.

Figure 6.13: Fundamental mode for MOFs with a central defect, a displaced defect or no
defect at all. For all structures Λ = 2.3 µm, d/Λ = 0.15, λ = 1.55 µm.
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Fromage :

Chèvre Frais, Raisin Chasselas, Tuile au Thé Vert

Goat’s Cheese, Chasselas Grape, Green Tea Tuile

Pour 6 personnes :

500 g de chèvre frais
500 g de raisins chasselas

Pour les tuiles

30 g de farine
125 g de sucre glace

50 g de beurre
15 g d’amandes effilées

20 g de thé vert

Peler et épépiner les raisins. Détailler le chèvre frais en 6
tronçons de 8 cm de diamètre et 1 cm de haut. Hacher

très grossièrement le raisin.

Hacher finement la moitié du thé vert. Laisser infuser
l’autre moitié dans 50 g d’eau frémissante. Laisser refoi-

dir. Faire fondre le beurre. Hacher grossièrement les amandes
effilées. Meler la farine et le sucre glace dans une jatte. Ajou-
ter les amandes et le thé vert haché, puis incorporer peu à
peu en fouettant l’infusion de thé vert passée au chinois, puis
le beurre. Laisser prendre au frais.

Déposer des tas d’une cuillerée à café de cette prépa-
ration sur une plaque de cuisson recouverte de papier

cuisson. Veiller à bien espacer ces tas. Enfourner au four
préchauffé à 160◦C. Laisser cuire 7 à 8 minutes, jusqu’à bru-
nissement partiel. Laisser refroidir une dizaine de secondes,
puis détailler des disques de 8 cm de diamètre à l’emporte
pièce. Conserver au sec.

Recouvir chaque disque de fromage de chèvre d’une
couche de concassée de chasselas, et disposer par dessus

une tuile au thé vert. Servir sans attendre.



Chapter 7

Modal Cutoff

Some results of this Chapter have been published in Refs. [94] and [95].

7.1 Introduction

One of the earliest known and most exciting properties of MOFs is that they can be endlessly
single-mode [60]. However, as we have mentioned earlier, a MOF where a finite number of
rings of holes is solely responsible for the confinement of light carries an infinite number of
modes, all of which are leaky. From the beginning of our work we wanted to understand
how this apparent contradiction could be lifted. Our first approach [84] was to consider the
relative losses of modes: If losses of the different modes of a MOF are such that after a given
length of propagation all modes except for one have faded away, the MOF can be considered
to be single-mode for that length of propagation. Such a definition of single modedness was
unsatisfactory in several ways: not only does it depend on the actual length of propagation,
but it also depends on the number of rings of holes. Indeed we have mentioned (and will
study in more detail in the present Chapter) that the losses of all modes decrease with the
number of rings, so that for an infinite number of rings no MOF can be single-mode. We
have also seen that some modes fill the entire cladding, so that for an infinite number of rings
they become completely delocalized, which is far from what is generally understood as being
a propagating mode of a fibre. This will lead us to consider a new, more restrictive definition
of a MOF mode, taking into account something resembling a “degree of confinement”. Our
approach to investigate those concepts was to consider a confined higher order mode of an
“obviously” multimode MOF, in which more than two modes having low losses are strongly
confined in the core, and track this mode while changing as continuously as possible the MOF
parameters towards those of a MOF being endlessly single-mode according to Birks et al.
[60]. Doing so we were able to identify a cutoff for the second mode, and clarify the endlessly
single-mode regime predicted by Birks et al. Out of curiosity, we undertook the same kind
of study for cladding filling modes and for the fundamental mode, and discovered that the
fundamental mode undergoes a cutoff as well. However, the cutoff of the fundamental mode
turned out to be somewhat different in nature from the cutoff of the second mode. Using
analytic asymptotic models we gained further understanding of the nature and importance of
the cutoff, and isolated a subregion of the MOF parameter space in which interesting MOF
properties are most likely to be found.

101
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Figure 7.1: Real and imaginary part of the effective index of the first mode of symmetry class
1 as a function of d/Λ. Letters A-F mark the positions of the frames of Fig. 7.2. Λ = 2.3 µm,
λ = 1.55 µm.

7.2 Modal Cutoff of the Second Mode

7.2.1 Towards the Endlessly Single-Mode Fibre

As mentioned in the introduction, we started our studies through analysing the changes a
confined higher order mode of a multimode MOF undergoes when the MOF parameters are
continuously modified towards those of a single-mode structure. To do so we considered three
structures with Λ = 2.3 µm, d/Λ = 0.75 and Nr =4, 6 and 8, at a wavelength of 1.55 µm, and
followed the first confined mode of symmetry class 1 while reducing d/Λ down to a value of
0.25.1 By the first mode of symmetry class 1 we mean the mode of symmetry class 1 with the
highest real part and lowest imaginary part of neff.2 When confined in the core, it is similar3

to the TM1 mode of conventional fibres. With all classes of symmetry taken together, it is, for
this particular MOF, the third mode in descending order of <(neff),4 the second mode being
a mode of symmetry class 2 we will consider later in this Chapter. Note that according to
Birks et al. [60] below d/Λ ' 0.4 the MOF should be endlessly single-mode, so that the mode
considered should no longer be guided. Fig. 7.1 shows the real and imaginary parts of neff as
a function of d/Λ, while Fig. 7.2 shows the power density plots and total Bloch transforms for
Ez and Hz for different values of d/Λ for the 6 ring MOF.

Fig. 7.1 shows a dramatic change of slope of the imaginary part of neff as a function of
d/Λ around d/Λ ' 0.6. This change of slope is accompanied by a sudden increase in the mode

1To follow the mode with varying diameter or pitch we used the method described in section 4.4. Particular
care was taken to check that the observed behaviour did not result from mode crossing.

2We have mentioned earlier that mode crossing does occur in MOFs, so that this definition is ambiguous.
Nevertheless it is not ambiguous when the fibre is “obviously multimode”, i.e. when several modes are obviously
well confined in the core. The mode crossing only occurs between modes which are not well confined. Note
that the definition of “confined” is detailed in the present Chapter.

3cf. Appendix H. Field maps of this mode can be found in Fig. 6.6.
4As already mentioned several times, the order of <(neff) can not be used to classify modes, as mode

crossings occur: for the MOF studied in Section 4.5.1 the third mode in order of <(neff) is of classes of
symmetry 5 and 6 (cf. Table 4.1).
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<(Sz) BT (Ez) BT (Hz)

A: d/Λ = 0.75, neff = 1.346679 + ı 1.829× 10−16

B: d/Λ = 0.6186, neff = 1.370568 + ı 1.420× 10−7

C: d/Λ = 0.5765, neff = 1.379255 + ı 3.042× 10−5

D: d/Λ = 0.5555, neff = 1.384149 + ı 6.115× 10−5

E: d/Λ = 0.5344, neff = 1.388826 + ı 7.809× 10−5

F: d/Λ = 0.2609, neff = 1.426646 + ı 2.297× 10−4

Figure 7.2: Carried power density and total Bloch transforms of the first mode of symmetry
class 1 for several values of d/Λ along Fig. 7.1. Letters A-F refer to the points marked on
Fig. 7.1. Note that the Bloch transforms for E and H are very different in frame A, which
results from the fact that, when localized, the mode is monopole dominated (cf. Chapter 5,
footnote 6).
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size (Fig. 7.2, frames B to E), marking a transition between confined and cladding filling
states, whereas the mode shape and size remain stable with varying d/Λ on either side of this
transition. We note further that for d/Λ . 0.6, when the mode fills the entire cladding, the
real part of neff depends on Nr, whereas this doesn’t seem to be the case when the mode is
well confined in the core. The dependence of the imaginary part on d/Λ on the contrary seems
less affected by the value of Nr when the mode fills the cladding than when it is confined in
the core, resulting in an increased sharpness of the change of slope with increasing Nr. Note
that the value of d/Λ where the transition occurs doesn’t seem to change with Nr – we will
study this in more detail in section 7.2.3.

These observations lead to the hypothesis that going from a “multimode” MOF towards
a “single-mode” MOF by reducing d/Λ, the actual total number of modes is not altered, but
that confined higher order modes undergo a transition towards an unconfined, cladding filling
state. A single-mode MOF would then be a MOF in which only the fundamental mode is
confined, all other modes being cladding filling.

7.2.2 Characterization of the Transition – Definition of Cutoff

From the preceeding comments it seems that defect modes can be in two states: one in which
the fields are confined in the core, and another in which the fields extend over the whole
cladding region. The transition occurring between these states is somewhat reminiscent of the
modal cutoff of conventional fibres,5 which occurs either when varying fibre parameters (core
size or index) or when varying the wavelength. We have observed the transition when varying
d/Λ at fixed λ/Λ, but the value of d/Λ at which the transition occurs will depend upon λ/Λ.
Conversely at fixed d/Λ we expect to observe a similar transition when varying λ/Λ, at least
when the MOF is not endlessly single-mode.

In this section we study in more detail the transition of the technologically more important
second mode6 occurring at fixed d/Λ when varying λ/Λ. We vary the latter quantity through
changing the pitch and keeping the wavelength constant at λ = 1.55 µm so that the refractive
index of silica keeps a constant value of nM = 1.444024, and will do so throughout this
Chapter. Note that since λ is constant, =(neff) and the geometric loss coefficient are directly
proportional and we will use the word losses as a synonym for =(neff).

In Fig. 7.3, we display a number of characteristic fibre parameters as a function of λ/Λ, for
a geometry with d/Λ = 0.55. First, the loss is shown for 4, 8 and 10 ring geometries (curves
(1) to (3)), with the transition becoming more acute with an increasing number of rings, but
remaining at a fixed λ/Λ ratio. To make the transition more evident, we have calculated the
second derivative of the logarithm of the loss with respect to the logarithm of the pitch (Q)
(curve 4).

Q =
d2 log(=(neff))

d log(Λ)2
(7.1)

This exhibits a sharp negative minimum giving an accurate value for the transition. Next, we
5Note that this transition also reminded us of Anderson localization transitions in random media and Mott

conductor/insulator transitions, but the analogies with these phenomena remain to be elucidated.
6Similarly to what we did for the third mode, we define the second mode as the mode which, in an “obviously

multimode” MOF (i.e. where more than one mode is obviously confined) has second highest <(neff) and second
lowest =(neff). The second mode is of class of symmetry 2. When it is confined in the core it is similar to the
TE1 mode of conventional fibres, cf. Appendix H.
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Figure 7.3: Variation of different physical quantities during the transition, for a MOF with
d/Λ = 0.55 used at λ = 1.55 µm. Curves (1) to (3) are =(neff) for 4, 8 and 10 rings, curves
(4) to (7) are Q, Reff/Λ, Aeff/Λ2 and M as defined in the text, for Nr = 8. The points (a-d)
indicate the position of the field plots of Fig. 7.4.
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show the normalized effective radius Reff/Λ (curve 5) where

Reff =
∫∫

r2Sz(r, θ)drdθ∫∫
rSz(r, θ)drdθ

, (7.2)

with Sz denoting the real part of the component along the fibre of the Poynting vector, and
the normalized effective area [4] Aeff/Λ2 (curve 6), where

Aeff =

(∫∫ |E|2dr)2

∫∫ |E|4dr . (7.3)

In both cases the integrals are taken over the structured cross section of the fibre only, because
for leaky modes, the fields diverge at infinity [3]. Parameters Reff/Λ and Aeff/Λ2 change,
respectively, by 1 and 2 orders of magnitude at the transition, with the effective area curve
being less smooth due to numerical errors.

The last indicative quantity M (7) shown in Fig. 7.3 is the ratio of the magnetic field
monopole coefficient (B(H)

0 ) to the magnetic field dipole coefficient (B(H)
1 ) for a cylinder in

the first ring of the MOF geometry. This exhibits a well defined minimum just below the
transition, at which the magnetic field is almost exclusively dipolar.

In Fig. 7.4 we show the spatial variation of the fields for the mode above (a) during
(b,c) and below (d) the transition. Above the transition (a), the mode is well described (cf.
Chapter 6 and Ref. [68]) as a space-filling cladding resonance. Its electric and magnetic fields
are predominantly dipolar around each inclusion, and the magnitude of the Poynting vector
decreases to small values in smooth fashion both at the center and near the edge of the MOF
structure. During the transition, its Sz distribution rapidly contracts (b,c), before stabilizing
in a localized state (d). It is worth noting that when localized, the losses seem to decrease
exponentially with the number of rings, whereas when the mode is space-filling, the decrease
follows a power law; we will study the dependency of the losses on Nr in more detail in
section 7.2.3.

According to Fig. 7.3, the nature of the mode changes quantitatively and qualitatively in
a well defined narrow region. We identify this with the cutoff of the mode.

All the quantities used in Fig. 7.3 can be used to define a cutoff point, either through the
locus of their minimum (Q, M) or through the locus of the extrema of their derivatives (Aeff/Λ2,
Reff/Λ). We have found that Q is in fact the most sensitive indicator of the transition, and we
will keep the locus of this minimum as a definition of the locus of the cutoff; an asymptotic
analysis of the transition (section 7.4) will underpin this choice. In what follows the locus of
the cutoff will refer to the locus of the Q minimum.

7.2.3 Scaling Properties

In the previous sections we have seen that the locus in parameter space where the cutoff occurs
doesn’t seem to depend on Nr, and further that the width of the transition decreases with
increasing Nr. We also noted that the losses as a function of Nr follow different rules in the
two different states of the mode. In this section we study these observations in more detail.

Cutoff Locus

Fig. 7.5 shows the locus of the transition of the second mode of three MOF designs with
different d/Λ, as a function of N−b2

r . b2 is an arbitrary positive coefficient adjusted to get
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|Ez| |Hz| <(Sz) BT (Ez)

(a): λ/Λ = 0.810, neff = 1.372409 + ı5.204 × 10−5

(b): λ/Λ = 0.599, neff = 1.394026 + ı1.572 × 10−5

(c): λ/Λ = 0.537, neff = 1.401100 + ı4.918 × 10−6

(d): λ/Λ = 0.445, neff = 1.412521 + ı1.306 × 10−9

Figure 7.4: Field distributions and total Bloch transform of the second mode across the
transition. The letters in brackets refer to the points marked on Fig. 7.3. For all structures
d/Λ = 0.55, λ = 1.55 µm.
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the best straight-line behaviour of the datasets. We see that the locus of the cutoff slightly
depends on Nr, but that it seems to converge when Nr approaches infinity (i.e. when N−b2

r

approaches 0). The conclusion we draw from this observation is twofold: Firstly, the cutoff
is not an artefact resulting from the finite cross section of the fibre but an intrinsic property
of the mode, secondly the locus of the cutoff obtained for finite values of Nr is a reasonable
approximation for the locus of the cutoff for any value of Nr.7
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Figure 7.5: Normalized wavelength at cutoff as a function of N−b2
r for the second mode, for

three values of d/Λ. Here b2 ' 1.07. The cutoff wavelength clearly converges with increasing
Nr.

Transition Width and Sharpness

Fig. 7.6 shows, for the same MOF structures as in Fig. 7.5, the half-width of the peak of Q as
a function of N

−bw
2

r , where bw
2 is again an arbitrary positive coefficient adjusted to obtain the

best straight-line behaviour of the datasets. Regardless of d/Λ, the peak becomes narrower
with increasing Nr and tends to an infinitely narrow peak when Nr approaches infinity. Note
that simultaneously the magnitude of the peak increases. To illustrate this, we define the
quantity I as the half-width multiplied by the magnitude of the minimum, a quantity roughly
proportional to the area of the peak and therefore to the change of slope of log(=(neff)) as
a function of log(Λ) between the confined and unconfined states. Fig. 7.7 shows the inverse
of I as as function of N

−bs
2

r , where the positive coefficient bs
2 has been adjusted for the best

straight-line behaviour of the datasets. 1/J approaches zero when Nr approaches infinity,
in other words the change of slope of the transition becomes infinite when the system size
becomes infinite. Fig. 7.8 shows an enlargement of the preceding figure (yet with slightly
different bs

2) to demonstrate the divergence of I for d/Λ values of 0.55 and 0.65.
7Note that conclusions concerning large (Nr > 10) and infinite number of rings in this section result from

extrapolations and cannot be considered as being rigorously proven.
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Figure 7.6: Width of the cutoff of the second mode as a function of the number of rings
for three different values of d/Λ. The depicted quantity is the half-width of the Q peak as
a function of N

−bw
2

r . Here bw
2 ' 1.55. The width of the cutoff transition goes to zero with

increasing number of rings.
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Figure 7.8: Enlargement of an equivalent of Fig. 7.7, but with bs
2 ' 1.57.

Losses

Figs. 7.9 and 7.10 show the imaginary part of the effective index as a function of the number
of rings for the second mode of a MOF with d/Λ = 0.55, for two different values of λ/Λ. The
values of λ/Λ have been chosen so that the mode is clearly in the confined (λ/Λ = 0.378) or
unconfined (λ/Λ = 1.50) states. In the confined state, the losses clearly decrease exponentially
with Nr as is illustrated by the straight-line behaviour in the semi-logarithmic plot of Fig. 7.9.
The curve superimposed on the data points shows the result of a fit to an exponential decay
function

=(neff) = a exp(−bNr) . (7.4)

The fit is excellent and gives a ' 9.923 × 10−4 ± 0.4% and b ' 2.443 ± 0.05%. In the
unconfined state, the losses do not decay exponentially: the points in the semi-logarithmic plot
of Fig. 7.9 are not in a straight line. The fact that they are on a straight line in a logarithmic
representation (Fig. 7.10) suggests they follow a power law. The curve superimposed to the
data points for the unconfined mode results from a best fit with a power law of the type

=(neff) = cN−d
r . (7.5)

The fit is not as good as the previous one but still more than satisfactory (and by far better than
a fit with an exponential decay function applied to the same data). We obtain c ' 0.121±3.8%
and d ' 2.65± 1%.

Conclusions and Interpretation in terms of Band Diagrams

In the confined state, the second mode is well localized in the defect and losses decay expo-
nentially with the number of rings. In the cladding filling state the mode extends across the
whole structured region of the MOF, and the decay of losses with the number of rings roughly
follows a power law. The locus of the transition between these states, which we identify with
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Figure 7.9: Imaginary part of the effective index as a function of the number of rings, for
the second mode of a MOF with d/Λ = 0.55 in the confined (λ/Λ = 0.378) and unconfined
(λ/Λ = 1.50) states with λ = 1.55 µm. The y-axis is in logarithmic scale, whereas the x-axis
is linear.
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the cutoff of the mode, is largely independent of the number of rings, but the transition beco-
mes increasingly sharp when adding rings of holes. The phenomenon we identify as the cutoff
is intrinsic to the mode and not due to the finite size of the system. Note that in the case of a
MOF with infinite number of rings, i.e. a single defect in an infinite photonic crystal, the mode
in its extended state would fill the entire photonic crystal, and would therefore be identified
with a mode of one of the bands of the photonic crystal, whereas when confined the mode
would be identified as a defect mode, its propagation constant being necessarily in a photonic
bandgap. In terms of band diagrams, the transition we observe is one between a state with
propagation constant in a bandgap and one with propagation constant in a band [96]. Indeed,
we could verify that the transition occurs when neff ' nFSM, where nFSM is the effective index
of the fundamental space filling mode [97] i.e. the largest effective index a mode propagating
in the infinite photonic crystal can have.

7.2.4 Second Mode “Phase Diagram”

Now that we have seen that the cutoff is an intrinsic property of the second mode, it makes
sense to try to establish a map of the locus of the cutoff in parameter-space. With that in
mind, we carried out the studies introduced in section 7.2.2 for 8-ring MOFs with 14 values
of d/Λ ranging from 0.405 to 0.75.8 The resulting loss curves are shown in Fig. 7.11. The
transition remains sharp for d/Λ > 0.45, whereas for d/Λ < 0.45 the transition becomes more
and more gradual, disappearing entirely at around d/Λ ' 0.40. We established the loci of
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Figure 7.11: =(neff) as a function of wavelength/pitch, for a structure of 8 rings of holes in
silica at a wavelength of λ = 1.55 µm for several diameter-to-pitch ratios. =(neff) decreases
monotonically with increasing d/Λ, as this parameter takes the values 0.40 (1), 0.41, 0.42,
0.43, 0.45, 0.46, 0.48, 0.49, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75 (14).

the transition using all the mentioned criteria; the results are summarized on Fig. 7.12. This
8Note that for selected values of d/Λ we also carried out studies with Nr ranging between 3 and 10, which

confirmed the results of the previous section.
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figure can been seen as a “phase diagram” of the second mode: The (d/Λ, λ/Λ) parameter
space is partitioned by the cutoff curve; the mode is in a confined state in the lower right
partition, and in an unconfined state elsewhere.
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Figure 7.12: Phase diagram of the second mode. The different curves correspond to different
definitions of the transition point. The dotted curve shows the fit from Eq. (7.7). The squares
represent the values for the cutoff published by N. A. Mortensen in Ref. [98]. In the upper
region the fundamental mode is the only one confined in the defect, which corresponds to a
single-mode regime. In the lower region the second mode is confined and the fibre is therefore
dual moded. For d/Λ < 0.45 the increasing discrepancy of the different definitions is due to
the decreasing sharpness of the transition for finite systems. The dashed vertical line shows
the approximation to the limit of the endlessly single-mode regime. Note that values used to
establish this diagram come from simulations with Nr = 8.

On Fig. 7.12 we also added points N. A. Mortensen found for the cutoff in Ref. [98] (squares
between d/Λ = 0.47 and d/Λ = 0.5). His study, the first to analyse modal cutoff in a fully
vector treatement in MOFs, used plane wave methods with the supercell approximation and
was based on the sudden increase of the effective area of the second mode. Above d/Λ = 0.45,
all criteria agree on a tightly defined transition curve. Below 0.45, the different criteria become
individually more or less difficult to apply, because of the decreasing sharpness of the transition
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for finite systems.
Quantity Q remains a sensitive indicator of the transition down to near the value where

the transition ceases to occur. Fig. 7.13 shows the value of Q at its minimum as a function of
d/Λ. To find the intersection of this curve with the x-axis, i.e. the point where the transition
ceases to occur, we fit a power law of the form

f(x) = a(x− b)c (7.6)

to this data. Although the fit is not exceptionally good, the range of possible values for b is
quite narrow: we find b ' 0.406±0.003. Below this d/Λ ratio, Q remains positive everywhere:
there is no negative Q peak. The result of the fit is shown in Fig. 7.14, where we depict the
value of Q at its minimum as a function of d/Λ − b along with f(x + b) in a log-log scale.
For d/Λ < 0.406 ± 0.003 the second mode is always space filling, the fundamental mode is
the only one to be confined,9 and this regardless of the wavelength: the MOF is endlessly
single-mode. Mortensen [98, 99] uses a value of d/Λ = 0.45 for the limit of the endlessly
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Figure 7.13: Value of Q at the cutoff as a function of d/Λ.

single-mode regime, but our investigation is for finite MOF geometries, whereas Mortensen
used periodic boundary conditions, and had fewer points to extrapolate this value. A best fit
for the data (Q minimum) of Fig. 7.12 gives the single mode/dual-mode boundary as

λ

Λ
' α(d/Λ− 0.406)γ (7.7)

with α = 2.80 ± 0.12 and γ = 0.89 ± 0.02. Recent experimental work by Folkenberg et al.
[100] strongly corroborates this cutoff curve. Further, Mortensen et al. recently found results
in excellent agreement with the above fit using a different theoretical approach, adapting the
usual fibre parameter V to MOFs [101].

9The confinement of the fundamental mode will be studied in the next section.
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7.3 Modal Cutoff of the Fundamental Mode

Conventional optical fibres are always able to propagate at least one mode: there is no cutoff
for the fundamental mode. It is nevertheless a well-known fact that W-fibres can have a cutoff
for the fundamental mode [50]. Given the analogies which can be drawn between MOFs and
W-fibres, it wouldn’t be surprising to find a cutoff for the fundamental mode, at least in MOFs
consisting of a finite number of rings of holes. In the case of MOFs with an infinite number
of rings (single defect in an infinite photonic crystal) the analogy with W-fibre doesn’t hold,
and it is difficult to predict a priori whether the fundamental mode will undergo a cutoff or
not. In this section we show that the fundamental mode undergoes a cutoff at least when
Nr is finite. Using scaling laws we also investigate fundamental mode cutoff properties when
Nr approaches infinity, and find that it is very likely that the fundamental mode undergoes a
cutoff even for an infinite number of rings.

7.3.1 Observation of the Cutoff

Figs. 7.15 and 7.16 are the equivalent of Figs. 7.3 and 7.4 for the fundamental mode of a MOF
with d/Λ = 0.3. Similarly to what we observed for the second mode, the slope of the curve
of the losses as a function of λ/Λ in the log-log plot changes rapidly in a narrow region of
λ/Λ space. This change of slope is accompanied by a rapid variation of the field distributions.
For large values of λ/Λ the mode has a large effective radius, it is cladding filling, and has
high losses only weakly depending on the number of rings. For small values of λ/Λ the mode
is confined in the core and losses depend more strongly on the number of rings. There are
nevertheless differences with the cutoff of the second mode: the dependence of the locus of
the transition on the number of rings doesn’t seem negligible, and the transition doesn’t seem
to become infinitely sharp with increasing Nr. We also observe that quantity Q goes through
a positive peak before having a negative peak. Indeed the slope of the loss curve for Nr = 3
is similar for small (say λ/Λ < 0.2) and large (say λ/Λ > 0.9) values of λ/Λ, it is only in the
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Figure 7.15: Variation of different physical quantities during the transition of the fundamental
mode, for a MOF with d/Λ = 0.3 used at λ = 1.55 µm. Curves (1) to (4) are =(neff) for 3, 4,
6 and 8 rings, curves (5) and (6) are Reff/Λ and Q for Nr = 3 respectively. The points (a-d)
indicate the position of the field plots of Fig. 7.16.

“transition region” (when approximately 0.2 < λ/Λ < 0.9) that the slope takes a different,
larger value. Note that for the second mode we did not observe this behaviour, but we might
have missed a similar phenomenon which could have happened outside the λ/Λ domain we
investigated in the preceding sections. We will come back to this question in section 7.4.

7.3.2 Scaling Properties

Using the same methods as we used for the second mode, we study the behaviour of the locus
and sharpness of the transition as well as the losses with increasing number of rings. Similarly
to what we have done with the second mode, we concentrate on the negative Q peak, leaving
the study and interpretation of the positive Q peak to subsequent sections.

Locus

We noticed in Fig. 7.15 that the convergence of the locus of the transition with increasing
number of rings is not obvious. Indeed, applying the same methods as in Section 7.2.3 doesn’t
lead to straightforward conclusions. The locus of the minimum of the negative Q peak doesn’t
seem to converge a priori for an infinite number of rings, but the available data doesn’t prove
that this locus diverges either. To be able to conclude as to the convergence or divergence of
the locus of the Q peak, we would need the complete Q curves for values of Nr larger than
8. Unfortunately these become increasingly difficult to get since losses become so small that
the direct evaluation of =(neff) through the multipole method is impossible, and the indirect
evaluation of the losses (cf. Ch. 5) doesn’t give a sufficient precision to get an unbiased second
derivative. Instead of concentrating solely on the locus of the minimum, we therefore also
analysed the behaviour of the loci of the points at which the value of Q is half the value of
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(a): λ/Λ = 0.674, neff = 1.427710 + ı1.281 × 10−8

(b): λ/Λ = 1.41, neff = 1.410578 + ı1.505 × 10−4

(c): λ/Λ = 4.61, neff = 1.389655 + ı8.804 × 10−3

(d): λ/Λ = 6.09, neff = 1.381267 + ı1.881 × 10−2

Figure 7.16: Field distributions and total Bloch transform of the fundamental mode across the
transition. The letters in brackets refer to the points marked on Fig. 7.15. For all structures
d/Λ = 0.3, λ = 1.55 µm. The divergence of Ez and Hz outside the MOF in frames (c) and
(d) is due to the high imaginary part of neff.
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Figure 7.17: Loci of the minimum and half-width points of the negative Q peak as a function
of the inverse of the number of rings (bf = 1), for three values of d/Λ. The curve showing the
locus of the Q minimum is between the two half-width point curves for the same value of d/Λ.

the Q extremum of the peak (half-width points). Fig 7.17 shows the locus of the Q minimum
along with the loci of the half-width points of the peak as a function 1/N

bf
r for several values

of d/Λ.10 Fitting the data to obtain a value of bf resulting in a straight- line behaviour of
the data sets didn’t give satisfying results; the plot has been done with bf arbitrarily set to 1.
For d/Λ = 0.15 the loci of the minimum and of the half width points seem to converge when
Nr approaches infinity. For d/Λ = 0.3 and d/Λ = 0.45 the convergence of the locus of the
minimum is far from being obvious, but the loci of the half-width points seem11 to converge
to finite values, and since the minimum has to be located between the half-width points, it
seems that the locus of the transition does converge, i.e. there is a cutoff even for infinite
systems.

Transition Width and Sharpness

Fig. 7.18 shows, for the same MOFs as in Fig. 7.17, the width of the transition (defined by
the half width of the negative Q peak) as a function of N

−bf
r for three values of d/Λ. Again,

bf is an arbitrary positive coefficient adjusted to obtain the best straight-line behaviour of the
datasets. Unlike what we have seen in Fig. 7.6 for the second mode, for which the transition-
width becomes infinitely small when Nr approaches infinity, the width of the transition of the
fundamental mode converges to a finite value.

Fig. 7.19 shows quantity 1/J –as defined in Section 7.2.3– for the fundamental mode of
MOFs, for three different values of d/Λ. As for the second mode, J diverges with increasing
Nr: the change of slope of =(neff) as a function of λ/Λ in a log-log plot during the transition

10For Nr ≤ 3 the Q peaks are too asymmetric to allow an easy definition of a half-width and accordingly we
left out the corresponding points on Fig. 7.17 .

11There is an apparent convergence, but without more data we cannot be definitive about our conclusions.
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Figure 7.18: Half-width of the negative Q peak as a function of 1/N
bf
r . The width of the peak

converges to a finite value. Here bf ' 2.97.

becomes infinite for infinite Nr. We will discuss the meaning of this in connection with the finite
transition width for infinite systems in Section 7.5 once we have gained a better understanding
of the cutoff-transition through asymptotic models.

Losses

Fig. 7.20 and Fig. 7.21 show the imaginary part of neff as a function of the number of rings
for the fundamental mode of a MOF with d/Λ = 0.45, for two different values of λ/Λ. The
values of λ/Λ have been chosen on each side of the negative Q peak, so that the mode is
clearly in the confined (λ/Λ = 1.01) or unconfined (λ/Λ = 3.1) states. In the confined state,
the losses decrease exponentially with Nr as is illustrated by the straight-line behaviour in
the semi-logarithmic plot of Fig. 7.20. The curve superimposed on the data points shows the
result of a fit to the exponential decay function given in Eq. (7.4). As for the second mode, the
fit is excellent and we obtain a ' 2.092×10−2±0.9% and b ' 2.162±0.1%. In the unconfined
state, the losses as a function of the number of rings are a straight line in full logarithmic scale
(Fig. 7.21), and fitting the data to the power law of Eq. (7.5) results in c ' 0.402 ± 6% and
d ' 2.57± 1.6%.

As for the second mode, losses of the fundamental mode decay exponentially with the
number of rings when the mode is confined, whereas they decay following an approximate
power law when the mode is cladding filling.

Conclusion

The fundamental mode of MOFs undergoes a transition between confined and unconfined
states, which we identify with the cutoff of the mode. The locus in parameter space of the
cutoff depends on the number of rings, but it seems that this locus converges with increasing
number of rings. In the confined state, losses decrease exponentially with the number of
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Figure 7.19: 1/J as a function of 1/N
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r for three different values of d/Λ. Here bf ' 1.26.
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Figure 7.20: Imaginary part of the effective index as a function of the number of rings, for the
fundamental mode of a MOF with d/Λ = 0.45 in the confined (λ/Λ ' 1.01) and unconfined
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Figure 7.21: Same as Fig. 7.20, but with logarithmic scales on both axes.

rings, whereas is the unconfined cladding filling state, losses decrease with the number of rings
following an approximate power law.

For the second mode we identified the locus of the cutoff with the negative Q peak. This
made sense since the width of this peak approaches zero for infinite number of rings. For
the fundamental mode, the width of the negative Q peak remains finite for infinite Nr and it
becomes difficult to define a cutoff point. The cutoff transition spreads on a range of λ/Λ,
and it would be more accurate to speak of a transition region.

Moreover, we have observed another, positive, peak preceding the negative peak on the Q

curves. We haven’t studied the properties of this second peak yet, nor have we been able to
give a satisfying interpretation of either of the peaks.

7.4 Asymptotic Analysis of Cutoffs

With the aim of obtaining better insights into the physics of the cutoff, we develop asymptotic
models of the guidance in MOFs for large and small values of the normalized wavelength λ/Λ.
The qualitative predictions we will obtain from these models will allow us to understand the
meaning of both the Q peaks marking the cutoff, to explain the scaling properties of the
transition and to give a definition of a cutoff point for the fundamental mode. The latter will
enable us to establish the “phase-diagram” of the fundamental mode.

The asymptotic models will also enable us to conclude as to the evolution of numerous
modes properties with increasing number of rings. Notably, we will establish that mode pro-
perties as for example chromatic dispersion converge with increasing Nr for confined modes,
but diverge for unconfined modes, that the decay of losses with Nr is exponential for confi-
ned modes whereas it follows an approximate power law for unconfined modes. The better
understanding of the physical nature of the unconfined and confined modes will also lead us
to predictions concerning mode sensitivity to structural flaws or bend losses. Finally, we will
see that the fundamental mode “phase-diagram” can be used to predict properties of more
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complex MOFs, e.g. with cores consisting of more than one missing inclusion or with hole
sizes differing from one layer to another.

7.4.1 Asymptotic Model for Long Wavelengths: CF1 Model

Homogenization

When the wavelength is much longer than all characteristic lengths of the MOF micro-
structure, homogenization arguments can be used: For λ À Λ the structured part of the
MOF behaves like a homogenous uniaxial material, the extraordinary axis being parallel to
the axis of the fibre. Indeed, homogenization theory predicts an effective dielectric constant
given by the mean of the dielectric constants of air and silica for the electric field parallel to
the fibre axis, whereas the Maxwell-Garnett formula can be used to derive effective constants
for the transverse electric field component [102, 103]. With f being the air filling fraction of
the fibre we have:

n̄z =
(
fn2

i + (1− f)n2
M

)1/2 (7.8)

n̄⊥ ∼= nM

(
T − f

T + f

)1/2

(7.9)

where T =
n2
M + n2

i
n2
M − n2

i
.

Note that (7.9) results from the Maxwell-Garnett formula, which is accurate only for small
d/Λ. For larger d/Λ values, better approximations can be derived e.g. from homogenization
theories using higher order multipolar expansions of the fields [104,105].

Equivalent MOF

In the frame of homogenization, the exact position of the inclusions becomes irrelevant, and
likewise the central defect loses its importance: the light doesn’t “resolve” the exact structure,
but “sees” only averages. The equivalent structure of a MOF is therefore a single rod of uniaxial
material with refractive index tensor [n̄] following from Eqs. (7.8) and (7.9), surrounded by
an infinite jacket of index nJ = nM. The shape and size of the equivalent rod result from the
outer contour of the microstructured region of the MOF: In our examples the cross section of
the rod would be hexagonal with corners situated at a distance of approximately NrΛ from
the center. We will try an even simpler approximation, using a rod of circular cross section
with radius ρ defined by the distance from the MOF’s center to the edge of the outermost
inclusion:

ρ = NrΛ + d/2. (7.10)

To be consistent with the approximation of the rod shape, we use the filling fraction defined
by the ratio of the total areas of all inclusions divided by the area of the equivalent rod:

f =
Niπ(d/2)2

πρ2
, (7.11)

where Ni is the number of inclusions.
Note that, in our case, where nJ = nM, the components of the refractive index tensor of the

homogenized rod are smaller than the refractive index of the jacket. The equivalent waveguide
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Figure 7.22: CF1 model geometry: conventional step index fibre equivalent to a MOF at long
wavelengths.

consequently doesn’t guide any strictly bounded mode,12 but only leaky, quite lossy modes.
Fig. 7.22 summarizes the model we use for the asymptotic study of MOFs at long wavelengths.
Henceforth we will call this model of an equivalent conventional fibre CF1.

Mode Equation

The equations to find the modes of the resulting uniaxial step index fibre are well established [3,
106]: 13 Introducing the usual fibre parameters

U = ρk0(n̄2
⊥ − n2

eff)
1/2 (7.12)

W = ρk0(n2
J − n2

eff)
1/2 (7.13)

V = ρk0(n2
J − n̄2

⊥)1/2 (7.14)
κ = n̄z/n̄⊥ (7.15)

the eigenvalue equation is

XY =
(

νneff

n̄⊥

)2 (
V

UW

)4

(7.16)

where

X =
1
U

J ′ν(U)
Jν(U)

− 1
W

H
(1)
ν

′
(W )

H
(1)
ν (W )

(7.17)

Y =
κ

U

J ′ν(κU)
Jν(κU)

− 1
W

(
nJ

n̄⊥

)2 H
(1)
ν

′
(W )

H
(1)
ν (W )

. (7.18)

ν is any positive integer; the fundamental mode is the first (in order of <(neff)) solution of
Eq. (7.16) with ν = 1, whereas the second mode is the first solution of Eq. (7.16) with ν = 0
(which, in that case, factorizes into X = 0 or Y = 0). Note that all modes being leaky, we
look for complex values of neff satisfying (7.16). There is no easy asymptotic simplification of
these equations for large wavelengths; we will solve them numerically.

12i.e. modes with =(neff) = 0.
13Table 12-12 of Ref. [3] summarizes the necessary equations, but contains several typographical errors,

which we have corrected here. Note that, rather than introducing modified Hankel functions, we use the usual
Hankel functions of the first kind with complex argument, which has led us to redefine W . As a consequence,
the usual relationship V 2 = U2 + W 2 is not satisfied by the fibre parameters we use here.
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Figure 7.23: Real (thick curves) and imaginary part of neff as a function of normalized fibre
radius ρ/λ for MOFs with d/Λ = 0.3 and Nr ranging from 4 to 8. The results for a similar
MOF design with Nr = 3 but without central defect and the results for an equivalent CF1
fibre are shown as well.

Results

In the CF1 model, as soon as Nr & 2, the filling fraction f and hence the homogenized
refractive indices become almost independent of Nr. At fixed wavelength and d/Λ, Eq. (7.16)
then only depends on the total MOF size ρ. In the domain of validity of the CF1 model, we
should therefore find modes with neff almost exclusively depending on NrΛ + d/2. Further,
with a sufficient number of rings, the presence or absence of a defect only slightly affects f
and [n̄]. At long wavelengths, the modes should become largely unaffected by the presence,
absence, or position of a defect in the lattice. In Fig. 7.23 we show the real and imaginary
part of the effective index of the fundamental mode of several MOF structures with same
d/Λ = 0.3 but different Nr, with and without a defect, as a function of ρ/λ, along with the
values of neff resulting from Eq. (7.16). Here we used Nr = 8 to compute the equivalent
filling fraction f in Eq. (7.11). The agreement between the CF1 model and the individual
MOFs is excellent for the real and imaginary parts of neff as soon as λ/Λ & 2. For shorter
wavelengths, the losses for the MOF without defect remain close to the losses computed from
the CF1 model, while all other MOFs start to have significantly smaller losses. Discrepancies
in the real part of neff for λ/Λ . 2 become noticeable even for the MOF without defect: the
homogenization argument doesn’t hold for short wavelengths. Note that the value of λ/Λ at
which homogenization starts to give accurate results is remarkably small, but it should be
kept in mind that the important quantity for homogenization arguments in the CF1 model is
the perpendicular wavelength-to-pitch ratio:

λ⊥
Λ

=
2π

<(k⊥Λ)
=

1
<((n2

M − n2
eff)

1/2)
λ

Λ
, (7.19)

where k⊥ = (2π/λ)(n2
M − n2

eff)
1/2 is the perpendicular wavenumber in the core. In Fig. 7.24

we show the perpendicular wavelength as a function of the normalized fibre size ρ/λ for the
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Figure 7.24: Real part of neff (thick curves) and normalized perpendicular wavelength λ⊥/Λ in
the core as a function of normalized fibre radius ρ/λ for the same structures than in Fig. 7.23.

same structures as in Fig. 7.23, along with the real part of neff: Agreement between the
homogenized model and the MOFs with a central defect is reached when (λ⊥/Λ) & 7. For the
λ⊥/Λ curve given for the CF1 model, we used the value of the pitch derived from Eq. (7.10)
with Nr = 8. Similar studies for other values of d/Λ, for the fundamental as well as the second
mode, confirmed the validity of the CF1 model at long wavelengths; results remain accurate
with the Maxwell-Garnett approximation for values of d/Λ at least up to 0.45. Higher order
estimates of n̄⊥ can be used for larger values of d/Λ. Note that the value of n̄⊥ is only
important for quantitative studies; qualitative results are not affected by errors on n̄⊥. One
of the qualitative results of the CF1 model is that, as suggested by the straight-line behaviour
of the loss curve for the CF1 model in Fig. 7.23, the loss as a function of fibre size follows an
approximate power law. When the CF1 model is valid, Q therefore takes a near zero value.
Conversely, the negative peak observed for Q before this quantity takes a near zero value for
large λ/Λ indicates the limit of validity of the CF1 model. We shall call µCF1 the value of λ/Λ
at which the CF1 model becomes valid.14

We emphasize that the main result of the CF1 model is that mode properties at fixed
wavelength and d/Λ depend solely on the total fibre size ρ for large wavelengths: for the
same values of Λ and d, mode properties will therefore be sensitive to the number of rings;
mode properties such as dispersion will not converge with increasing number of rings. Losses
are generally very high since guidance results from a rod of lowered index in a matrix of
larger refractive index. They decrease with the number of rings, but they do so following
an approximate power law. Note that for conventional fibres at long wavelengths bend-loss
can become a limitation. Since in the frame of the CF1 model geometric losses are already
prohibitive, the bend-loss should not be the limiting factor.

Finally, note that although agreement is generally good between results from the CF1
14Since a quantitative definition of µCF1 would necessarily be arbitrary, we choose not to give such a definition.

Nevertheless, we assume that a coherent, unique definition of µCF1 is used throughout the remainder of this
thesis. Qualitatively we associate µCF1 with the upper bound of the λ/Λ region supporting the negative Q

peak. For small transition widths it is therefore close to the upper half-width point of the negative Q peak.
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model and simulations using the multipole method for large wavelengths, one should not
expect to obtain accurate results – especially for second order quantities such as the dispersion
– from the CF1 model since the approximations made, in particular as to the shape of the
equivalent rod, are quite coarse.

7.4.2 Asymptotic Model for Short Wavelengths: CF2 Model

Fundamental Space-Filling Mode

For short wavelengths, MOFs have already been successfully modeled by several authors as
step index fibres with varying cladding index [60–62,97]. In the so-called effective index model,
a solid core MOF is modeled by an equivalent circular step index fibre consisting of a core
(refractive index nM) of radius ρc surrounded by a cladding extending to infinity with refractive
index nFSM. nFSM is defined by

nFSM = βFSM/k0 (7.20)

where βFSM is the largest propagation constant allowed in the cladding15 or equivalently the
propagation constant of the fundamental space-filling mode (FSM).

The idea behind this model is to draw analogies between total reflection at the interface
between two dielectrics and at the interface between a 2D-photonic crystal and a dielectric.
If we consider a plane interface perpendicular to Ox between two dielectrics 1 and 2 with
refractive index n1 and n2 respectively, a plane wave in region 1 with wave vector k1 =
n1k0û1 = αêx + βêz can propagate in region 2 only if β ≤ n2k0. n2k0 is the largest allowed
propagation constant for a plane wave in region 2. If β > n2k0, the wave in region 1 is totally
reflected. In the case of a plane interface perpendicular to Ox between a dielectric and a
periodic array of cylinders parallel to Oz, the situation is very similar: the band structure of
the photonic crystal determines all possible modes propagating in it, the one with the largest
component along Oz is the fundamental space-filling mode; its propagation constant is βFSM.
If a plane wave in the dielectric has a component of the wave vector along Oz which is larger
than βFSM it cannot couple to any propagating mode in the photonic crystal: the wave in
the dielectric is totally reflected. βFSM/k0 therefore determines the “effective index” of the
photonic crystal for total reflection. The guiding mechanism in step index fibre being total
internal reflection, choosing nFSM as the cladding index is a natural choice.

The accurate value of nFSM can be extracted from the band diagrams for the infinite
lattice computed e.g. through multipole [107, 108] or plane wave methods [64] . Birks et
al. [60] suggested a simplified model to compute nFSM, illustrated by Fig. 7.25:

The method results from the geometric properties of the FSM. The FSM’s wavevector is
parallel to the cylinders. Its Bloch vector is zero, it has the same symmetries as the photonic
crystal itself. There must therefore be field components which are symmetric along the borders
of the Wigner-Seitz unit cell. Using a scalar approximation with wavefunction ψ this results
in

∂ψ

∂s
= 0 (7.21)

where s is a coordinate perpendicular to the border of the unit cell. We approximate the
15Or rather in the infinite photonic crystal consisting of the array defined by the cladding: In our case an

infinite hexagonal array of circular holes with same d and Λ.
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Figure 7.25: Computing nFSM for the CF2 model: Equivalent unit cell.

hexagonal border of the unit cell by a circle with radius ρuc (see Fig. 7.25), so that we have

∂ψ

∂r

∣∣∣∣
r=ρuc

= 0 , (7.22)

where we use cylindrical coordinates centered on the inclusion under consideration. We choose
ρuc to keep the original filling fraction of the array of cylinders, which results in

ρuc = Λ

(√
3

2π

)1/2

. (7.23)

We can now attempt to justify the scalar approximation: the equivalent geometry we
use is similar to a coaxial guide (light is guided between a perfect reflector at r = ρ and a
lower refractive index core). The fundamental mode of this kind of structure is transverse
electric (TE) (i.e. Ez = 0 everywhere), and for TE modes of circularly symmetric step index
guides, the transverse components Et of E satisfy the scalar wave equation everywhere, which
notably implies the continuity of Et and its first derivatives everywhere, including at the
interface between two regions of different refractive indices. For a detailed discussion, see
Sec. 11-16 of [3] and references cited therein. Note that this clarifies that ψ is a transverse
component of E.

The above justification of the scalar approximation16 might leave the alert reader rightly
suspicious. Although this model has been widely used, Midrio and coworkers have shown [61]
that it is quite approximate, that the fundamental mode of the unit cell is generally not TE,
and that a full vector treatment is needed to get accurate results for nFSM. We nevertheless
chose to use this model for its analytic simplicity. Our aim is to get an asymptotic appro-
ximation of nFSM in order to bring out qualitative properties of MOFs, especially concerning
the losses. If one was to consider getting quantitative results from this kind of model, the
asymptotic treatment we apply below to the scalar equations can be applied to the analytic
full vector treatment suggested by Midrio et al. [61]. However, even in the full vector case,
approximations and arbitrary parameters (such as the choice of ρuc) remain, so that results
could only be semi-quantitative.

To find the equation satisfied by nFSM, we expand the fields in Fourier-Bessel series around
the center of the inclusion. Inside the inclusion we have

ψ =
∑

n

A−n Jn(k−r) exp(ınθ) (7.24)

16...and of the external boundary conditions.
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and outside the inclusion we have

ψ =
∑

n

(
A+

n Jn(k+r) exp(ınθ) + B+
n H(1)

n (k+r)
)

exp(ınθ), (7.25)

with

k+ = k0(n2
M − n2

FSM)1/2 (7.26)

k− = ık0(n2
FSM − n2

i )
1/2 . (7.27)

Given the symmetries of the sought mode, the sums are over multiples of 6 only: n ∈ 6Z. Since
we look for an approximate value of neff and have approximated the boundaries of the unit cell
by a circle, it is sensible to neglect values of n ≥ 6, so that only Bessel and Hankel functions
of order 0 remain. Eq. (7.22) together with the continuity of ψ and ∂ψ/∂r at r = a = d/2
give the eigenvalue equation of the FSM:

k+J0(k−a)
k−J ′0(k−a)

=
J ′0(k

+ρuc)H
(1)
0 (k+a)−H

(1)
0

′
(k+ρuc)J0(k+a)

J ′0(k+ρuc)H
(1)
0

′
(k+a)−H

(1)
0

′
(k+ρuc)J ′0(k+a)

(7.28)

Asymptotic Value of nFSM

Knowing that nFSM approaches nM when λ approaches 0,17 we look for an asymptotic expansion
of nFSM for short wavelengths taking the form

nFSM ' nM − νFSM

(
λ

ρuc

)2

. (7.29)

Note that for reasons of time symmetry, odd orders in such an expansion are absent, so that
Eq. (7.29) is the lowest order expansion of nFSM.

Using Eq. (7.29) we find asymptotic values of k+ and k−:

k− = ı
2π

λ
δ + O

(
λ

ρuc

)
(7.30)

k+ =
2π

ρuc
(2νFSMnM)1/2 + O

((
λ

ρuc

)2
)

, (7.31)

where δ = (n2
M − n2

i )
1/2. Consequently −ık−a approaches ∞ when λ approaches 0. We use

asymptotic expansion of the Bessel and Hankel functions [82] to simplify the left hand side of
Eq. (7.28) and find

k+J0(k−a)
k−J ′0(k−a)

' λ

√
2nMνFSM
δρuc

. (7.32)

The left hand side of Eq. (7.28) hence approaches 0 when λ approaches zero. On the contrary,
k+ approaches a constant finite value when λ approaches zero, so that the right hand side of
Eq. (7.28) also approaches a finite limit when λ tends to zero. Equating the limits, we obtain

H
(1)
0

(
(a/ρuc)2π

√
2nMνFSM

)
J ′0(2π

√
2nMνFSM)−

H
(1)
0

′
(2π

√
2nMνFSM)J0

(
(a/ρuc)2π

√
2nMνFSM

)
= 0 . (7.33)

17Indeed at short wavelengths the light tends to become completely confined in the high index region.
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Figure 7.26: CF2 model: Geometry of the conventional W-step index fibre equivalent to MOFs
at short wavelengths.

Introducing x = 2π
√

2nMνFSM and q = a/ρuc and using the differentiation formulas for Hankel
and Bessel functions, Eq. (7.33) can be written

H
(1)
0 (qx)

J0(qx)
=

H
(1)
1 (x)

J1(x)
. (7.34)

The smallest real positive root of this equation gives us the sought value of νFSM = (x/2π)2/(2nM).
We compared nFSM obtained through the asymptotic model to exact computations of nFSM

resulting from rigorous band diagram computations, and to solutions of the scalar model
described above without the asymptotic approximations.18 It appears that the scalar model
without asymptotic approximations gives satisfactory values of nFSM for Λ/λ & 3,19 and that
the asymptotic scalar model gives correct values of nFSM within a few percent compared to
the exact value of nFSM as soon as the scalar model becomes valid.

Equivalent MOF: the CF2 Model

Fig. 7.26 summarizes the model we use for MOFs at short wavelengths: a solid rod with circular
cross section (radius ρc) and refractive index nM (the core) is surrounded by a homogeneous
annulus with refractive index nFSM (the cladding). Brechet et al. [62] studied the best value
for the radius of the rod to obtain most accurate results and found that ρc should be taken
to be 0.64Λ. For the outer radius of the annulus we use the radius used in the CF1 model
ρ = NrΛ+d/2. Outside the annulus the refractive index is nM and extends to infinity (jacket).
The equivalent CF2 fibre is similar to a W-fibre with same refractive index for the core and
the jacket. Note that with decreasing wavelength the difference between all refractive indices
becomes arbitrarily small, so that we can use the scalar approximation. We take the scalar
mode eigenvalue equation and estimate the losses of the equivalent fibre from Ref. [50] and
apply an asymptotic treatment similar to the one used to find nFSM.

Eigenvalue equation We use an asymptotic estimate of neff similar to Eq. (7.29):

neff ' nM − νf

(
λ

ρc

)2

. (7.35)

18i.e. nFSM obtained through solving directly Eq. (7.28).
19Note that the value of Λ/λ from which the model becomes valid depends on d/Λ. We will detail this in

subsequent sections.
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The transverse wavenumbers in the core and the jacket (kM
⊥), and in the cladding (kclad)

become

kM
⊥ = k0(n2

M − n2
eff)

1/2 =
2π

ρc
(2nMνf)

1/2 + O
(
(λ/ρc)

2
)

(7.36)

kclad = k0(n2
FSM − n2

eff)
1/2 = −ı

2π

ρc
(2nM(ν̃FSM − νf))

1/2 + O
(
(λ/ρc)

2
)
, (7.37)

where we have introduced ν̃FSM = (ρc/ρuc)2νFSM. Note that both transverse wavenumbers
are independent of λ to the first order in λ/Λ. Replacing the transverse wavenumbers in the
scalar eigenvalue equation for HE modes of W-fibres in the scalar approximation (Eq.(23) of
Ref. [50]) by their asymptotic values, we find the eigenvalue equation satisfied by νf:

H
(2)
1 (sw)

H
(2)
1 (w)

[
J(u)−H(1)(w)

] [
H(2)(su)−H(2)(sw)

]

− H
(1)
1 (sw)

H
(1)
1 (w)

[
J(u)−H(2)(w)

] [
H(2)(su)−H(1)(sw)

]
= 0 , (7.38)

where

u = 2π(2nMνf)1/2 (7.39)

w = −ı2π [2nM(ν̃FSM − νf)]
1/2 (7.40)

s =
ρ

ρc
(7.41)

J(z) =
J0(z)
zJ1(z)

(7.42)

H(i)(z) =
H

(i)
0 (z)

zH
(i)
1 (z)

. (7.43)

Note that this equation is valid for HE1,µ modes only, and consequently cannot be used for
the second mode. Eq. (7.38) can be solved numerically with conventional equation solvers.
The smallest νf found will be the one for the fundamental mode. Given that we do not aim to
obtain quantitative results, we will not study comprehensively the solutions to this equation.20

We can nevertheless use the eigenvalue equation (7.38) to analyse the behaviour of modes
with increasing number of rings Nr, i.e. with increasing s. Using asymptotic expansions of the
Bessel and Hankel functions for large arguments, it is straightforward to show that Eq. (7.38)
becomes independent of s for large values of s : the first term of the sum approaches zero
exponentially for large s, whereas the second term diverges exponentially with increasing s, so
that only the second term remains for large s. The second term is already factorized; removing
the trivial solutions, the mode equation becomes:21

J(u)−H(2)(w) ' 0 . (7.44)
20Out of curiosity we have solved this equation, along with the asymptotic model to compute νFSM, and found

νf to be accurate to about 20%. For the estimate of the losses (Eq.(7.45)) the inaccuracies are accentuated
and the value of =(w) – which determines the rate of exponential decay of the losses with Nr – we found is
accurate to only ∼ 40%, which is not really surprising given the numerous approximations made.

21Note that this equation is the eigenvalue equation of a simple step index fibre in the weak guidance
approximation, which indeed is identical to a W-fibre with infinite s.
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The first conclusion we can draw from the CF2 model is therefore that at short wavelengths
neff converges with increasing number of rings.

Losses In the previous paragraph we have seen how to obtain an asymptotic estimate of the
real part of neff. To obtain the imaginary part of neff we use the perturbative estimation of
the attenuation coefficient found by Maeda et al. (Eq. (28-29) of Ref. [50] ). Note that the
method used by Maeda et al. to derive the estimate is very similar to the one described in
Sec. 5.1. Using the asymptotic approximation and the coefficients defined in Eqs.(7.39-7.43)
we find to the lowest order in λ/Λ

=(neff) =
2

πρ2
cnMk2

0

∣∣∣∣∣
X

H
(2)
0 (su)

∣∣∣∣∣
2 [

1 +
(

J1(u)
J0(u)

)2
]−1

, (7.45)

where

X =
J(u)−H(1)(w)

J(u)
sH(2)(sw)

H(2)(su)−H(1)(sw)
H(1)(sw)−H(2)(sw)
H(1)(w)−H(2)(w)

H
(2)
1 (sw)

H
(2)
1 (w)

. (7.46)

Note that u and w being independent of the wavelength in our asymptotic approximation
[see Eqs.( 7.39-7.40)], the sole dependence of =(neff) on λ lies in k0 in the denominator of the
first fraction of Eq.(7.45). All other terms are wavelength independent. At fixed d/Λ they
nevertheless depend on the number of rings. With the aim of bringing out the dependence on
the number of rings, we consider an asymptotic expansion of Eq.(7.45) for large s (i.e. large
Nr) and obtain:

=(neff) ' A

(
λ

ρc

)2

exp
[
2

ρ

ρc
=(w)

]
, (7.47)

where A depends on νf, νFSM, nM but not on ρ or λ/Λ.
At short wavelengths the imaginary part of the effective index of the fundamental mode

is proportional to the square of the wavelength, and at short wavelengths and large number
of rings =(neff) decays exponentially with the number of rings.

Bend loss When the CF2 model is valid, the critical bend radius Rc at which bend loss
becomes large varies as [60]

Rc ∝ ρ3
c

λ2
. (7.48)

Rc increases with decreasing wavelength, so that in practice the fibre becomes useless for
wavelengths shorter than a short wavelength bend-loss edge. Note that for conventional fibres
– where the difference between cladding and core refractive indices is constant – bend-loss
is a limiting factor at long wavelengths, but not at short wavelengths. In the frame of the
short wavelengths CF2 approximation, no long wavelength bend-loss edge can be predicted.
Using the scalar model without asymptotic approximation leads to a long-wavelength bend-loss
edge [60,109,110] but it appears that this edge is found in a region of parameter space where
the approximation of assimilating a MOF to a conventional fibre becomes questionable.22

22In the examples we have studied, the large wavelength bend-loss edge found with the scalar approximation
was found to be very close to the cutoff. Indeed the long wavelength bend-loss edge is linked to an increase in
the effective area, which occurs at the cutoff.
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Figure 7.27: Imaginary part of neff as a function of wavelength on pitch, rescaled by (λ/Λ)2,
for a silica structure with 3 rings of holes, with d/Λ taking the values 0.075 (top curve), 0.15,
0.3, 0.45, 0.6, 0.75, 0.8 and 0.85. (Figure obtained by varying Λ, with λ = 1.55 µm for silica
MOFs.)

Region of validity

Given the numerous approximations needed to establish the CF2 model, it is difficult to predict
a priori the value µCF2 of λ/Λ from which the model becomes qualitatively valid.23 We here
adopt a heuristic approach.

When the CF2 model is valid, =(neff) is proportional to the square of the wavelength and
therefore Q = 0. Fig. 7.27 shows =(neff)/(λ/Λ)2 as a function of λ/Λ in a log-log plot, for
MOFs with Nr = 3 and several values of d/Λ. The curves tend to a constant for approximately
λ/Λ < 0.3, indicating clearly that the asymptotic dependence becomes valid for reasonable
wavelength to pitch ratios.24 In Fig. 7.15, curve (6), representing Q, approaches zero after
a positive peak with decreasing λ/Λ: the lower limit of the peak corresponds to the limit of
validity of the CF2 model.

We have seen that the imaginary and real parts of neff converge with increasing Nr. The
model actually gets more accurate with increasing Nr, since nFSM is a value coming from
infinite photonic crystal properties. Hence, not only should µCF2 converge with increasing Nr,
but it should even do so towards a larger domain of validity of the CF2 model. Unfortunately
it is difficult to verify this assertion directly through analysing loss curves computed through
the multipole method. Indeed losses are already extremely small at λ/Λ = µCF2 for small
values of Nr: for Nr > 3 they rapidly become smaller than what can numerically be estimated
through the multipole method. We could nevertheless verify directly (through analysing the
positive Q peak) that µCF2 slightly increases with Nr and eventually seems to converge for

23Again we do not give a quantitative definition of µCF2. See, mutatis mutandis, footnote 14.
24Note that what we have shown is that =(neff) varies as (λ/Λ)2 when the CF2 model is valid. Here we

assume that the CF2 model is valid when =(neff) varies as (λ/Λ)2, but we haven’t rigorously proven this
reciprocal assertion.
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values of d/Λ < 0.15. For d/Λ > 0.15 losses are too small to obtain a complete positive Q

peak for Nr > 4.

CF2 model and long wavelengths

We have derived the CF2 model using asymptotic expansions for short wavelengths and ob-
viously cannot use it for long wavelengths. The model, without the asymptotic approximati-
ons, has nevertheless been used for long wavelengths (e.g. in Refs. [60, 97] and many others)
and it was argued that for long wavelengths nFSM should converge to n̄z given by Eq. (7.8).
This is true for the same homogenization reasons we used in Section 7.4.1 for the CF1 mo-
del. It is however arguable to use the geometry of Fig. 7.26 at long wavelengths, since the
core is connected to the matrix and homogenization arguments must be applied to the whole
structure, including the core (which leads to the CF1 model).

CF2 Model for the Second Mode

The CF2 model was established and detailed for the fundamental mode. For the second mode,
the eigenvalue equation (7.38) and the loss formula (7.45) have to be adapted. The correct
equations for the second mode nevertheless keep similar asymptotic behaviour for small λ/Λ
and large Nr, so that qualitative results such as the exponential decay of =(neff) with Nr and
the proportionality of =(neff) to (λ/Λ)2 remain valid.

7.5 Interpretation of the Cutoff

7.5.1 Fundamental Mode

We have now acquired sufficient knowledge to try to explain the features observed in Fig. 7.15
(see also Fig. 7.28):

Loss and Q Curves Revisited

At short wavelengths (CF2 model), =(neff) varies as (λ/Λ)2. The curve of =(neff) as a function
of λ/Λ is therefore a straight line in the log-log plot, and Q = 0. For large wavelengths
the CF1 model becomes valid and =(neff) as a function of λ/Λ is an approximate power
law: the =(neff) curve again becomes an approximate straight line and Q ' 0. There is
nevertheless a remarkable difference between the CF1 and CF2 models: in the former, losses
vary following an approximate power law dependence on Nr, whereas in the latter case, losses
decrease exponentially with Nr.25 The difference in losses between the two asymptotic regimes
therefore increases nearly exponentially with increasing Nr. Since µCF2 and µCF1 converge with
increasing Nr,26 the region of λ/Λ in which the losses have to go from those of the CF2 model
to those of the CF1 model keeps a finite width, whereas the range covered by the losses in
that region diverges in the log-plot with increasing Nr: The slope of the loss versus normalized
wavelength curve has to diverge at least at one point between µCF2 and µCF1 with increasing

25Note that we have already directly observed this behaviour in Section 7.3.2.
26We remind the reader that we could only conclude as to the convergence of µCF1 and µCF2 for values of

d/Λ < 0.15. We assume here that there is convergence for larger values of d/Λ as well. See the disclaimer at
the end of the section.



CHAPTER 7. MODAL CUTOFF 134

Transition Region CF1

Cutoff Point

CF2

C
u

to
ff

 R
eg

io
n

λ/Λ

10−4

µCF1µCF2

10−8

-10

0

10

20

30

0.01

3 rings 4 rings 5 rings

1

=(
n
eff

)

Q

0.1 1 10 100
-50

-40

-30

-20

Figure 7.28: The different operation regions of a MOF. The curves show Q and =(neff) for
MOFs with 3 to 5 rings of inclusions and d/Λ = 0.3. The locus of the Q extrema delimit the
cutoff region. The boundaries of the transition region are determined by the limit of validity
of the CF1 and CF2 models.
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Nr.27 This is reflected in quantity Q: When in the region of validity of the CF2 model, Q ' 0.
With increasing λ/Λ, the slope of =(neff) versus λ/Λ increases when leaving the CF2 regime,
resulting in Q taking positive values. When entering the CF1 regime the slope has to decrease
rapidly, resulting in a negative Q peak. Between the positive and the negative peaks, the slope
of =(neff) versus λ/Λ is maximum at the point where Q = 0.

Transition Region

The region where Q takes values differing significantly from 0 is a region where neither the
CF1 nor the CF2 models are valid. In that region, which we define to be the transition region,
mode properties cannot be explained in terms of simple step index fibres.

Width of the Transition Region

Further, we have seen that the width of the negative Q peak keeps a finite non-zero value
when Nr approaches infinity. This implies that the transition region keeps a finite, non-zero
width, even for a single defect in an infinite photonic crystal.

In that region mode properties are fundamentally different from those of conventional
step index fibres. The further away we are from the regions of validity of the CF1 and CF2
models, the more non-conventional, potentially interesting mode properties we can expect. It
is between the two Q extrema that the difference from conventional fibres is most important,
and we will show in section 7.6.1 that it is indeed in that region that most interesting MOF
properties have been found or predicted.

Cutoff Point and Cutoff Region

Between the Q peaks, at the point where Q = 0, the slope of =(neff) versus λ/Λ in a log-log
plot diverges with increasing Nr. This implies a discontinuity in mode properties for infinite
systems, and can be used to define a cutoff-point for infinite MOFs. Since we haven’t done so
earlier, we will study the convergence of this important point with Nr in Section 7.5.3. For
finite MOFs the cutoff is nevertheless blurred, and it makes more sense to speak of a cutoff
region. Rather than using what we have called so far the transition region, extending from
µCF2 to µCF1, we arbitrarily define the limits of the cutoff region by the locus of the extrema
of the two Q peaks. This is indeed the region of most drastic changes in modal properties.
Fig. 7.28 summarizes the different operation regions defined above superimposed on loss and
Q curves for a MOF with d/Λ = 0.3.

Mode Properties in the Cutoff Region

Since the cutoff-region seems to be the most interesting for MOFs, it is worth considering a
few properties we can expect in that region.

Convergence of properties with Nr At the long wavelengths end of the transition region,
mode properties derived from <(neff) (e.g. dispersion) depend on Nr, so that we can expect
mode properties to become increasingly sensitive to the actual number of rings when approa-
ching the long wavelength limit of the cutoff region. When simulating MOFs in the cutoff

27But the slope doesn’t need to diverge everywhere between µCF2 and µCF2.
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region it is therefore crucial to use methods which are able to deal with MOFs of finite cross
section. In particular methods using supercell approximations –which should give accurate
results in the whole CF2 region– should be used with care in the cutoff region.

Confinement It is in the cutoff region that the effective mode area increase with λ/Λ is
most accentuated. In the CF2 region the mode is well confined in the core. Entering the
cutoff region, the field distribution starts to expand; this implies that the fields start to
become sensitive to the details of the structure beyond the core. When approaching the long
wavelengths end of the cutoff region the field distribution covers the whole microstructured
region of the MOF, and when entering the CF1 region the mode becomes exclusively confined
by the boundaries of the microstructured region.

Geometric losses The losses are strongly wavelength dependent in the cutoff region. If
MOFs are designed to operate in the cutoff region it becomes very important to check that
geometric losses are acceptable for the whole wavelength range. Since in the transition region
losses are dragged down at the short wavelengths end by the exponential decay of losses with
Nr in the CF2 region, losses decrease (almost) exponentially with Nr in the whole cutoff region.

Bend-loss The effective area increasing abruptly around the cutoff-point, we can expect
bend-loss to become important for the long wavelengths part of the cutoff-region. Nevertheless,
in that region geometric loss generally becomes prohibitive, so that the bend-loss might not
be the limiting factor. This question remains to be studied in detail in connection with the
cutoff.

Sensitivity to structural flaws We have seen that in the CF1 region mode properties are
mainly dictated by the average air filling fraction and by the boundaries of the microstructured
region of the MOF, but are largely insensitive to the exact position and size of inclusions. In
the CF2 region, the mode being well confined, mode properties are quite sensitive to the
geometry of the first ring of inclusions, but a priori are largely unaffected by defects in the
periodicity beyond the first ring of inclusions. In contrast, in the cutoff-region fields extend
beyond the core, but homogenization is not yet effective. Propagation properties become
sensitive to the exact position and size of inclusions beyond the first ring: the sensitivity to
structural flaws is exacerbated, which renders the fabrication of MOFs designed to operate
in that regime particularly challenging. Comparisons between theory and experiments also
become delicate, since smallest differences in the geometry (exact size, shape and position of
each hole) and refractive index distribution between experimental and simulated MOFs could
affect results.

Table 7.1 summarizes mode properties for the fundamental mode in the different parameter
space regions of MOFs. In the transition region, excluding the now well defined cutoff region,
properties can not be predicted by either of the asymptotic models, but properties are not as
dramatically different from those predicted by these models as in the cutoff-region: Between
µCF2 and the lower edge of the cutoff region (maximum of the positive Q peak) properties can
not be predicted by the CF2 model, but properties are still globally similar to those found
in the strict region of validity of the CF2 model. The same applies for the upper part of
the transition region, between the minimum of the negative Q peak and µCF1, where mode
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Properties CF2 Cutoff Region CF1
Mode properties λ/Core size Detailed MOF λ/Fibre size
depend on geometry
Convergence with Nr Exponential Almost No convergence
of <(neff) and derived convergence exponential
properties convergence
=(neff) decrease Exponential Almost exponential Power law
with Nr

Geometric Loss Arbitrarily Small Highly wavelength Very Large
=(neff) ∼ (λ/Λ)2 dependent =(neff) ∼ (λ/ρ)α

Bending loss Short wavelength Long wavelength
bend-loss edge bend loss edge

Mode confinement In core In core and cladding In cladding
Sensitivity to High for flaws High Small
structural flaws concerning the first ring

of inclusions, relatively
small beyond the first
ring

Table 7.1: Summary of mode properties in the different parameter space regions.

properties are globally similar to those predicted by the CF1 model. For simplicity we will
henceforth denote by “CF1 region” and “CF2 region” the whole parameter-space regions where
mode properties are similar to those predicted by the CF1 or the CF2 models respectively,
including the tails of the transition region, so that we will only distinguish between CF1-,
cutoff- and CF2-regions.

7.5.2 Second Mode

Most considerations concerning the fundamental mode can be applied directly to the second
mode. However, we draw attention to a few differences between the fundamental mode and
the second mode cutoffs:

The convergence of the locus of the negative Q peak is much clearer for the second mode
than for the first mode. Further, we have seen that the negative Q peak for the second mode
becomes infinitely narrow when Nr approaches infinity, whereas this peak remains of finite
width for the fundamental mode. The fact that the negative Q peak determining the limit of
the CF1 regime becomes infinitely narrow implies that the point of maximum slope, where
Q = 0 in the transition region, is getting infinitely close to µCF1. This means that in the
case of infinite Nr the CF1 model becomes valid “instantly” at λ/Λ = µCF1, and the cutoff-
point coincides with µCF1 for infinite Nr. In Section 7.2.2 we identified the locus of the cutoff
with the locus of the Q minimum. It appears that the two definitions are equivalent for the
second mode for infinite Nr. We can therefore keep the phase diagram of the second mode we
established in Section 7.2.4 without any changes.28

28Further, since µCF1, the cutoff-point and the locus of the minimum of negative Q peak coincide for infinite
Nr, we are also exempt from studying the convergence of the cutoff-point defined by Q = 0.
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Figure 7.29: Points of maximum slope (Q = 0) of the logarithmic loss plots as a function of
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bf
r . Here bf ' 1.90.

We did not study the behaviour of the positive Q peak when we were studying the cutoff
of the second mode, because we hadn’t discovered it at that time. Looking at Fig. 7.11, it
becomes now obvious that there is a positive Q peak for the second mode as well. Indeed the
slope of the =(neff) versus λ/Λ curve in the log-log plot decreases with decreasing wavelength
before stabilizing when the CF2 regime becomes valid. Although we are confronted with the
same limitations as when studying the evolution of the positive Q peak for the fundamental
mode, from the limited data we have gathered it appears that the locus of the maximum
of the positive Q peak converges with increasing Nr, and also that the width of this peak
remains finite. Hence, even if the portion of the transition region lying between the cutoff
point and µCF1 collapses for infinite Nr, a finite transition region remains between µCF2 and
the cutoff-point, even for infinite Nr.

7.5.3 Study of the Cutoff-Point and Disclaimer

Fig 7.29 shows µC, the locus of the points where Q = 0 between peaks, as a function of 1/N
bf
r

for different values of d/Λ, for the fundamental mode. bf is a positive parameter which has
been optimized to obtain a straight line behaviour of the dataset for d/Λ = 0.15. A rapid look
at the figure could lead to the conclusion that convergence is obvious. On the contrary, the
figure is a perfect example of how choosing the right representation can show exactly what
one wants to see. In fact, fits of the data with power laws are very poor and don’t allow any
extrapolation for infinite Nr. It appeared nevertheless that for d/Λ = 0.075 and d/Λ = 0.15
the data can be fit to an exponentially converging function of the type

µC = a exp(−bNr) + c (7.49)

with very satisfying accuracy. Such a function cannot be represented by a straight line in the
kind of plots used for Fig.7.29. Nevertheless, the fit from Eq. (7.49) leads to the conclusion
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that µC does converge, and that is all we wanted to prove. But for d/Λ = 0.3 and d/Λ = 0.45
we could fit converging, diverging or constant functions with the same degree of unaccepta-
ble inaccuracy. We encounter the same difficulties in concluding about the convergence or
divergence of the locus of the cutoff as we run into in Section 7.3.2. To be able to conclude
definitively we would need data for values of Nr larger than 8.

Further we emphasize that there is no argument to prove a priori that µC has to converge
with Nr: For very large values of d/Λ, the inclusions eventually intersect and fill the whole
microstructured part of the MOF. What remains is a single silica rod in vacuum, for which it
is well established that there is no cutoff for the fundamental mode. It might well be possible
that beyond a certain value of d/Λ the fundamental mode remains confined for Nr = ∞
regardless of the wavelength. The only thing we can be sure of is that this value of d/Λ would
be greater than 0.15.

Having mentioned that, we reassure the reader that, except in the counter-example of
Fig. 7.29, whenever we have used the scaling law diagrams with 1/N−b

r in abscissa, we have
done so in all conscience and with the best intentions. Nevertheless, one should keep in
mind that all results we have mentioned concerning an infinite number of rings ensue from
extrapolations and should not be considered as being unalterable truth.29

To end this disclaimer on a more positive note, we would like to remind the reader that,
although it would have been quite satisfying to find properties intrinsic to a single defect in
an infinite lattice, all experimental MOFs have a finite number of rings.

7.6 MOF Phase Diagrams

7.6.1 Fundamental Mode Phase Diagram

Establishing the Phase Diagram

Fig. 7.30 shows the phase diagram for the fundamental mode. It is somewhat more complicated
than the phase diagram for the second mode, since it includes the curve of cutoff points along
with the boundaries of the cutoff region. We also added the cutoff-curve of the second mode
established in Section 7.2.4, and the locus in parameter space of MOFs with experimentally
established or theoretically predicted interesting properties, which we will discuss in the next
section.

We established the upper limit of the cutoff-region, which corresponds to the locus of the
minimum of the Q curves for different d/Λ, in exactly the same way as we did for the second
mode phase diagram. The corresponding curve in Fig. 7.30 [curve (1)] is the result of a best
fit of the Q minimum data for30 Nr = 4 with a function similar to Eq. (7.6). We find

λ

Λ
= α(d/Λ− b)γ (7.50)

where 0 < b < 0.06, α ' 2.63 ± 0.03 and γ ' 0.83 ± 0.02. With increasing Nr this curve
shifts slightly towards larger values of λ/Λ for d/Λ & 0.3 and towards smaller values of λ/Λ
for d/Λ . 0.3.

29Incidentally, we do not have the pretension of believing that any of the results in this thesis is unalterable
truth.

30Nr = 4 is the largest number of rings for which we could extract the locus of the minimum of Q for values
of d/Λ up to 0.75.
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Figure 7.30: Phase diagram of the fundamental mode. The upper limit of the cutoff region was
established for Nr = 4 whereas the lower limit was established for Nr = 3 due to computational
limitations explained in the text. The cutoff points were extracted from data for Nr = 8
(d/Λ < 0.6), Nr = 4 (d/Λ = 0.6) and Nr = 3 (d/Λ = 0.75). Data sets are described in the
text.

Note that b being very close to 0 it appears that it could well be that at any given value
of d/Λ a confined fundamental mode exists for sufficiently small wavelengths.

The lower limit of the cutoff region [curve (2)] represents the locus of the positive Q

peaks. This curve was established for Nr = 3 because of the numerical limitations we already
mentioned. For the curve of the cutoff-points we have chosen to use the cutoff-points given
by the largest available value of Nr (see Fig. 7.30).

Given that the limits of the cutoff region vary relatively slowly with Nr (cf. Fig.7.17),
although small values of Nr were used to establish Fig. 7.30, the resulting phase diagram
should remain a sufficient approximation31 for larger values of Nr to get a first idea of where
to look for specific mode properties.

Comparison with Experimental Data and Theoretical Predictions

The points in Fig. 7.30 indicate experimental and theoretical data from recent publications of
MOF designs with unconventional properties.

The first data set concerns MOFs used experimentally for super-continuum generation,
taken from Refs. [9, 11, 12]. They all lie in the CF2 regime, and indeed the key property for
super-continuum generation - highly shifted zero dispersion wavelength and small core size -
can be delivered by the CF2 model, already known to be successful for such MOFs [11,12].

31One should expect an accuracy in λ/Λ values of 20% for Nr = 8 and slightly more for larger values of Nr.
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Data set 2 shows the location of experimental zero-dispersion wavelength measures, which
were compared to theoretical values from a CF2 model in the original publication [37]. For
the two lower points (b and d) which lie in the CF2 region, comparison with the CF2 model
gave good agreement, for point c agreement was approximate and for point a, lying in the
cutoff region, the agreement was unsatisfactory.

The third data set, which we will study in more detail in Chapter 8, consists of regions of
observed or predicted flat or oscillating chromatic dispersion, taken from Refs. [35, 36, 38, 62,
66]. All data points herein are located exactly in the cutoff region, using the increased and
highly configurable wavelength dependence of structural dispersion to compensate material
dispersion. The consequences of being in the cutoff region are that confinement losses are
highly wavelength dependent, and that the waveguide dispersion is sensitive to the actual
fibre geometry. Such high sensitivity to structural imperfections was observed by Monro et
al. [111], and indeed the fibre parameters used by these authors are in the cutoff region (data
line 4).

In studying the influence of the number of rings on dispersion (Ref. [35] and Chapter 8),
we observed that the dispersion does not necessarily converge with the number of rings. Data
set 5 shows the location of an example where the dispersion converges with Nr in a limited
wavelength range before diverging with Nr. The wavelength range where dispersion properties
diverge crosses the transition line from the cutoff region to the CF1 region, where we have
seen Nr dictates mode properties.

Although we tried to map as many published MOF designs as possible onto Fig. 7.30,
a few were omitted: some were overlapping the cutoff region and the CF2 region and had
more conventional dispersion properties, while others were beyond the scope of this study
(e.g. grossly non-circular holes). One theoretical study by Monro et al. [66] had two examples
of MOFs lying in the CF1 region, with both displaying conventional dispersion. It should
be emphasized that no experimental MOF has been published with parameters in the CF1
region.

Phase Diagram and Geometric Losses

We have mentioned that in the CF1 region geometric losses are “high” while they are “small”
in the CF2 region, but haven’t quantified this assertion yet. Indeed, even in the CF2 region,
losses can be large if the number of rings is insufficient; in the cutoff region losses vary very
quickly, and it is important to know how many rings of inclusions are needed for losses to be
acceptable. Fig. 7.31 shows the curves defined by the λ/Λ values from which losses are larger
than 1 dB/m, as a function of d/Λ for several values of Nr, for the fundamental as well as
the second mode. The curves get closer to the cutoff-point curve with increasing Nr, which
is consistent with the fact that the slope of the loss versus λ/Λ diverges with increasing Nr

at the cutoff point. It appears that for small values of d/Λ, more than 8 rings are needed to
achieve acceptable losses in the cutoff-region.

We have continued the 1dB/m curve for the second mode of the 4 ring MOF beyond cutoff:
on the left hand side of the second mode cutoff curve, the mode is cladding filling, but losses
can still be small.
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Figure 7.31: 1 dB/m loss curves for the fundamental (upper three black thick three curves)
and second (lower two curves) mode for several values of Nr (in brackets): Above each curve,
losses are larger than 1 dB/m for the given MOF. In the background is the phase diagram
from Fig. 7.30. Losses where computed for λ = 1.55 µm.

7.6.2 Using the Phase Diagram

The phase diagram of Fig. 7.30 already gives an idea of the region of parameter space in which
specific mode properties of MOFs consisting of a core surrounded by a hexagonal periodic
arrangement of holes can be found. It could also be used to understand and design MOFs
with more complex cladding or core structures, as we suggest here:

Changing the Core Size

In the CF2 region mode properties are dictated by the core size and we have

neff ' nM − νf

(
λ

ρc

)2

(7.51)

where, for large number of rings, νf depends only on d/Λ but not on ρc.32 A necessary
condition for CF1 to be valid is that neff < n̄z, so if we consider the cutoff to occur in the
vicinity of the point where neff = n̄z,33 we have, λc being the wavelength at cutoff34

λc '
(

nM − n̄z

νf

)1/2

ρc . (7.52)

32This follows from Eqs.(7.39-7.44).
33This is coherent with the observation that the cutoff occurs at neff ' nFSM, see Section 7.2.3.
34Note that we use the asymptotic expansion of neff near the cutoff, where we know it is not valid. The

result is therefore very approximate, and should only give an idea of the direction of change in λc with varying
ρc.
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Figure 7.32: λ/Λ at cutoff with varying core radius, for the fundamental mode of MOFs with
d/Λ = 0.3. The core radius is defined by the distance from origin to the center of the first
inclusion. We used structures with Nr = 5 for MOFs with cores consisting of up to two missing
rings and Nr = 6 for the core constituted by 3 missing rings, so that there are always at least
3 rings of holes around the core.

If one increases the core size, for example through leaving out more than one central inclusion,
the CF1 model will therefore start to become valid at longer wavelengths, and the cutoff can
be expected to be shifted towards longer wavelengths. This is indeed the case as can be seen
in Fig. 7.32 showing λ/Λ at cutoff as a function of core radius for an example of MOFs with
d/Λ = 0.3.

Rings with Inclusions of Different Sizes

We consider a MOF with a first ring of inclusions with diameter d1 and further rings of
inclusions with diameter d2 (Fig. 7.33). The cutoff wavelength λ1 of a MOF where all inclusions
have diameter d1 can be extracted from the phase diagram, and we suppose we have a good
estimation of the cutoff wavelength λ2 of the MOF consisting of inclusions with diameter d2

and a core extended to a whole missing ring. We suppose that the values of λ2 and λ1 are
not “too close”, and that λ1 < λ2. If the wavelength λ of the guided light is smaller than
λ1, the light will be confined in the core consisting of the missing central inclusion. If with
increasing λ we enter the cutoff region of the first ring, the first ring doesn’t confine the light
anymore, and the mode starts to leak beyond it. The CF1 model becomes valid for the first
ring, and the MOF can now be seen as a core consisting of one missing ring surrounded by
rings of inclusions with diameter d2.35 Since the wavelength is at this stage still shorter than
λ2, the mode is now confined by the cladding of the new equivalent MOF. If λ increases
further, the mode will eventually undergo the cutoff for the second structure around λ2 (see

35The core has a homogenized index which is slightly lower than the matrix, but as long as this index is
initially larger than nFSM for d2/Λ this shouldn’t be of concern for the confinement.
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Fig. 7.33). We could imagine to use this kind of design –similar to double clad fibres [112]–
to separate the confinement regions of a mode at two different wavelengths, or equivalently
to increase the numerical aperture at one wavelength while keeping a good confinement at
another wavelength. Note that the wavelength with a better confinement is necessarily the
shorter wavelength, so that this design couldn’t for example be used as is in fibre lasers with
the idea of having a large numerical aperture at the shorter pump wavelength while keeping
the longer lasing wavelength well confined.36 The effect could nevertheless be used e.g. for
frequency doubling.

As an example of the use of cutoff considerations for the design of double clad MOFs,
we consider a MOF with Nr = 5, the inclusions of the three first rings being of diameter
d1 = 0.15Λ and the inclusions of the two outer rings of diameter d2 = 0.45Λ [MOF (3) on
Fig. 7.34]. From the phase diagram, we know the cutoff region associated with the first few
rings of holes. When well below cutoff, the CF2 model is valid for the first few rings: the
mode is confined and the influence of the exterior rings is limited to an overall decrease of
losses, so that mode properties are very similar to the usual MOF with 5 rings of inclusions
having same d/Λ = 0.15 [MOF (1) in Fig. 7.34]. Beyond cutoff, the CF1 model becomes valid
(λ/Λ & 0.5) for the first few rings: the outer rings will now become of importance. Using the
scaling law of the cutoff wavelength with core size given in the previous section [Eq. (7.52)],
we expect the cutoff of the MOF made out of the two exterior rings [MOF (2) in Fig. 7.34]
to be around λ/Λ ' 3, so that for 0.5 < λ/Λ < 3 the mode will be confined by the two
outer rings of inclusion. Since the CF1 model is valid for the first few rings, the refractive
index of the core of the equivalent fibre in this regime is not nM, but [n̄] [MOF (2)], which
slightly modifies the cutoff wavelength. Fig. 7.35 shows Q as a function of λ/Λ for the double
clad MOF [MOF (3)], the equivalent MOF for short wavelength [MOF (1)] and the equivalent
MOF between both cutoffs [MOF (2)]. For the double clad MOF, quantity Q no longer has
two simple peaks marking the cutoff region. At short wavelengths its value follows Q for the
short wavelength equivalent model MOF (1), while at longer wavelengths its value is dictated
by Q of MOF (2). For intermediate wavelengths Q has a more complex behaviour. We also
added the normalized mode radius for the double clad MOF, defined here as (Aeff/π)1/2/Λ on
Fig. 7.35: It is remarkable how the mode is indeed confined in the core delimited by the first
ring at short wavelength ((Aeff/π)1/2/Λ ' 1) approximately until the cutoff associated with
MOF (1), then fills the region defined by the three first rings ((Aeff/π)1/2/Λ ' 3), and around
the cutoff of the second equivalent MOF starts to diverge.

Note that we have chosen this example for its didactic simplicity, but since the wavelength
range covers almost two orders of magnitude it shouldn’t be of immediate interest in practice.
Although increasing the number of rings sharpens the cutoff, it is unlikely phenomena of
the order discribed here could happen in a much narrower wavelength range. In general the
cutoff wavelengths associated with the different equivalent MOFs will not be well separated,
so that the cutoff regions overlap. Nevertheless, this can be used to broaden or narrow the
cutoff region and more generally to tailor the cutoff region properties, for example to adjust
dispersion properties while keeping low losses, as we will show in Chapter 8.

36To get a good pump injection efficiency with a good confinement in MOF lasers, one can nonetheless use
similar designs, using higher order modes of the inner cladding (region with small holes) confined by an outer
cladding (region with bigger holes). See for example Refs. [113,114].
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Figure 7.33: Example of wavelength dependent equivalent fibres for MOFs with ring dependent
inclusion diameters.
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Figure 7.34: Designs used for the double clad MOF example of Fig. 7.35. MOF (3) is the
studied double clad MOF: d/Λ = 0.15 for the three inner rings and d/Λ = 0.45 for the two
exterior rings. MOF (1) is the usual MOF design with d/Λ = 0.15, and MOF (2) is a MOF
equivalent to the double clad MOF (3) beyond the cutoff of MOF (1).
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Figure 7.35: Designing double clad MOFs: Q curves and mode radius as a function of λ/Λ for
the double clad MOF (3) and the two wavelength dependent equivalent MOFs (1) and (2).
The geometry of MOFs (1-3) is detailed in Fig. 7.34.
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7.6.3 Towards Other Phase Diagrams and Charts of Operation

We have established Fig. 7.30 using the cutoff criterion defined through slope properties of
the loss curves associated to geometric confinement properties. However, in some cases other
criteria might be more pertinent. For example when working at short wavelengths, the short
wavelength bend loss edge must be considered, and delimits a lower region to the useful part
of the CF2 region in Fig. 7.30.

In cases where single modedness is important yet not vital, the cutoff curve of the second
mode might not be the only one of interest: Even when multimoded, the beat length between
the first and second mode can be so small that mode conversion between confined modes
is negligible [69], so that MOFs can be operated as if they were single-mode fibres. On
the contrary, when strict single modedness is crucial, even in the endlessly single-mode region
cladding modes can become a nuisance: For d/Λ < 0.406 and at very small λ/Λ ratios (λ/Λ ¿
0.1) the second mode, although not undergoing a cutoff as we have defined it here, becomes
slowly and gradually confined near the core region.37,38 Further, scattering of the fundamental
mode into higher order, lossy cladding modes can occur through inevitable imperfections in
the structure, increasing geometric losses [115] and potentially causing pulse spreading.

For efficient MOF design, it would be useful to draw charts of the parameter space showing
the degree of nuisance (or benefit) of the mentioned phenomena. Figs. 7.30 and 7.31 are a
first step towards this collection of charts.

7.6.4 Impact on Results of the Previous Chapters

Extended Modes

Extended modes as we have defined them in Sec. 6.3.3 are resonances of Bloch waves. The
asymptotic model for the confinement derived here can not be applied to these modes: the CF2
model uses the fundamental space filling mode to define the effective index of the cladding,
but Bloch modes are by definition band modes, i.e. modes with an effective index lower than
nFSM. Hence, they can not be reflected through the mechanisms responsible for confinement
in the CF2 model, and can not undergo a localization transition.

Defect and Extended Transition Modes

These are the modes for which we have demonstrated the cutoff. In the examples studied
in Chapter 6, the Bloch transform of these modes was observed to be essentially circularly
symmetric and close to the origin. This can be understood in the frame of the CF1 model.
When in the homogenization regime the perpendicular wavelength is set by the outer radius
of the cladding region so that the fields are globally in phase everywhere in the cladding. The
Fourier-Bessel coefficients for all inclusions are therefore in phase as well and the Bloch vector
associated with the field distribution is a peak centered on zero.

Numerical Examples of Previous Chapters

We have mentioned several times in the previous Chapters that the choice of parameters was
“unfortunate”, leading to results lacking in generality. What we meant was that the parameters

37This is accompanied by the geometric losses of the second mode becoming small, see Fig. 7.31.
38Nevertheless bend-loss becomes a serious problem at such small λ/Λ ratios, so that this region of parameter

space should rarely be of interest.
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were in a specific region of the phase diagram, and that a correct interpretation of results is
impossible without knowing whether the mode is well confined, in the cutoff region or beyond
cutoff. In Section 6.3.2 for example we studied the losses of the fundamental mode as a
function of Nr and mentioned that the decay was neither a power law nor exponential. If
we locate the parameters used for the study (d/Λ = 0.15, λ/Λ = 0.674) it appears that we
are at the edge of the CF1 region, very close to the cutoff region. Note that we used these
parameters throughout Chapter 6, and were actually quite lucky to find a confined mode at
all. Results of Chapter 6 regarding the evolution of mode properties with increasing Nr have
naturally to be put into the perspective of the region of parameter space for which they were
established.

When we were comparing experimental results by Kubota et al. [92] with results found
through the multipole method (Section 4.7.3) we claimed that the influence of Nr on the
dispersion properties was negligible and that the decay of losses with Nr was exponential for
the first three modes. This is coherent with the locus of the used parameters (d/Λ = 0.668,
λ/Λ ' 0.3−0.4) in the phase diagram, but one should not claim that these results are general.

At the end of the same Section, we mentioned that agreement between the multipole
method and other simulation tools was sometimes quite unsatisfactory. The examples where
this occurred were always either in the cutoff or in the CF1 region, and the methods with
which agreement wasn’t good were using supercell approximations, which, as we have shown
in this Chapter, can not give accurate results in the CF1 and in the cutoff region.

Finally, in Section 4.3.1 we used an absorbing jacket, initially for “mathematical conveni-
ence” and claimed that the imaginary part of the jacket’s index didn’t have much effect on
the modes. We were quite lucky again to have used fibre parameters which were well inside
the CF2 region (d/Λ = 0.775, λ/Λ = 0.22), so that modes were indeed well confined and
the jacket didn’t have much effect. Our conclusions would certainly have been different if the
parameters had been in the CF1 region.
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Dessert :

Dessert : Stratifié de Chocolat, de Pralin
et d’Orange

Chocolate, Pralin and Orange Gradation

Pour 6 personnes :

Pour le biscuit chocolat :

6 œufs
225 g de chocolat à pâtisserie

à 64%
150 g de sucre

150 g de beurre pommade
75 g de farine tamisée

50 g de cacao en poudre
1/2 cuillerée à café de café

soluble
1 cuillerée à soupe rase

d’extrait de vanille
1 cuillerée à soupe de Kirsch

Pour le pralin :

150 g de noisette en poudre
75 g de sucre en poudre

1 cuillerée à café d’extrait
naturel de vanille

Pour la ganache :

200 g de chocolat à pâtisserie
à 64%

20 cl de crème fleurette
100 g de sucre

1 cuillerée à café de fleur
d’oranger

Le granité à l’orange

Dissoudre les trois-quarts du sucre glace dans le jus
d’orange et verser la moitié du jus de citron. Ajuster le

sucre et le jus de citron au goût, la quantité exacte dépen-
dant du degré de maturité des oranges. Le résultat doit être
bien sucré et légèrement acidulé. Verser en moule métallique
(moule à gâteau) puis procéder de la même façon que pour
la recette du trou du vigneron (cf. p.69).

Le biscuit chocolat

Fondre les chocolat au bain-marie, une fois fondu y ajou-
ter le cacao, l’extrait de vanille, le Kirsch et le café

soluble. Hors du feu, ajouter le beurre pommade par par-
celles. Battre les œufs entiers avec le sucre jusqu’à ce qu’ils
moussent. Incorporer le chocolat fondu puis la farine tamisée.
Couler l’appareil en ramequins tapissés de papier cuisson ou
en moules à muffin Flexipan. Cuire 9 minutes au four pré-
chauffé à 220◦C. Laisser refroidir, démouler, couper en deux
disques de même épaisseur.

Le pralin

Chauffer dans une poêle la noisette en poudre, le sucre
et l’extrait de vanille en remuant fréquemment à l’aide

d’une spatule en bois. Lorsque le tout prend une coloration
dorée et tend à s’agglomérer, arrêter la cuisson. Laisser re-
froidir en remuant de temps en temps.

La ganache

Porter la crème à ébullition, hors du feu, ajouter le sucre.
Verser la crème sur le chocolat coupé en petits mor-

ceaux. Homogénéiser. Ajouter la fleur d’oranger. Une fois
tiède, incorporer la moitié du pralin, laisser reposer.
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Pour le granité à
l’orange :

500 cl de jus d’oranges
Navel fraîchement

pressées
le jus d’un citron

environ 150 g de sucre
glace

La garniture :

500 g de couverture
noire amère

100 g de couverture
blanche

La garniture

Fondre et tempérer la couverture ivoire et noire séparé-
ment. À l’aide d’un cornet, déposer sur Rhodoïd la cou-

verture ivoire, puis recouvrir de couverture noire et lisser en
une couche d’un millimètre d’épaisseur en donnant un effet
marbré. Laisser prendre un peu puis détailler à l’emporte-
pièces en disques de même taille que les disques de biscuit
au chocolat. Enfin laisser prendre complètement.

Montage

Le cas échéant, sortir du froid la ganache une heure au
moins avant le service. Au moment de servir, recouvrir

les disques de biscuit d’une couche de 4 mm de ganache. Sau-
poudrer de pralin. Déposer une couche de 7 mm de granité à
l’orange sur six des disques de biscuit, puis recouvrir des six
autres disques de biscuit. Déposer un disque de couverture
marbré par dessus, servir sans attendre.

Granité orange
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Chocolat marbré
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Chapter 8

Dispersion Properties

8.1 Introduction

In this Chapter we discuss dispersion properties of MOFs through the example of two recent
papers the author of the present thesis has co-authored. We have included the two papers
nearly as is, with only minor copy-editing to ensure the notations, bibliography and layout are
consistent with the rest of the thesis. We have left the content untouched although with the
results from Chapter 7 – most of which were established after the two papers were submitted –
we would now certainly approach things differently. We have added comments in a separate
section following each paper, highlighting how the knowledge of results from Chapter 7 leads
to a new interpretation of results, or how it could have been used to direct our research. We
hope this approach to be didactic in that it shows the advantage one can gain from using the
phase diagram given in Fig. 7.30, while giving new insights on dispersion properties of MOFs.

The first article [35] was submitted before we fully understood the cutoff of the second
mode, and well before we were aware of the fundamental mode cutoff and hence the existence
of an a priori interesting cutoff-region in parameter space. Its aim was to establish the
dependence of dispersion properties on all MOF parameters, including the number of rings,
in connection with structural losses. Dispersion properties of solid core MOFs had already
been studied extensively previously (see e.g. [116]), but with models using super-cell methods,
which didn’t take into account the finite size of the MOF cross section, and couldn’t give the
confinement losses. In our study, we show that dispersion generally is sensitive to the number
of rings.

The second paper [117] was submitted after we had determined the first and second mode
cutoff-diagrams, however not all results of Chapter 7, in particular those of Sec. 7.6.2, were
yet established. Extending the study of the influence of the number of rings on dispersion
properties, the study reported in the paper leads to two conceptually different MOF designs
with very desirable dispersion properties. The first design, a usual endlessly single-mode
solid core MOF with identical air holes forming a triangular lattice, yields ultra-flat near-zero
normal or anomalous group velocity dispersion (GVD) over a very wide range of wavelengths.
However the fundamental mode of that structure has relatively large effective area, and to
achieve acceptable losses, at least 18 rings of holes have to be used. The second, innovative,
design uses air holes of different diameters in successive rings and yields similarly interesting
dispersion properties but with very low losses and reasonable effective area, compatible with
usual optical fibres.

151
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Finally, in a last section, we come back to the discussion we started at the end of Sec. 4.7.3
regarding the unsatisfactory agreement between theory and experiment as far as dispersion
properties are concerned.

8.2 Chromatic Dispersion and Losses of Microstructured Opti-
cal Fibers

Authors: B. Kuhlmey, G. Renversez, and D. Maystre
Date of submission: 26 July 2002
Published in Applied Optics OT, Vol. 42, No. 4, 1 February 2003, pp. 634-639.

8.2.1 Introduction and Background

Microstructured optical fibers (MOFs) are generally made of a regular lattice of cylindrical
inclusions, for example air holes, in a dielectric matrix. MOF cores usually consist of a defect
of the lattice which can be an inclusion of different type or size or, in bulk core MOFs, a
missing inclusion. In recent publications [37, 39], attention was drawn to the peculiar and
interesting dispersion properties that MOFs can exhibit, and which indicate that MOFs may
be good candidates for dispersion management in optical communication systems. In this
paper, we use a fully vector and rigorous multipole method [1, 84], which we have recently
co-developed with the group of R.C. McPhedran at the University of Sydney in order to
explore the dependence of chromatic dispersion upon wavelength and MOF geometry. We
here concentrate on silica bulk core MOFs with a triangular lattice of air holes (see Fig. 8.1).
The most important point in which this work contrasts with previous publications concerning
MOF dispersion is that the multipole method used herein is able to deal with the finite cross-
section of MOFs. We could therefore study the influence of the extent of the confining air-hole
region on dispersion and on associated losses.

Λ

d

Figure 8.1: Cross-section of the modeled MOF with 3 rings of holes (holes are in grey), Nr = 3.
Λ is the pitch of the triangular lattice, and d is the hole diameter. The solid core is formed
by one missing hole in the center of the structure.

Our multipole method is a standard multipole method extended to conical mounts. It is
based on local expansions of the vector fields in Fourier Bessel series and uses addition theorems
to link these local expansions. Boundary conditions are implemented analytically for circular
inclusions, so that the only approximations are the truncation of the Fourier Bessel series (see
references [84] and [45] for a complete study) as well as the fundamental hypothesis of the
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invariance of the fiber along its axis. If the inclusions overlap, our method is not appropriate.
With the MOF geometry and the wavelength as inputs, the method gives the modes of the
MOF as an output. Material dispersion can thus be included in a natural way in the MOF
geometry, using for example Sellmeier expansions [4, 118].

A mode of a MOF is characterized by its field pattern and propagation constant β (or
equivalently by its effective index neff = β/k0 where k0 is the free space wavenumber). Due
to the losses resulting from the finite transverse extent of the confining structure, the effective
index is a complex value, its imaginary part =(neff) being related to the losses L in dB.m−1

through the relation

L =
20

ln(10)
2π

λ
=(neff)× 106 (8.1)

where λ is in µm. The dispersion parameter D is computed through the usual formula from
the real part of the effective index <(neff) [4]:

D = −λ

c

∂2<(neff)
∂λ2

(8.2)

As in ordinary waveguides, dispersion of guided modes results from both material and
waveguide dispersions. The remarkable feature of MOFs is that the waveguide dispersion can
be modified significantly via a wide range of geometrical parameters, namely the positions
and sizes of the different holes. The behavior of waveguide dispersion can be understood
from effective-media heuristic considerations: at short wavelengths, light can distinguish the
details of the structure, resulting in a greater concentration in the high index region (i.e.
the core whose index is that of the matrix). In this situation, the effective index is smaller
than the refractive index of the matrix. At longer wavelengths, the structure tends to a
homogeneous one, and the effective index of the mode will consequently be bounded from
above by the homogenized refractive index of the structure, which is much lower than the
refractive index of the matrix, due to the air-inclusions. These heuristic considerations are
unable to precisely predict MOF chromatic dispersion: a precise numerical study is required.
Moreover, in practical applications, the losses have a vital importance. Detailed studies of
losses in MOFs versus the pitch of air holes lattice, the hole diameter, and the hole ring number
have already been carried out using the multipole method [84, 119]. A vector method using
periodic boundary conditions [63] has already been used to study dispersion in MOFs [38],
but in this model the influence of the number of hole rings cannot be investigated, and above
all, the losses cannot be computed.

8.2.2 Validation

The method has been checked thoroughly via comparison with other numerical methods:
fictitious source [90], other multipole methods [77,91] (more details on these comparisons can
be found in our previous article [84]).

Symmetry properties of fibers are accurately satisfied [45]: for a MOF with a rotational
symmetry of order 6, the fundamental mode is twofold degenerate as expected by Mc Isaac’s
theory [76].

The method we co-developed and its numerical implementation have also been compared
with plane-wave method for a microstructured optical fiber with a ring of six air holes of
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Dispersion Dispersion Slope
Measured Calculated Measured Calculated
-77.7 -77 0.464

-78.6 0.450
-76.78 (Nr = 3); -76.95 (Nr = 4) 0.458 (Nr = 3); 0.455 (Nr = 4)

Table 8.1: Comparison of the dispersion D and its slope measured and calculated by Gander
et al. at λ = 0.813µm (they did not compute the dispersion slope and Nr value is not given in
their text so only a estimated value can be deduced from the scanning electron micrograph of
the MOF they give in Fig. 2 of their article [120]), the results obtained by Brechet et al. with
a finite element method [62] at λ = 0.813µm and the results obtained with our multipole
method for two values of Nr at the same wavelength. Unit for dispersion: ps.nm−1.km−1, unit
for dispersion slope: ps.nm−2.km−1.

diameter d = 5µm with a pitch Λ = 6.75µm and a fixed background index n = 1.45 at
λ = 1.55 µm, the computed value <(neff) of the fundamental mode is 1.4447672 [45].

Concerning chromatic dispersion, our results are in good agreement (see Table 8.1) both
with the dispersion and its slope measured by Gander and his colleagues, and with the di-
spersion calculated by the same authors [120] using an expansion of the fields in terms of
Hermite-Gaussian functions [39] for a microstructured optical fiber (d = 0.621µm with a
pitch Λ = 2.3µm) at λ = 0.813µm. Our results are also in good agreement (see Table 8.1)
with the dispersion and slope dispersion calculated by Brechet et al. for the same structure
with a finite element method [62].

8.2.3 Results

In the examples given in the following, we simulate a MOF made out of a triangular array
of cylindrical air-inclusions (ni = 1) of lattice pitch Λ. The inclusions have identical circular
cross-sections of diameter d, the core being formed by a missing inclusion (see Fig. 8.1). The
finite thickness of the hole region around the core can be described by the number of rings of
holes Nr. The matrix and the jacket are made of silica, so that the guiding structure is formed
by a finite number of low-index inclusions in infinite silica bulk (the Sellmeier expansion is
taken from reference [7]). Since the hole region surrounding the core is bounded, it is clear
that propagating modes are leaky.

We limit our study to the fundamental mode dispersion properties, and the wavelengths
that we consider here are included in the range [0.6, 3]µm. As shown in Fig. 8.2 for a fixed
hole diameter, a small pitch provokes oscillations of the dispersion, several zero-dispersion
wavelengths can be found. With a larger pitch, the dispersion increases monotonously with
wavelength. This property can be understood as follow: for large pitch, the MOF core is
large too and waveguide effects on dispersion are therefore weak, and the material dispersion
dominates. Conversely, for smaller pitches the waveguide dispersion takes over, and we observe
oscillations of the dispersion curve, the amplitude of which increases as the pitch decreases.
In the short wavelength limit, material dispersion is so negative that waveguide dispersion
cannot compensate its effect. This remark explains why for sub-micrometric wavelengths, all
the dispersions tend toward material dispersion.
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Figure 8.2: Dispersion (a) and losses (b) for a 3 ring MOF as a function of wavelength and
pitch Λ. The material dispersion is also shown. Holes diameter d is equal to 0.8µm.



8.2. CHROMATIC DISPERSION AND LOSSES OF MOFS 156

In Fig. 8.2, it can be noticed that there exists a pitch value (Λ = 2.675µm) for which the di-
spersion curve is flat over a large range of wavelengths taking the average value 27.9 ps.nm−1.km−1

around 1.85µm with the amplitude of dispersion oscillation equal to 0.2 ps.nm−1.km−1 in a
wavelength interval of 0.3µm. For the same pitch but with Nr = 4 (data not shown), the
dispersion curve is much less flat than with Nr = 3 and the average level of the dispersion has
decreased, taking an average value of 23.7 ps.nm−1.km−1 around 1.85µm with the amplitude
of oscillation of 3.8 ps.nm−1.km−1 in a wavelength interval of 0.5µm. In both cases, it must be
noticed that the corresponding losses (5.9×105dB.km−1 for Nr = 3 and 6.1×104dB.km−1 for
Nr = 4 ) prohibit the use of these MOFs for practical applications. One can try to overcome
this drawback by increasing again the number of rings but this change entails a new change of
the dispersion curve as it will be shown in detail in the following. This example clearly shows
the necessity of studying both losses and dispersion in order to realize a realistic dispersion
engineering.

Another remark to draw from figure 8.2 is the existence of a wavelength λcross ' 1.93µm
for which the losses are almost independent of the pitch Λ, at least in the range of Λ from
1.55µm to 3.2µm. This phenomena occurs for other values of Nr: for Nr = 4, λcross is around
2.15µm (see Fig. 8.3), for Nr = 2, λcross is around 1.63µm (data not shown), and so the
λcross value increases slowly with Nr. A straight scaling-law argument cannot be used since
the hole diameter is kept constant for the different structures. Besides, material dispersion
depends on the actual wavelength, and so care must be taken when using scaling arguments to
try to explain this behaviour. Material dispersion could also have an influence on the extent
of the crossing region. Currently, the crossing region is approximatively 0.1µm wide. From
a mathematical point of view, for a fixed value of Nr the crossing phenomena corresponds to
the point (λcross, Λcross) of the surface L(λ,Λ) where the curve defined by ∂L

∂Λ = 0 crosses the
curve given by ∂2L

∂Λ2 = 0. It seems more difficult to give its physical meaning.
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Figure 8.3: Losses for a 4 ring MOF as a function of wavelength and pitch Λ. Hole diameter
d is equal to 0.8µm. The y-scale is linear contrary to the Fig. 8.2(b).

It can be seen in Fig. 8.4, that the oscillation amplitudes in dispersion curves increase
with hole diameter (for d = 1.00 µm, i.e. d/Λ = 0.645, the oscillation amplitude exceeds
300ps.nm−1.km−1). This behavior can be explained by considerations of MOF core size,
and a competition between material dispersion and waveguide dispersion, similar to that
given previously for the influence of the pitch. It is worth noting that the value Dmax of
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the dispersion local maximum increases with hole diameter for all dispersion curves that we
have computed. For three ring MOFs with a fixed pitch Λ = 1.55µm, the wavelength λDmax

associated with the local maximum Dmax of dispersion increases with the diameter of the
holes. This property can be used to efficiently shift the dispersion curves in order to obtain
the required λDmax .
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Figure 8.4: Dispersion (a) and losses (b) for a 3-rings MOF as a function of wavelength and
hole diameters d. The material dispersion is also shown. The pitch is equal to 1.55µm.

One can try to reduce the large losses (above 1.0× 102dB.km−1 around λ = 1.3µm for all
the plotted curves of Fig. 8.4(a)) by increasing the number of hole rings Nr but once again
dispersion profiles are modified. We now describe the influence of this crucial parameter.
As shown in Fig. 8.5(a), in the case where there is no local maxima of dispersion for MOFs
with few rings, the dispersion decreases as the number of rings is increased. The difference
between successive dispersion curves of two MOFs decreases as the number of rings increases,
as shown in Fig. 8.5(c). This figure clearly shows that the dispersion converges to a limit
when the number of rings is increased, the convergence speed depending on the wavelength:
the larger the wavelength, the slower the convergence (in Fig. 8.5(c) for λ = 1.52 µm the
limit is not yet reached with 8 rings). It is worth noting that the losses associated with the
flattened dispersion curve obtained with the 7-rings MOF of Fig. 8.5(a) are still large (above
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1.0× 104dB.km−1 around λ = 1.3µm). This influence of Nr on dispersion can be understood
in the following way: when losses are weak, a supplementary ring will not change the mode
drastically. In contrast, when the mode is not well confined in the core, a supplementary ring
will modify the mode significantly. We can thus assume that the field pattern associated with
the mode converges with increasing Nr, the convergence being slower for larger wavelengths
since modes are less confined for these wavelengths. As opposed to the example of Fig. 8.5(a),
for structures which do exhibit an oscillatory behavior of the dispersion (e.g. structures of
small pitch in Fig. 8.2(a) i.e. high diameter/pitch ratio), an increase of Nr results in an
amplification of the oscillations amplitudes (see Fig. 8.6).

8.2.4 Conclusion and Discussion

As shown in the previous section, one cannot keep the flattened dispersion with a fixed D
value obtained for certain MOFs, and at the same time reduce their losses through a simple
increase of their number of air hole rings.

It must also be pointed out that an increase of the number of rings can reduce the losses
of higher order modes. As a consequence, a monomode fiber may become multimode for some
configurations. Nevertheless, if large differences between the real parts of neff for the modes
are found then mode coupling between the fundamental mode and the higher order mode
should be negligible. These effects and the influence of the jacket on dispersion will be studied
in a future work.

The high loss figures we showed throughout the article might give the wrong impression
that low losses are not feasible in microstructured fibers, but low loss MOFs are possible
with appropriate geometric parameters [119] (see also the loss curve at small wavelengths for
d = 1.0µm in Fig. 8.4(b)). For example, with Λ = 2.26µm, d = 1.51 µm, and Nr = 3, the
losses we compute are below 1×10−4dB.km−1 at a wavelength of 0.76µm. The same structure
with Nr = 7 corresponds to that studied experimentally by Kubota and his colleagues [92].
The measured global losses at a wavelength of 0.85µm. are 7.1 dB.km−1, this clearly shows
that the losses in MOFs can be limited by Rayleigh scattering, structural imperfections and
absorption and not by the geometrical losses. But interesting dispersion properties seem to
imply geometrical parameters which are not necessarily compatible with low losses and few
air hole rings.

The issue for dispersion engineering applications is to find MOF parameters giving both
ultraflattened dispersion curves (either negative, positive, or nearly zero) around the specified
wavelength (for example 1.3µm or 1.55µm) and low losses (around or below 1 dB.km−1).
Consequently, for such engineering, the finite size of the fiber cross-section must be considered.
Accurate design of such MOFs is currently in progress.4

8.3 “Chromatic Dispersion and Losses of MOFs”: Comments

Fig. 8.7 locates the MOF parameters used in Figs. 8.2 and 8.4 as well as in Table 8.1 in the
phase diagram. In Table 8.1, we compared results concerning the dispersion and its slope,
resulting from an experimental study on one hand, and simulations using a Hermite-Gaussian
expansion method, a finite element method and the multipole method on the other hand.
The point in parameter space at which the dispersion and its slope were estimated, is at the

4The design of such MOFs is reported in Sec. 8.4.
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for the same MOF.
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boundary of the CF2 region: the mode is well confined, convergence of modal properties is
exponential and the number of rings has little influence on results. It is hence not surprising
to find good agreement, even without knowing the number of rings used in simulations from
other authors.

In Figs. 8.2 and 8.4 we studied the dispersion properties for various values of the diameter
and the pitch. It appears in Fig. 8.7 that the parameters used to establish those figures
extend over the whole cutoff region, with a few values being in the CF1 or CF2 region. It is
indeed in the cutoff region that most interesting dispersion properties can be found. When
explaining Figs. 8.2 and 8.4 we mentioned that at short wavelengths, the chromatic dispersion
of MOFs is very close to the material dispersion. This occurs in the CF2 regime, where light
is well confined in the core and dispersion properties are similar to those of conventional
step index fibres. Similarly, at long wavelengths, dispersion curves become monotonic, being
roughly parallel to the material dispersion. This is in agreement with the fibre parameters
approaching or entering the CF1 region, where again modal properties are similar to those of a
conventional step-index fibre. The region where dispersion properties are most different from
conventional fibres and hence of greatest potential interest, corresponds to the cutoff region.
This explains the prohibitive confinement losses encountered throughout Figs. 8.2 and 8.4, as
well as the large dependence of losses on wavelength, and the slow convergence of dispersion
properties with increasing Nr.

In Fig. 8.8 we show the position in the phase diagram of the parameters used in Figs. 8.5
and 8.6, in which we were studying the convergence of dispersion properties with the number
of rings. Parameters used in Fig. 8.5 extend from one edge of the cutoff region to the other. It
is hence not surprising for the dispersion to converge, but to do so with a slower convergence
rate towards the long wavelength end of the cutoff region. Parameters used in Fig. 8.6 also
cover a whole section of the cutoff region, but extend a bit further, entering the CF2 and CF1
regions.5 At short wavelengths, the dispersion is independent of Nr to graphical accuracy, in
agreement with the mode being in the CF2 regime. At long wavelengths, for λ > 1.8 µm
(dashed line on Fig. 8.8), the dispersion no longer converges with increasing number of rings,

5With the wavelength range used in Fig. 8.6, the CF1 region is actually not entered, we have here used
data from the original version of the same figure in which the wavelength range extended up to λ = 3 µm.
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Figure 8.7: Position in the phase-diagram of the parameters used in Table 8.1, Fig. 8.2 and
Fig. 8.4.

as expected from MOFs in the CF1 regime.
Finally, we concluded the article by mentioning that for the MOFs studied, increasing the

number of rings could render guidance in the MOFs multimode. This was based on our former
conception of number of modes in MOFs, based on the difference of losses between modes, and
has become obsolete with regard of the results presented in Ch. 7. Note that we also made a
somewhat prophetic comment in the last sentence of the third paragraph, Sec. 8.2.4.

8.4 Dispersion management with microstructured optical fibers:
Ultra-flattened chromatic dispersion with low losses

Authors: G. Renversez, B. Kuhlmey, and R. McPhedran
Date of submission: 7 January 2003
To be published in Optics Letters, Vol. 28, No. 12, June 2003.

Microstructured Optical Fibers (MOFs) have been proposed as a new tool for dispersion
management in optical communication systems since 1998 [39]. Several studies [38,116] using
a vector method with periodic boundary conditions [63] have been made in order to design
such MOFs, nevertheless as recently shown [35] the finite cross-section of MOFs must be taken
into account in order to describe accurately the chromatic dispersion properties of such fibers
and to compute the losses. Moreover it must be pointed out that the comparison between the
computed dispersion curves and the experimental results is still a difficult issue [36].

A mode of a MOF is characterized by its field pattern and its effective index neff = β/k0

where β is its propagation constant and k0 = 2π/λ is the free space wavenumber. Due
to the finite transverse extent of the confining structure, the effective index is a complex
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Fig. 8.6, C denotes the range where dispersion converges with Nr, D denotes the range where
dispersion diverges with Nr.

value, its imaginary part =(neff) being related to the losses L in dB/m through the relation:
L = 40π=(neff)× 106/(λ ln(10)), where λ is given in micrometers. The dispersion parameter
D is computed through the usual formula from the real part of the effective index <(neff) [4]:
D = −(λ/c)∂2<(neff)/∂λ2. We have developed a multipole method [1] which allows us to
compute accurately the complex effective index of the modes of a wide variety of MOFs. Our
method has been checked via comparison with other numerical methods [35,45,84].

In the following, we simulate plain core MOFs made from a subset of a triangular array of
cylindrical air-inclusions (ni = 1). The inclusion spacing or pitch is denoted by Λ (see inset in
Fig. 8.10). The inclusions are circular with possibly varying diameters, and lie around a core
formed by a missing central inclusion. The matrix and the jacket are made of silica, so that
the guiding structure is formed by a finite number Nr of rings of air holes in infinite bulk silica
whose Sellmeier expansion (which does not include material losses) is taken from reference
[4]. Our aim in this work is to establish MOF designs which combine ultra-flattened chromatic
dispersion together with low losses around the telecommunication wavelength λ = 1.55 µm.
We exhibit two designs which achieve this. The first contains air-holes of one diameter and
requires 18 rings of holes in order to attain losses smaller than 1 dB/m. The second utilizes
air-holes with three different diameters which results in ultra-flat dispersion and even lower
loss levels with only seven rings.

The chromatic dispersion in MOFs arises from that of the silica (Dmat) and also from
waveguide dispersion (DW ) associated with the structure of the confining region. Note that
our multipole method provides directly the total dispersion (D), so we deduce DW from the
relation DW ' D−Dmat. As pointed out by Ferrando et al. [38] it is convenient to achieve a
specified total dispersion by controlling DW to make it follow a trajectory parallel to that of
−Dmat in the target wavelength interval. The parameters one has to achieve this are the hole
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diameter d, the pitch Λ and the number of rings Nr [35].
From a previous theoretical work [95], we have defined the region in the design space

(d/Λ, λ/Λ) for usual MOFs where they will behave in a way markedly and controllably different
from conventional step-index or graded-index fibers. This defines the range of hole diameters
of interest, given the telecommunication wavelength range. From the same study we also
choose d/Λ < 0.406 in order to guarantee single-mode operation of the MOF design.

In Fig. 8.9 we show the variation of the total dispersion D with the number of rings for
six different usual MOF geometries, all located in the region of stable dispersion. All curves
show a simple variation with Nr, which can be modeled accurately by a exponential form
D1 exp(−κNr) + Dlim. Such a fitting form has three parameters (D1, κ, Dlim), which can be
determined accurately using results from Nr = 3 to 6. This procedure has important advanta-
ges, since MOFs with relatively small numbers of rings are relatively quickly modeled, and yet
we have established that the exponential fit thereafter accurately describes the dispersion of
much larger structures, and even the limiting parameter Dlim, the dispersion of the mode pin-
ned by a single defect in an infinite lattice. In fact, using the limit dispersion Dlim determined
numerically for a set of values of wavelength λ we can also determine Slim = ∂Dlim/∂λ, the
limit dispersion slope. These two quantities describe the chromatic dispersion of the defect
mode for the infinite lattice, and naturally tell us the chromatic variation of dispersion for
large MOF structures.
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Figure 8.9: Dispersion decay at λ = 1.55 µm as a function of the total number of hole rings Nr

for different microstructured optical fiber (MOF) structures. Λ is the pitch of the triangular
lattice of holes, and d is the hole diameter. The points correspond to the computed numerical
dispersion, and the lines to exponential based fits (see the text for more details).

In Fig. 8.10 we show the variations of these important parameters Dlim and Slim as a
function of the hole diameter d for different pitches Λ. This figure illustrates well how one can
isolate a MOF exhibiting a target dispersion value for a sufficiently large number of rings Nr,
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which is flat over a range about the chosen wavelength value. Indeed such a MOF will have the
desired value of Dlim and simultaneously a value of Slim close to zero. Note that the pitches
exhibited in Fig. 8.10 were chosen carefully to examplify this desirable behavior. We have
also shown that, for the data of Fig. 8.10, the minima of Slim as a function of d occur in the
same diameter interval [0.65; 0.7] micrometers for all MOFs having Nr ≥ 6. From Fig. 8.10,
if one requires a positive nearly-zero flat chromatic dispersion then, using these curves, one
should start its dispersion engineering with a MOF such that Λ = 2.45µm and d = 0.6µm.
Of course, Fig. 8.10 can be used to isolate MOF geometries having different characteristics,
such as a prescribed slope with a fixed average value of dispersion over a wavelength range.
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lines, right y-scale) at λ = 1.55 µm as a function of the hole diameter d for several pitches.
The chosen parameter values for Λ and d correspond to the small limit slope region. Inset:
Cross-section of the modeled MOF with 3 rings of holes (holes are in grey), Nr = 3. Λ is the
hole spacing, and dn is the hole diameter of the nth ring. The solid core is formed by one
missing hole in the center of the structure.

In Fig. 8.11 we show dispersion characteristics for three MOF designs. At the top, the
total dispersion is linear with negative slope [D(a)], constant near zero [D(b)] and nearly
constant near −5 ps/nm/km [D(c)]. These arise because of the balance between the waveguide
dispersion DW curves and that of the−Dmat shown in the bottom part of the figure. Note that,
while these designs have appropriate dispersion characteristics for Nr ≥ 6, their geometric
losses impose much more stringent requirements upon the number of rings, and the effective
area of the fundamental mode Aeff is around 36.5µm2 for Nr = 6. For example, for the
MOF with ultra-flat dispersion close to zero, it requires Nr ≥ 18 (1026 holes) to deliver
losses below 1 dB/km at λ = 1.55µm. Even though several laboratories have already drawn
7-ring fibers [92] (around 168 holes) or even 11-ring fibers [36] (around 396 holes), there is
clearly a technological interest in investigating designs which can deliver tailored dispersion
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Figure 8.11: Waveguide dispersion DW (thick lines), dispersion D (normal lines), and sign-
changed material dispersion−Dmat (thick black line) for three different 6-ring MOF structures.
The line style of a MOF structure is identical for DW and for D. Λ and the diameters are
given in µm. (a) : Λ = 2.3, d = 0.7, (b) : Λ = 2.45, d = 0.6, (c) : Λ = 2.3, d = 0.6.

characteristics with many fewer MOF rings.
In order to provide MOF designs displaying the desirable combination of ultra-flat di-

spersion, low loss and quasi-single mode operation with a practicable value of Nr, a natural
strategy is to allow the hole diameter to differ from one ring to another (dn is the hole diameter
of the nth ring, see inset in Fig. 8.10), with exterior rings having large holes to lower the losses.
We start the design process with a three-ring MOF, d1 being arbitrarily set to d1 = 0.5µm.
In pursuing designs of this sort it is advantageous to employ the following scaling relation for
waveguide dispersion (this is a generalization of a result given in reference [38]):

DW (λ,Λ/Λref , f1, f2, ..., fn) ' Λref

Λ
DW (λ.Λref/Λ, 1, f1, f2, ..., fn) (8.3)

where Λref is the pitch of a reference lattice and fn is the ratio dn/Λ. Using the above scaling
law and a rough optimization process on d2, d3, and Λ, we found an ultra-flat dispersion over
a long wavelength interval (approximatively [1.45, 1.65]µm) for d2 = 0.7µm, d3 = 0.8µm,
and Λ = 1.7µm ([D(3)] in Fig. 8.12). It must be pointed out that the MOF design can be
started from other values of d1: for example with d1 = 0.6µm, we found d2 = 0.8µm, and
d3 = 1.0µm, and Λ = 2.0µm (data not shown).

Using the scaling law (8.3), we can easily derive other structures having ultra-flattened
chromatic dispersion, but around a different value of D. Three examples of such structures,
derived from the reference configuration (d1 = 0.5µm, d2 = 0.7µm, d3 = 0.8µm, and Λ =
1.7µm), are given in Fig. 8.12 (Λ = 1.65µm [D(5)], 1.8µm [D(2)], 1.9µm [D(1)]). Note that
varying the pitch too far results in structures which no longer exhibit ultra-flat dispersion, this
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is due to the finite length of the ultra-flat region in the chosen reference MOF design (data
not shown).

We now control losses by adding further rings of holes with fixed diameter 0.8µm. As
can be seen in Fig. 8.12, adding rings 4 to 7 has almost no effect on the dispersion properties
of the MOF [D(4)], but results in acceptably low values of geometric loss for technological
applications: with Nr = 6, the losses are below 10 dB.km−1, and with Nr = 7 the los-
ses are below 0.2 dB.km−1. For Nr = 6, the amplitude of dispersion variation is less than
3.0 10−2ps.nm−1.km−1 in the wavelength interval [1.5; 1.6]µm. These designs thus attain our
goal of ultra-flat dispersion combined with very low geometric loss in a MOF feasible with
current fabrication technology. Note that one can use designs in which the outer boundary of
the confining region is either hexagonal or circular. For the well confined modes we deal with
here (Aeff ' 10.5µm2 for Nr = 6), this difference has no practical effect on dispersion (data
not shown). One interesting consequence of using three different hole diameters is that the
possibility arises of having modes higher than the fundamental confined between rings of holes
with different diameters. Indeed the second mode in the seven ring structure of Fig. 8.12 is
confined between the first and second rings of holes and has losses around ten thousand times
larger than that of the fundamental. This mode would not couple readily to the fundamental
mode in the design, because mode energy is concentrated in different regions for the two modes
and the real parts of their effective indices are quite different.
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Unless stated the total number of rings Nr in the MOF is equal to three. The line style of a
MOF structure is identical for DW and for D. Λ and the diameters are given in µm. (1) :
Λ = 1.9, d1 = 0.559, d2 = 0.782, d3 = 0.894, (2) : Λ = 1.8, d1 = 0.529, d2 = 0.741, d3 = 0.847,
(3) : Λ = 1.7, d1 = 0.5, d2 = 0.7, d3 = 0.8, (4) : Nr = 4− 7; Λ = 1.7, d1 = 0.5, d2 = 0.7, d3−7 =
0.8, (5) : Λ = 1.65, d1 = 0.485, d2 = 0.679, d3 = 0.776.
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In conclusion, we have numerically demonstrated that nearly-zero or non-zero ultra-flattened
chromatic dispersion with low-loss is feasible using two different types of MOF designs. The
more complex design, proposed in this letter, with three different hole diameters used allows
us to achieve low losses with many fewer air holes than the conventional design. The design
principles introduced here, together with the powerful control on dispersion given by the MOF
geometry should enable effective chromatic dispersion management over a wide spectral range
in optical fibers.

8.5 “Dispersion management with MOFs...”: Comments

8.5.1 Conventional MOF Designs

Fig. 8.13 shows the locus in the phase diagram of all MOFs studied in Figs. 8.9, 8.10 and 8.11.
Since we are looking for non conventional dispersion properties, it is not surprising to find all
the parameters in the cutoff-region.

In Fig. 8.9 we studied the convergence of the dispersion with Nr and successfully fitted an
exponentially-converging function to the data. This is consistent with the –almost– exponen-
tial convergence of mode properties in the cutoff region, but we can also see that the point
closest to the CF1 region (d = 0.5 µm, Λ = 2.0 µm) has a very slow convergence. The data
point for Nr = 8 for this MOF in Fig. 8.9 is slightly under what is expected from an expo-
nential convergence, in agreement with the fact that the parameters are very close to the CF1
region where dispersion properties don’t converge. In fact, it appears that the three upper
curves of Fig. 8.9, for which convergence is extremely rapid, correspond in Fig. 8.13 to points
below the cutoff-curve6, whereas the three lower curves of Fig. 8.9, for which convergence is
much slower, correspond to points above the cutoff-curve in the phase-diagram.

The MOFs used in Fig. 8.11 were optimized to obtain flat near-zero dispersion, but suffer
from a slow decrease of losses with Nr and a large effective area. This can be understood from
their position in the phase diagram (Points (a-c)): they all are above (or, for point (a), almost
exactly on) the cutoff-curve. This implies that the growth of the effective area has already
become substantial, and that the decrease of losses and convergence of mode properties with
Nr is slower.

8.5.2 New MOF Designs

For the MOFs from Fig. 8.12 using different hole sizes in successive rings, we use considerations
from Sec. 7.6.2 to locate the parameters associated with each ring. From Eq. (7.52) we know
that the cutoff wavelength λc is shifted towards larger values with increasing core size. For a
core consisting of a missing central inclusion and N missing rings, we have

λc(N)
Λ

' (N + 1)
λc(0)

Λ
. (8.4)

Conversely,
λc(N)

(N + 1)Λ
' λc(0)

Λ
, (8.5)

so that in order to keep the same location of the cutoff region in the phase diagram for the three
different rings, we have used λ/[(N +1)Λ] as the normalized wavelength in Fig. 8.14, where we

6Recall the cutoff point is defined by the point of steepest slope of losses versus wavelength.
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Figure 8.13: Position in the phase-diagram of the parameters used in Figs. 8.9, 8.10 and 8.11.
For the latter, the position of the three different MOFs is detailed (a-c). All parameters are
in the cutoff region.

show the parameters of the different rings of all MOFs used in Fig. 8.12. We emphasize that
this method is approximate: we have seen (Fig. 7.32) that the shift of the cutoff wavelength
with increasing core size is not perfectly linear. Further, we neglect the decrease in effective
refractive index of the equivalent larger core due to the presence of inner rings (cf. Sec. 7.6.2).

Fig. 8.14 shows that the first ring of inclusions is associated with parameters in the endlessly
single-mode part of the cutoff region, beyond the cutoff-curve. We have already seen that in
this region interesting dispersion properties can be found, with the drawback of relatively large
mode area and high losses. The second ring has parameters at the edge of the CF2 region, and
still corresponds to single-mode operation. The third ring has parameters in the CF2 region
for the fundamental mode, and crosses the second mode cutoff-curve.

From the above considerations, we expect the fundamental mode to be slightly confined
by the first ring of inclusions, then strongly confined by the second ring of inclusions. This
is in agreement with the effective area of the fundamental mode (Aeff ' 10.5 µm2) being
slightly larger than the area delimited by the first ring (approximately 7.5 µm2), although,
the parameters of the first ring being very close to the CF1 region, we would have expected a
mode area closer to the area delimited by the second ring (about 30 µm2).

From Fig. 8.14, we would expect the second mode to be confined by the third ring. This
is not in direct agreement with the results mentioned in the paper, where we indicated that
the second mode is already confined by the second ring,7 and shows the limit of the use
of Eq. (8.5) to locate parameters in an unified phase diagram. If fact, with a core larger
than a single missing inclusion, the second mode cutoff curve changes more than by a sole

7More precisely, we mentioned that the second mode is confined between the first and second ring; in fact
the second mode having a power distribution in form of an annulus (cf. e.g. Fig. 7.4), the fact that its power
distribution lies between the first and second ring doesn’t imply that it is confined between these. Note that
for the second mode, Aeff ' 38.9 µm2.
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Figure 8.14: Position in the phase-diagram of the parameters used in Fig. 8.12. The figure
shows the position of the parameters for each ring, the ring number being in brackets. Since
the different MOFs have been designed using the scaling law Eq. (8.3), all MOFs have similar
normalized parameters, so they can not be distinguished in the figure. For the second and
third ring, we have corrected the position in parameter space taking into account the increased
equivalent core size.

translation in λ/Λ space. Notably, the endlessly single-mode region becomes narrower, and
the second mode can be confined for d/Λ < 0.406 [121]. Further, recall that the use of the
phase diagram for MOFs with inclusions of different sizes can only be accurate if the cutoff
regions associated with different rings are disjoint (cf. Sec. 7.6.2), and that in that case one
has to use a homogenized refractive index for the equivalent core. None of these conditions
were satisfied here: it is remarkable how a quick look at the phase diagram could nevertheless
give a general idea of what to expect from such a complex MOF structure. Indeed, using the
phase diagram we could predict the MOF would have a well confined fundamental mode, with
a priori interesting dispersion properties, and that the second mode would be confined, at least
by the third ring. Further, since the second mode is in the CF2 region for the third ring (and
probably close to it for the second ring), we can expect its losses to decrease exponentially
with Nr: the fibre is strictly multimode, but higher order modes extend over a wider spatial
region than the fundamental mode.

8.6 Theory and Experiment

In Table 8.1 we presented a comparison between experimental and simulated values of the
group velocity dispersion, and agreement was satisfactory. However, as we mentioned earlier
(Sec. 4.7.3), GVD curves computed using different numerical models are in good agreement at
least when MOF parameters are in the CF2 region, but they generally fail to match measured
dispersion curves. This fact was also observed by other authors: in Ref. [36], published
a week before we submitted our first study on dispersion in MOFs, Reeves and coworkers
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report spectacular experimental results concerning MOFs with ultra-flat dispersion. However,
although the measured pitch and hole sizes were within a few percent of values used by
Ferrando et al. in a theoretical study [38, 116], the experimental data did not agree with
the theoretical GVD curves published by Ferrando. The fibre parameters being in the cutoff
region,8 the authors were right to argue that convergence with the number of rings might
explain discrepancies. Although increasing the number of rings of the experimental MOF
changed the dispersion curves substantially, it didn’t bring the anticipated agreement with
the theoretical GVD. We could argue that the dispersion curves published by Ferrando et al.
were computed using a super-cell approximation, and that their validity in the cutoff-region is
hence to be verified,9 but simulations we have undertaken taking into account the finite cross
section of the MOF don’t give much better agreement. The problem of the bad agreement
between theoretical and experimental dispersion curves lies elsewhere. Reeves et al. suggest
that the observed differences could be explained by unavoidable variations in fibre diameter
along the length of the fibre. In Sec. 4.7.3 we mentioned that, in the case of our comparison
with experimental results from Kubota et al, variations of 25% on the pitch were needed
to account for the difference between computed and measured zero-dispersion wavelength.
Although we can not exclude this amount of variation, we should keep in mind that other
reasons for the poor agreement between theory and experiment might have to be found. We
recently became aware that state of the art experimental MOFs have a much larger dispersion
in hole size than we thought [122]; preliminary studies [111] have shown qualitatively that
group velocity dispersion is very sensitive to randomness in the hole distribution, but realistic
quantitative studies have yet to be undertaken.

If studying the effects of the two preceding geometrical perturbations were to fail in explai-
ning discrepancies between theoretical and experimental GVD, other effects would have to be
investigated. These could e.g. be unknown refractive index variations due to stress appearing
during the drawing process or surface phenomena at the hole/silica boundaries (roughness,
contamination...).

8The location of the MOFs used by Reeves et al. in the phase diagram can be found in Fig. 7.30: the four
left-most vertical data lines from data set 3 correspond to MOFs from Ref. [36].

9The doubt we express here only concerns a limited range of parameters (those in the cutoff and CF1
regions) used in Ferrando’s studies, and shouldn’t hide our deepest respect and admiration for Ferrando’s well
thought approach of the issue of dispersion management with MOFs.



Conclusion

We presented what we believe to be the first systematic theoretical and numerical study of
finite cross-section solid core MOFs over a wide range of parameters. This study was only
possible through the formulation and implementation of an efficient method well suited to the
specific case of MOFs with circular inclusions, and through the development of appropriate
tools to analyse results. The systematic study enabled us to develop or adapt simple physical
models of light-guidance in MOFs, leading to a better understanding of the physics of MOFs
and to charts letting us predict mode properties, even for MOFs with complex geometries.

Numerous properties we have established were probably somewhat intuitive for workers
familiar with the field of MOFs, and the latter might only have found confirmation of know-
ledge they already gained through their own research. Nevertheless we believe that our work
clarifies and gives a sounder base to some of the “intuitive” properties of MOFs. In particular,
we believe that we have lifted the ambiguity related to the notion of guided leaky modes,
establishing a clear distinction between confined and unconfined leaky modes.

The result we attach the most importance to is of course the fundamental mode cutoff
and the fundamental mode phase-diagram. In our study of non conventional MOF designs
achieving ultra-flat near-zero dispersion, we had a glimpse on how helpful the phase diagram
is in understanding properties of complex MOF geometries, and we are confident the phase
diagram will prove useful in guiding further innovative MOF applications.

In our work, the MOFs we considered were mostly infinitely long, with perfectly smooth
circular inclusions having rigorously the same diameter in each ring, without non-linearity,
tension, torsion or bends. Such ideal fibres are closer to a Gedankenexperiment than to the
reality of experimental fibres, and we have indeed seen that agreement between numerical and
experimental results, especially regarding chromatic dispersion, is not always totally satisfac-
tory. Now that properties of “perfect” solid core MOFs are understood, it is time to tackle
the study of imperfect MOFs, the first step certainly being to investigate the effect of realistic
(longitudinal and transversal) random perturbations in the hole distribution. However, given
that exceptional properties of MOFs have already been demonstrated numerous times experi-
mentally, we can predict that taking into account perturbations of the ideal MOFs is unlikely
to defeat predicted MOF properties on a fundamental level. We can merely expect a slight
shift of the regions of parameter space in which they occur.
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Appendix A

Choice of the Square Roots

In the multipole method, we encounter mainly two perpendicular wave numbers: kM
⊥ associated

with the refractive index nM of the matrix, and ki
⊥ associated with the refractive index ni of

inclusions:

ki
⊥ =

√
k2

0ni − β2 = k0(n2
i − n2

eff)
1/2 (A.1)

kM
⊥ =

√
k2

0n
2
M − β2 = k0(n2

M − n2
eff)

1/2 . (A.2)

Given that the square root function is double valued, we have to justify which square
root we choose. We consider here the case of the solid core MOF of Fig. 2.2, with the
jacket consisting of the same material as the matrix. Following the spectral considerations of
Sec. 2.4.5, we look for values of neff satisfying

ni < <(neff) < nM (A.3)
0 < =(neff) . <(neff) . (A.4)

Fig. A.1 shows the considered region of neff in the complex plane, along with the images of
this region through the different transformations leading to kM

⊥/k0. Fig. A.2 is the equivalent
of Fig. A.1 but for ki

⊥/k0.
Since the jacket is made out of the matrix material, the fields in the jacket can be expressed

in the cylindrical coordinates (r, θ) with origin at the center of the fibre as the Fourier-Bessel
series

V (r, θ) =
∑

n∈Z
B0

nH(1)
n (kM

⊥r) exp(ınθ) . (A.5)

The asymptotic expansion for large arguments of H
(1)
n being

H(1)
n (kM

⊥r) ' 2√
(πkM

⊥r)
exp [ı(kM

⊥r − nπ/2− π/4)] (A.6)

for the fields to have the correct behaviour of carrying energy away from the fibre (i.e. diver-
ging with r, as explained in Sec. 2.4.3), kM

⊥ must have a negative imaginary part. This leads
us to choose the lower right region of possible values for kM

⊥/k0 in Fig. A.1.
We cannot use the same kind of argument for the choice of the square root leading to ki

⊥.
Indeed, given the size of the inclusions, asymptotic expansions wouldn’t make sense, and we
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Figure A.1: Choice of the square root for kM
⊥: regions of possible values of various functions

of neff. Here nM = 1.5 and ni = 1.
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Figure A.2: Choice of the square root for ki
⊥: regions of possible values of various functions

of neff. Here nM = 1.5 and ni = 1.

have no a priori knowledge of the behaviour of the fields in the inclusion. We can assume
that the fields would be evanescent in the inclusions for well confined modes, but they could
become non-evanescent for very leaky modes. This would lead to two different choices of the
square root depending on how leaky the mode is. The problem of the choice of the physically
correct square root in such a case is not new and has already occurred in the case of gratings.
Considerations on continuity of the solutions with varying parameters have led to a cutoff
curve for the square root which can be approximated near the origin by the second bisector of
the complex plane we have added to Fig. A.2 [123]: the correct square root is the one above
the bisector. Given the small imaginary parts we will deal with, we will use the bisector as
the cutoff for the square root and choose the value of ki

⊥ satisfying <(ki
⊥) + =(ki

⊥) > 0.



Appendix B

Derivation of the Wijngaard expansion

To generalize the Wijngaard expansion of the field to MOF, we define a function U(x, y) as

U(x, y) =

{
Ez, r < R0,

0, elsewhere.
(B.1)

Thus U is continuous inside the hole region, because of the continuity of the tangential field
component, while its normal derivative is discontinuous at the boundaries of the inclusions.
Both U and its normal derivative are discontinious at the jacket boundary C (r = R0).
As a consequence, it can be deduced from (3.3) and (3.4) that U satisfies, in the sense of
distributions [124],

∇2U + k2
⊥U = s (B.2)

where k⊥ = ki
⊥ in inclusion i, and k⊥ = kM

⊥ elsewhere. Source s is a singular distribution
given by

s =
Ni∑

j=1

SjδCj − TδC −∇ · (nQδC) (B.3)

with Sj defined at the boundary Cj of the j-th hole as the jump of the normal derivative of
U . Further, Q and T are, respectively, the limits of U and its normal derivative at r = R0,
where the normal n is outwardly oriented. The distribution AδC is defined by [124]

〈AδC , ϕ〉 =
∫

C
A(M)ϕ(M)dM (B.4)

M being a point of C, dM the length of an elementary segment of C and ϕ an infinitely
differentiable function with bounded support.

Equation (B.2) can be rewritten as

∇2U + (kM
⊥)2U =

[
(kM
⊥)2 − (k⊥)2

]
U + s (B.5)

and so in the hole region U follows from the convolution

U = Ge ?
[
s +

(
(ke
⊥)2 − (k⊥)2

)
U

]
, (B.6)

where Ge is the Green function of the Helmholtz equation: Ge = −iH
(1)
0 (kM

⊥r)/4. From (B.3)
and (B.6) U can be reexpressed as

U =
Ni∑

j=1

Ge ? Dj + Ge ? D, (B.7)
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with

Dj = SjδCj +
[
(ke
⊥)2 − (kj

⊥)2
]
Uj (B.8)

D = −TδC −∇ · (nQδC), (B.9)

Uj =

{
U in the j-th inclusion
0 elsewhere.

(B.10)

Each term Vj = Ge ? Dj of the sum on the right-hand side of (B.7) is generated by sources
placed inside or at the boundary of the j-th inclusion and satisfies a radiation condition outside
this hole. It can be identified at any point outside this inclusion as the field scattered by it.
Of course, since it satisfies the homogeneous Helmholtz equation outside the j-th inclusion, in
the sense of distributions, it can be represented in the entire matrix region as a Fourier Bessel
series

Vj =
∑
m

BEj
m H(1)

m (kM
⊥rj)eımθj . (B.11)

The term Ge ? D on the right-hand member of (B.7) is generated by sources outside or on
the jacket boundary and it thus has no singularity inside this boundary. It can be identified
as the incident field generated by the jacket and illuminating the matrix-inclusion region. It
can also be represented in a Fourier-Bessel expansion

Vinc =
∑
m

AE0
m Jm(kM

⊥r)eımθ. (B.12)

From equations (B.7), (B.11) and (B.12), it can now be shown that in the entire matrix region,
the field Ez can be represented by the Wijngaard expansion (3.21). The same argument can
be used for the z component of the magnetic field Hz.



Appendix C

Change of basis

Three changes of basis transformations are required: (i) conversion of outgoing fields sourced
on one cylinder to regular fields in the basis of another cylinder; (ii) conversion of the regular
field sourced on the jacket boundary to a regular field in the basis of each cylinder; and (iii)
conversion of outgoing fields sourced at the cylinders to an outgoing field close to the jacket
boundary. These are considered separately below.

C.1 Cylinder to Cylinder Conversion

Here we consider an outgoing cylindrical harmonic wave sourced from cylinder j and derive
its regular representation in the coordinate system of cylinder l. From Graf’s Theorem [82]
we derive

H(1)
m (ke

⊥rj)eim arg(rj) =
∞∑

n=−∞
Jn(ke

⊥rl)ein arg(rl)

H
(1)
n−m(ke

⊥clj)e−i(n−m) arg(clj), (C.1)

so that the total field due to cylinder j is expressed as

∞∑
m=−∞

Bj
mH(1)

m (ke
⊥rj)eim arg(rj) =

∞∑
n=−∞

Alj
n Jn(ke

⊥rl)ein arg(rl), (C.2)

where Alj
n , defined in Eqs (3.24) and (3.25), denotes the contribution to the nth multipole

coefficient at cylinder l due to cylinder j.

C.2 Jacket to Cylinder Conversion

From Graf’s Theorem [82] we now have

Jm(ke
⊥r)eimθ =

∞∑
n=−∞

Jn(ke
⊥rl)ein arg(rl)(−1)n−m

Jn−m(ke
⊥cl)e−i(n−m) arg(cl), (C.3)
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and from this, the change of basis transform is

∞∑
m=−∞

A0
mJm(ke

⊥r)eimθ =
∞∑

n=−∞
Al0Jn(ke

⊥rl)ein arg(rl), (C.4)

where Al0
n denotes the multipole coefficient in the basis of cylinder l due to the regular field

radiating from the jacket. Equation (3.28) is the matrix form of (C.4).

C.3 Cylinder to Jacket Conversion

The relevant transformation from Graf’s theorem [82] is now

H(1)
m (ke

⊥rl)eim arg(rl) =
∞∑

n=−∞
H(1)

n (ke
⊥r)einθ

Jn−m(ke
⊥cl)e−i(n−m) arg(cl). (C.5)

The contribution from cylinder l to the outgoing field near the jacket boundary is

∞∑
m=−∞

Bl
mH(1)

m (ke
⊥rl) eim arg(rl) =

∞∑
n=−∞

B0l
n H(1)

n (ke
⊥r) einθ, (C.6)

which can be written in the matrix notation (3.32).



Appendix D

Scattering Matrices in Conical
Incidence

We consider a cylinder centered at the origin of refractive index n− and radius a embedded in
a medium of refractive index n+. To derive the reflection matrices of this cylinder we express
the Ez and Hz fields in terms of Fourier-Bessel series in the local cylindrical coordinates (r, θ)
inside and outside the cylinder (c.f. Eq. (3.20)),

E∓
z (r, θ)=

∞∑
m=−∞

[
AE∓

m Jm(k∓⊥r) + BE∓
m H(1)

m (k∓⊥r)
]
eimθ, (D.1)

for r < a (−) and r > a (+), with similar expressions for Kz. Here, k±⊥ = (k02
n2± − β2)1/2

are the transverse wave numbers inside (outside) the cylinder. We introduce the vectors
AE± = [AE±

m ] and BE± = [BE±
m ], as well as their K counterparts, and the condensed notation

introduced in Eqs (3.37) and (3.38) for Ã± and B̃±. The interpretation of the J and H terms
was given in Chapter 3. At the cylinder boundary, reflection and transmission occurs and the
waves mix with each other, which, because of the linearity of the Maxwell equations, can be
expressed as a matrix relation between the various coefficients, as

{
Ã− = T̃−Ã+ + R̃−B̃−,

B̃+ = R̃+Ã+ + T̃+B̃−.
(D.2)

Here, R− and R+ are referred to as interior and exterior reflection matrices of the cylinder,
whereas T+ and T− are transmission matrices, which do not matter in the analysis below.
Note that the first of (D.2) leads to Eq. (3.39), whereas the second leads to (3.38).

The R± matrices can be derived from the continuity of the tangential field components at
the cylinder boundary. To do this we need the expressions for the θ components of the fields,
which can be expressed as a function of the z components as [3]

Eθ(r, θ) = i
k2
⊥

(
β
r

∂Ez
∂θ − k ∂Kz

∂r

)
, (D.3)

Kθ(r, θ) = i
k2
⊥

(
β
r

∂Kz
∂θ + kn2 ∂Ez

∂r

)
, (D.4)

where n is the refractive index. The partial derivatives that appear straightforwardly follow
from (D.1).
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We can now write the continuity conditions for the z components by equating Eqs (D.1)
on the boundary.

Ez(a) =
∞∑

m=−∞

[
AE−

m Jm(k−⊥a) + BE−
m H(1)

m (k−⊥a)
]
eimθ,

=
∞∑

m=−∞

[
AE+

m Jm(k+
⊥a) + BE+

m H(1)
m (k+

⊥a)
]
eimθ.

(D.5)

Since the resulting equation is valid for all θ, terms with different m decouple and we find for
each m

AE−
m J−m + BE−

m H−
m = AE+

m J+
m + BE+

m H+
m, (D.6)

with the same result for Kz. Here we introduced the condensed notation J±m = Jm(k±⊥a), etc.
In the same way we can equate the interior and exterior expressions for Eθ and Kθ. We

then obtain two equalities of Fourier series in eimθ, in which, again, terms with different m
decouple. We finally obtain a set of equations valid for all m:

k−⊥
2
{

iβm

a

(
AE+

m J+
m + BE+

m H+
m

)− k0k
+
⊥

(
AK+

m J ′m
+ + BK+

m H ′
m

+
)}

− k+
⊥

2
{

iβm

a

(
AE−

m J−m + BE−
m H−

m

)− k0k
−
⊥

(
AK−

m J ′m
− + BK−

m H ′
m
−)}

= 0
, (D.7)

k−⊥
2
{

iβm

a

(
AK+

m J+
m + BK+

m H+
m

)
+ n2

+k0k
+
⊥

(
AE+

m J ′m
+ + BE+

m H ′
m

+
)}

− k+
⊥

2
{

iβm

a

(
AK−

m J−m + BK−
m H−

m

)
+ n2

−k0k
−
⊥

(
AE−

m J ′m
− + BE−

m H ′
m
−)}

= 0
. (D.8)

Here we have extended our condensed notation for the derivatives introducing J ′m
− = J ′m(k−⊥a)

and J ′m
+ = J ′m(k+

⊥a) with similar definitions for H ′
m
− and H ′

m
+. These equations, in combi-

nation with (D.6) and its Kz counterpart are sufficient to obtain the R matrices.
We first concentrate on the interior reflection matrix R̃−; we obtain its coefficients by

setting the exterior incoming field to zero: Ã+ = 0. It is now straightforward to solve, for a
given m, the linear set of equation given to express AE−

m and AK−
m in terms of BE−

m and BK−
m

by eliminating BE+
m and BK+

m . We obtain
{

AE−
m = REE

m
−
BE−

m + REK
m

−
BK−

m ,

AK−
m = RKE

m
−
BE−

m + RKK
m

−
BK−

m ,
(D.9)
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with

REE−
m =

1
δm

{ (
α+

J−H+ − α−
H+J−

)×
(
n2
−α+

H−H+ − n2
+α−

H+H−
)−m2J−mH−

mH+2
m τ2

}
,

REK−
m =

1
δm

{
2mτ

πk0a

k+
⊥

k−⊥
H+2

m

}
,

(D.10)
RKE−

m = −n2
−REK−

m ,

RKK−
m =

1
δm

{ (
α+

H−H+ − α−
H+H−

)×
(
n2
−α+

J−H+ − n2
+α−

H+J−
)−m2J−mH−

mH+2
m τ2

}
,

where

α±
J±H± =

k±⊥
k0

J ′±m H±
m (D.11)

with other α coefficients defined analogously. Further

δm = (α−
H+J− − α+

J−H+)(n2
−α+

J−H+ − n2
+α−

H+J−)

+ (mJ−mH+
mτ)2 (D.12)

and
τ =

β

ak−⊥k+
⊥

(n2
+ − n2

−) . (D.13)

To obtain the exterior reflection matrix R̃+ we set B̃− = 0, and eliminate the A−m coeffi-
cients. This yields

REE+
m =

1
δm

{ (
α+

J−H+ − α−
H+J−

)×
(
n2
−α+

J−J+ − n2
+α−

J+J−
)−m2J+

mH+
mJ−2

m τ2

}
,

REK+
m =

1
δm

{
2mτ

πk0a

k−⊥
k+
⊥

J−2
m

}
,

(D.14)
RKE+

m = −n2
+REK+

m ,

RKK+
m =

1
δm

{ (
α+

J−J+ − α−
J+J−

)×
(
n2
−α+

J−H+ − n2
+α−

H+J−
)−m2J+

mH+
mJ−2

m τ2

}
.



Appendix E

Algorithm

We compute the determinant for a number of points 0 ≤ ir ≤ N< over 0 ≤ ii ≤ N= lines
parallel to the real axis, with imaginary parts varying exponentially with ii. The exponential
variation of the imaginary part is necessary as different modes can have losses differing by
several orders of magnitude. Local minima of this array are computed through simple data
analysis, and better initial guesses of the minima are estimated through interpolation of the
points adjacent to each minimum. This guess is used as a starting point for a Broyden-like
algorithm. If the algorithm fails, a new map of the determinant is computed over the region in
which the first mapping showed there is a local minimum. This refinement map uses a region
of 5 × 5 points, with a linear scale for both real and imaginary parts. If the only minima
of the refined region are on its border, the region is extended until a minimum lies inside
the region. During the enlargement of the region, care is taken to avoid regions overlapping
with regions in which computing errors can occur (negative or excessive imaginary or real
part). If a minimum is found in the refined region (excluding the borders), the routine tries
the Broyden-like algorithm again. If multiple minima are found in the region, each minimum
is added to the initial minima list and is treated separately: missing a zero thus becomes
very unlikely. During the Broyden algorithm a calculation of singular values is performed
(see Section 4.3.1) each time the modulus of the determinant for the current point is less
than a parameterized threshold, and the modules of the eigenvalues are analysed to determine
whether an acceptable solution has been found (see the discussion in Section 4.3.1).

The routine continues to alternate Broyden and zooming algorithms until one of the follo-
wing occurs:

• an acceptable solution is found,

• the extended mapping region concentrates near a border of the initial region,

• the refined region becomes too small,

• the extended mapping region includes a minimum of the initial determinant map which
has already been treated,

• a maximum number of iterations is reached.

Depending on the width of the initial scanning region and the complexity of the struc-
ture, the pertinent choice of N< varies from about 50 to several hundreds: structures with a
substantial number of cylinders have a higher density of modes and therefore need a better
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resolution on the initial determinant map. The value of N=, even for intricate structures, does
not need to be high, and is usually taken between 4 and 8: as shown by Fig. 4.2, zeros are
usually associated with valleys parallel to the imaginary axis, so that precise maps parallel to
the real axis for a few values of the imaginary part are sufficient to find a first estimate of the
zeros.



Appendix F

Symmetrization of modes

We consider waveguides with C6v symmetry, such as the structures in Fig. 4.9. From McIsaac
[76], such structures have 8 mode classes, with 4 of these occurring as 2 degenerate pairs,
as shown in Fig. 4.3. For the purpose of this example we are interested in the degenerate
fundamental modes p = 3 and p = 4 and the lowest order non-degenerate modes p = 1 and
p = 2. The minimum waveguide segments illustrated in Fig. 4.3 represent the smallest segment
of the fibre required to define fully the modal fields of the complete structure. We relate the
multipole coefficients for a secondary cylinder outside the minimum segment to those of the
corresponding primary cylinder inside the segment.

From Fig. 4.3 the non-degenerate mode classes 1 and 2 have minimum waveguide segments
of π/6, so 3 primary cylinders are required to describe the 18 hole structure shown in Fig. F.1.
The holes are labeled as PS where P is the primary cylinder and S the label given to the
secondary cylinder. Hole 11 is the primary cylinder 1 and lies in the inner shell, while the
other primary cylinders 21 and 31 lie in the second shell. As they are not degenerate, these
modes must exhibit the full 6-fold symmetry of the structure.

In terms of the multipole coefficients of the electric field bE
m, the relation between those on

secondary cylinders to those on primary cylinders can be expressed in the form

bE(PS)
m = bE(P1)

m eim(S−1)π/3,

and similarly for the magnetic field coefficients.
For the degenerate mode classes 3 and 4, the number of secondary cylinders corresponding

to a given primary cylinder depends on the position of the primary cylinder. If the primary
cylinder lies on a symmetry axis of the mode, in this case either the x or y axis, then only one
other cylinder is related to it. A primary cylinder not on a symmetry axis has 3 associated
secondary cylinders. A cylinder positioned at the center of the structure has no secondary
cylinders. The related primary and secondary cylinders are shown in Fig. F.2.

For classes 3 and 4, the fields are either symmetric or anti-symmetric about the trans-
verse axes. The relation between primary and secondary cylinders is obtained by appropriate
combinations of reflections and inversions to give the correct symmetry properties.

For mode p = 3, the multipole coefficients on a secondary cylinder lying on the x-axis
are related to those on the corresponding primary cylinder by a simple reflection of Ez and
anti-reflection of Kz across the y-axis:

bE(P2)
m = −b

E(P1)
−m , bK(P2)

m = b
K(P1)
−m .
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Figure F.1: Primary (bold) and secondary cylinders of the non-degenerate p = 1 and p = 2
mode classes of a 2-ring MOF structure.

Similarly, for a secondary cylinder on the y-axis, the relations are

bE(P2)
m = (−1)mb

E(P1)
−m ,bK(P2)

m = (−1)m+1b
K(P1)
−m .

As mentioned, a primary cylinder that does not lie on either axis has three associated
secondary cylinders. The relations are again combinations of reflections and anti-reflections
about the axes:

bE(P2)
m = −b

E(P1)
−m ,

bE(P3)
m = (−1)m+1bE(P1)

m ,

bE(P4)
m = (−1)mb

E(P1)
−m ,

bK(P2)
m = b

K(P1)
−m ,

bK(P3)
m = (−1)m+1bK(P1)

m ,

bK(P4)
m = (−1)m+1b

K(P1)
−m .

The relations for the second degenerate mode class p = 4 are simply obtained by swapping
the bE

m and bK
m coefficients in the equations above.

These symmetry relations are used in our method to re-express the field identity (3.45) in
terms of the primary cylinders only. This reduces the matrix dimensions by a factor between
3.5 and 6, depending on the mode class, thus greatly increasing the calculation speed and
allowing larger structures to be studied.
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Figure F.2: Primary (bold) and secondary cylinders of the degenerate p = 3 and p = 4 mode
classes of a 2-ring MOF structure.



Appendix G

Bloch Transform and Fourier
Transform

In this appendix we investigate how the Fourier transform and the Bloch transform are related,
in the case of a periodic lattice of circular inclusions. Using the multipole expansion, the
Fourier transform Ṽ of a field V in such a structure is

Ṽ (k) =
1
2π

∫ ∫

r∈R2−⋃
rp∈L D(rp)

∑

rl∈L

∑

n∈Z
Bn(rl)H(1)

n (k⊥|r− rl|)×

exp(ın arg(r− rl)) exp(−ık.r)dr

+
1
2π

∑

rl∈L

∫ ∫

D(rl)

∑

n∈Z
An(rl)Jn(k⊥|r− rl|) exp(ın arg(r− rl)) exp(−ık.r)dr , (G.1)

where D(rp) is the interior of the inclusion centered on rp. Interchanging the summation and
integration leads to

Ṽ (k) =
1
2π

∑

rl∈L

∑

n∈Z
Bn(rl)

∫ ∫

r∈R2−⋃
rp∈L D(rp)

H(1)
n (k⊥|r− rl|)×

exp(ın arg(r− rl)) exp(−ık.r)dr

+
1
2π

∑

rl∈L

∑

n∈Z
An(rl)

∫ ∫

D(rl)
Jn(k⊥|r− rl|) exp(ın arg(r− rl)) exp(−ık.r)dr . (G.2)

Changing the origin in the integrals using r′ = r− rl yields

Ṽ (k) =
1
2π

∑

rl∈L

∑

n∈Z
exp(−ık.rl)Bn(rl)×

∫ ∫

r∈R2−⋃
rp∈L D(rp)

H(1)
n (k⊥|r|) exp(ın arg(r)) exp(−ık.r)dr

+
1
2π

∑

rl∈L

∑

n∈Z
exp(−ık.rl)An(rl)

∫ ∫

D(r0)
Jn(k⊥|r|) exp(ın arg(r)) exp(−ık.r)dr , (G.3)
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where we have used the periodicity of the integration domains. The integrals no longer depend
on rl and we have

Ṽ (k) =
∑

n∈Z


∑

rl∈L

exp(−ık.rl)Bn(rl)


×

(
1
2π

∫ ∫

r∈R2−⋃
rp∈L D(rp)

H(1)
n (k⊥|r|) exp(ın arg(r)) exp(−ık.r)dr

)

+
∑

n∈Z


∑

rl∈L

exp(−ık.rl)An(rl)


×

(
1
2π

∫ ∫

D(r0)
Jn(k⊥|r|) exp(ın arg(r)) exp(−ık.r)dr

)
. (G.4)

In this equation we recognize two Fourier integrals on a restricted domain of local functions,
and two sums related to the Bloch transform. The sum over exp(−ık.rl)An(rl) is very similar
to the Bloch transform, except that An coefficients are used instead of Bn coefficients. Since,
except for n = 0, An and Bn are linearly related through the boundary conditions, we can
expect the same behaviour for both sums. The two integrals depend on the lattice structure
only through the integration domain, whereas the Bloch transform type sums are, as we have
shown earlier, extremely sensitive to the lattice structure and to the actual Bloch vector of
the field. The Bloch transform extracts the important information relative to the lattice,
whereas the Fourier transform also incorporates the Fourier components of the field around
each inclusion.



Appendix H

Modes and Mode Classes

The well established classification of guided modes in conventional fibres in HEν,m, EHν,m,
TEm and TMm modes was defined using the C∞v property of those fibres, and is therefore
not a priori applicable to guides of other symmetries1. Nevertheless, some modes of MOFs
can be very similar to conventional fibre modes, and it is often useful for comparison purposes
to know the conventional fibre equivalent of certain MOF modes. Especially when asymptotic
models such as CF1 or CF2 become valid, strong parallels can be drawn between conventional
fibre modes and MOF modes.

In a C∞v waveguide, the HE/EH classification uses modes such that the Ez and Hz

components are given, in the coordinates with origin at the center of the fibre, by a single
Fourier-Bessel component ν,−ν in the core. In MOFs the field result from the superposition of
multiple Fourier-Bessel series centered around each inclusion. We have seen (cf. Appendix C)
how to transform these into a single Fourier-Bessel series centered at the origin: these coef-
ficients are given by the Fourier-Bessel coefficients Ã0 and B̃0. If for a given ν components
AE0

ν , AE0−ν , AK0
ν and AK0−ν are much larger in magnitude than all other Fourier-Bessel com-

ponents, Ez and Hz in the core and outside the inclusion region can be approximated by a
single Fourier-Bessel component. The correspondence to the HE/EH modes of a conventional
fibre is then straight-forward.

In the general case of MOF modes, no Ã0 component is clearly higher in magnitude than
others, and no corresponding HE/EH mode can be found. At the best the MOF mode could
be seen as a superposition of HE/EH modes, but the interest of such a decomposition becomes
doubtful.

The analysis of particular single MOF modes in the CF2 regime showed that the first 3
modes of MOFs are among the few modes to which conventional fibre modes can be associated,
but that for higher order modes no one to one relationship can be found. Table H.1 summarizes
the first few modes of MOFs and their conventional fibre counterparts.

A more general analysis can be done by comparing the general form of the fields of HE
and EH modes as can be found in Ref. [3][Table 12-3] and the field expansions of table
IV in Ref. [76]. Equating the angular Fourier components of these expansions shows that
MOF modes of a given class may correspond to the superposition of specific HE/EH modes.
Conversely, some HE/EH modes can only be of specific symmetry classes. Nevertheless no
general one to one relationship can be deduced from these results, summarized in table H.2.

1Note that the HE/EH nomenclature can be extended to leaky modes [3].
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Conventional Fibres MOF
Mode Symmetry Class Mode number Notes
HE1,1 3,4 1 Fundamental, degenerate
TE1 2 1 2nd mode, non degenerate
TM1 1 1 3rd mode, non degenerate

Table H.1: Correspondence between main C6v MOF modes and conventional fibres modes.

Symmetry Class Modes resulting from a superposition of
1 TMm, HE6ν,l, EH6µ,k

2 TEm, HE6ν,l, EH6µ,k

3,4 HE6ν±1,l, EH6µ±1,k

5,6 HE6ν±2,l, EH6µ±2,k

7 HE3ν,l, EH3µ,k

8 HE3ν,l, EH3µ,k

Table H.2: Correspondence between C6v classes of symmetry and conventional fibres modes.
k, l, m, ν, µ are integers with k, l,m ≥ 1 and µ, ν ≥ 0.
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Appendix J

Notations

Fourier-Bessel Coefficients
Notation relating to Field Comments
AAEl

n Jn Ez

BEl
n H

(1)
n Ez

AAKl
n Jn Kz If l > 0, local expansion around inclusion l.

BKl
n H

(1)
n Kz If l = 0 the coefficient refers to the jacket.

ÃAl
n Jn Ez and Kz

B̃l
n H

(1)
n Ez and Kz

H, J Change of basis matrices

Refractive Indices and Related Quantities

Notation Description
neff effective index of a mode
nFSM effective index of the fundamental

space filling mode of an infinite photonic crystal
ni refractive index of inclusion i

ni Common refractive index of all inclusions where applicable
n0 Refractive index of the jacket for MOFs
nJ Refractive index of the jacket in the CF1 and CF2 models
nM Refractive index of the matrix.

MOF Geometry

Notation Description
Ni Number of inclusions
Nr Number of rings or layers of a MOF with hexagonally packed inclusions
Λ Pitch of a hexagonal lattice
d inclusion diameter
ci center of inclusion i
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Fields, Bloch Transform and related Quantities

Notation Description
β propagation constant of a mode
Nb Number of Bloch components
ω angular frequency
λ vacuum wavelength
BT total Bloch transform, Eq. (5.21)
Bn Bloch transform of order n, Eq. (5.20)
k0 vacuum wavenumber 2π/λ

E Electric field with its complete spatial and temporal dependence
K Scaled magnetic field with its complete spatial and temporal dependence
E Electric field, without its z and temporal dependence
H Magnetic field, without its z and temporal dependence
K Scaled magnetic field, without its z and temporal dependence
ÂBi

n Amplitude associated with Bloch component i
of the Fourier-Bessel coefficients of order n.

Miscellany

Notation Description
= Imaginary part
< Real part
diag [a1, a2, · · · , an] The diagonal matrix with diagonal elements ai.

If ai are matrices, the block-diagonal matrix with blochs ai.
M Truncation order of Fourier-Bessel series.
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