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A perfectly happy ball is one that bounces to its original height when dropped on a massive, rigid
surface. A completely unhappy ball does not bounce at all. In the former case, the coefficient of
restitution~COR! is unity. In the latter case, the COR is zero. It is shown that when an unhappy ball
collides with a happy ball, the COR increases from zero to unity as the stiffness of the happy ball
decreases from infinity to zero. The COR is independent of the mass of each ball. The implication
of reducing the COR of a tennis ball, as a possible means of slowing the serve in tennis, is also
considered. It is shown that~a! the COR for a collision with a racket varies with the impact point
and is a maximum at the vibration node near the center of the strings, and~b! the serve speed is
reduced by only about 20% if the COR for a bounce on the court is reduced to zero. ©2000 American

Association of Physics Teachers.
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I. INTRODUCTION

Most students and physics professors are fascinated w
they first see a rubber ball that refuses to bounce when
dropped on the floor, especially when it is compared with
apparently identical ball that bounces like a superball. Suc
ball is available for about $3 from Arbor Scientific1 as an
‘‘unhappy’’ ball of mass 10.3 g, and is sold together with
happy ball of identical feel and appearance. When the
happy ball is dropped vertically onto the floor, it stops de
without bouncing. If it is thrown at an angle onto the floor,
rolls forwards without bouncing off the floor. The happy ba
bounces to a height almost equal to the drop height.
unhappy ball is made from a rubber compound sold un
the trade name Norsorex, while the happy ball is made fr
neoprene rubber. The two balls have similar mass and s
stiffness but have dramatically different dynamic properti

The collision of any two balls or any other massive obje
is always accompanied by a loss of energy. Newton was
first to recognize that such collisions can be convenien
described in terms of the coefficient of restitution,e, defined
in the case of a head-on collision as the ratio of the rela
speed of the objects after the collision to the relative sp
before the collision.2 In a perfectly elastic collision,e51. In
a completely inelastic collision,e50. In general, the COR
depends on the elastic properties of both objects, but un
some conditions the COR may depend almost entirely on
elastic properties of only one of the objects. For example
a relatively soft ball is dropped on a rigid surface such a
hard floor, the resulting value ofe provides a measure of th
elastic properties of the ball, provided that there is no s
nificant deformation of the surface on which it bounces. U
der these circumstances, it is appropriate to refer to the C
as an inherent property of the ball. In addition, if the rig
surface has a much larger mass than the ball, the CO
easily determined from the ratio of the rebound height to
drop height. In the remainder of this paper, any referenc
the COR of a particular ball is based on the assumption
it impacts with a perfectly rigid surface. In practice, it is ea
to find a suitably hard surface to measure the COR for b
used in sport, but it would clearly be inappropriate to me
sure the COR of a steel ball by dropping it on a ha
1025 Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.or
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wooden floor. In this case, the COR would be determin
more by the elastic properties of the floor rather than thos
the ball.

An interesting experiment is to collide a happy ball wi
an unhappy ball. Apart from its purely academic interest,
physics of this type of collision is relevant to problems in t
physics of sport where a ball is struck by a bat or club
racket. The coefficient of restitution for a baseball or a g
ball or a tennis ball impacting with a relevant surface is mo
or less well established by the rules of the game, but la
sums of money are now being spent by manufacturers
increase the COR using technically advanced baseball b
golf clubs, and tennis rackets in order to drive the ball furth
or faster. Other attempts by sporting organizations are be
made to prevent this happening, or to limit it.3 The COR can
be increased by making a bat or club more ‘‘springy,’’ in th
same way that the strings in a tennis racket help to abs
most of the impact energy and then give this energy bac
the ball. Rule 4-1e of golf specifies that ‘‘the club face sh
not have the effect at impact of a spring’’ but this rule
impossible to enforce since nothing is infinitely stiff. In bas
ball, various illegal and unsuccessful methods have h
been used in the past to give the bat some extra power
inserting rubber or cork inside the bat. More recently, alum
num bats with two, closely spaced thin walls have been
troduced in an attempt to reduce the stiffness of the ou
wall while maintaining the mass and strength of a sing
thick wall.

In tennis, big serves tend to dominate the game, leadin
some boring matches, especially on the fast grass cour
Wimbledon. One of the suggestions to slow the serve is
reduce the COR of the ball, as is done in top levels of co
petitive squash. The COR of a tennis ball dropped ont
concrete slab is about 0.75. Suppose that the COR of a te
ball is reduced, for academic purposes, to zero. If we ign
the fact that the ball will not bounce when it lands on t
court, and a match played with such a ball would be incr
ibly boring, an interesting question arises as to whether
serve speed would be reduced drastically or only slightly
is also of interest to calculate the COR for a conventio
tennis ball impacting on the strings of a racket, given that
COR has never been measured directly under condit
where the racket is free to translate, rotate, and vibrate. M
1025g/ajp/ © 2000 American Association of Physics Teachers
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surements of the COR in the past have always been mad
a head-clamped racket or for an impact of the ball on a ri
surface. Measurements of the incident and rebound
speeds have been made on free-standing rackets, bu
COR cannot be determined without a simultaneous meas
ment or calculation of the rebound speed of the racket.

II. CONSERVATION EQUATIONS

Suppose that a ball of massm1 collides head-on at spee
v1 with another ball of massm2 approaching the first ball a
speedv2 , as shown in Fig. 1. In order to account for th
dynamics during the collision, one can model the elas
properties of each ball by assuming thatm1 is connected to a
spring of spring constantk1 andm2 is connected to a spring
of spring constantk2 . The springs may be linear or nonline
and the spring constants may differ during the compress
and expansion phases as a result of hysteresis losses in
ball.

After the collision, letm1 recoil at speedV1 and letm2

recoil at speedV2 . It is convenient to analyze the collision i
a reference frame where the center of mass remains at re
which case the total momentum remains zero at all times
m1v15m2v2 and m1V15m2V2 . The coefficient of restitu-
tion for the collision is then given by

e5
V11V2

v11v2
5

V1

v1
. ~1!

The total initial kinetic energy is

Ei5
1

2
m1v1

2S 11
m1

m2
D ~2!

and the total final kinetic energy is

Ef5
1

2
m1v1

2e2S 11
m1

m2
D . ~3!

The fractional energy loss,f, can be defined as the loss
kinetic energy divided by the initial kinetic energy. Fro
Eqs.~2! and ~3!, f is given by

f 512e2. ~4!

For a perfectly elastic collision,e51 and there is no energ
loss. In a completely inelastic collision,e50 and all of the
initial kinetic energy is dissipated, at least in the center

Fig. 1. Collision of a ball of massm1 and spring constantk1 with another
ball of massm2 and spring constantk2 , showing the velocity of each bal
before~lower casev) and after~upper caseV) the collision.
1026 Am. J. Phys., Vol. 68, No. 11, November 2000
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mass frame. In any other reference frame, a collision w
e50 is characterized by the fact that both balls recoil with
common speed and with finite kinetic energy. Ifm2 is effec-
tively infinite, such as in the collision of a ball with the floo
then the center of mass frame is the same as the labora
frame. A perfectly happy ball will then rebound withV1

5v1 and with e51. A completely unhappy ball does no
rebound at all sinceV150 whene50.

III. MODELING THE ELASTIC PROPERTIES OF
BALLS

The COR for a collision between any two balls depen
on the energy loss resulting from deformation of each b
which in turn depends on the relative stiffness of the t
balls. The stiffness of each ball depends on its relevant
terial properties, as well as the size and shape of each ba
general, there is no direct relation between the stiffn
modulus and the loss modulus, although metal balls wit
high stiffness modulus also tend to have a low loss modu
and vice-versa. For example, the COR for an impact betw
two steel balls is higher than that between two lead bal4

but it is similar to that between two superballs of much low
stiffness. The COR also depends on the shape of the co
ing objects. For example, a hollow rubber ball has a low
COR than a solid rubber ball, even though the material pr
erties might be the same, since a hollow ball is more ea
deformed. The physical dimensions of the colliding obje
may also affect the COR, particularly if the impulse durati
time is comparable to the period of vibration of one or bo
of the colliding objects.4,5 The effect of vibrations on the
COR is considered below for the case of an impact betw
a tennis ball and racket.

At one point in time during the collision, both balls in Fig
1 will momentarily come to rest in the center of mass fram
at which point any remaining energy is stored as elastic
ergy due to compression of the balls. A useful approximat
is to assume thatk1 andk2 remain constant and that there
no energy loss up to this point, in which caseEi5k1x1

2/2
1k2x2

2/2, wherex1 is the maximum compression ofm1 , x2

is the maximum compression ofm2 , and k1x15k2x2 .
Hence,

Ei5
1

2
k1x1

2S 11
k1

k2
D . ~5!

A fraction k2 /(k11k2) of the initial energy is therefore
stored in the ball with spring constantk1 and a fraction
k1 /(k11k2) is stored in the other ball. During the subs
quent expansion phase, the total energy dissipated in the
balls is given by (12e2)Ei . In many cases of interest, a
most all of the energy dissipation occurs in only one of t
balls. For example, ifm1 impacts on a hard surface whe
k2@k1 and if the COR for the impact ise1 , then the energy
dissipated inm1 is (12e1

2)k1x1
2/2 sincek2x2

2!k1x1
2. Pro-

vided that the energy dissipation is not a function of t
impact duration, then the same energy will be dissipated
the ball whenever it compresses by an amountx1 , regardless
of the surface with which it impacts. Ifm1 impacts on an-
other surface or another ball of spring constantk2 , and if
there is no dissipation in the second object, then the COR
such an impact will be given by
1026Rod Cross
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12e25
~12e1

2!k1x1
2/2

Ei
5

k2

k11k2
~12e1

2!. ~6!

For example, the COR for an impact of a tennis ball
concrete ise150.75. The ball has a spring constantk1;4
3104 Nm21 during the compression phase. When it impa
on the strings of a head-clamped racket, the strings abso
significant fraction of the impact energy but almost all of th
energy is then returned to the ball. The spring constant of
strings is typically aboutk2;43104 Nm21, giving e
;0.88, as observed.6 The impact duration on concrete
about 4 ms, and on the strings is about 5 ms, but the cha
in impact duration is not a strong factor in determining t
loss in the ball. Nevertheless, it is known that there is a sli
decrease in bothe1 and the impact duration as the ball spe
increases.6 The decrease in impact duration is due to a n
linear increase in the ball stiffness as the magnitude of
deformation increases. The decrease ine1 is due to a nonlin-
ear increase in the hysteresis loss. A similar result is
served with colliding metal balls, which have been subjec
more extensive analysis4,7 than the relatively soft balls de
scribed in this paper.

The above equations can also be used to model the be
ior of an unhappy ball when it impacts with a happy ba
given that energy dissipation in the happy ball is negligi
compared with the dissipation in the unhappy ball. When
unhappy ball impacts on a rigid surface,e150. If the un-
happy ball has a spring constantk1 and the happy ball has
spring constant k2 , then 12e25k2 /(k11k2), so e2

5k1 /(k11k2) will vary from 0 to 1 ask2 decreases from
infinity to zero. However, this result is based on the assum
tion made above thatk1 remains constant during the impac
In fact, the spring constant of an unhappy ball is stron
nonlinear and drops to zero at maximum ball compress
This effect is examined in more detail in the following se
tion.

IV. COLLISION DYNAMICS OF UNHAPPY BALLS

A measurement of the hysteresis curve, of force ver
displacement of the center of mass, for an unhappy ball
made by dropping it onto a hard piezo disk attached t
heavy brass cylinder as described by Cross.8 It was found
that the hysteresis curve can be represented to a good
proximation by the force law

F5Fo sinS pX

Xo
D ~7!

whereFo is the maximum force,X is the ball compression
and Xo is the maximum ball compression. This force la
resembles Hooke’s law for smallX but it has the property
that F50 whenX50 and also whenX5Xo . For an impact
on a rigid surface,F increases to a maximum valueFo when
X is half its maximum value, thenF decreases to zero asX
increases toXo . When an unhappy ball is dropped on a rig
surface, the force rises to a maximum at aboutt50.36 ms,
depending slightly on the ball speed, indicating from t
analysis given below thatk05Fo /Xo is essentially constan
and equal to 23104 Nm21 and thatFo andXo are both pro-
portional to the impact speed of the ball. The energy loss
the ball is given by the area under theF versusX curve, and
is equal to 2FoXo /p.
1027 Am. J. Phys., Vol. 68, No. 11, November 2000
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The equation of motion of the unhappy ball, when it im
pacts on a rigid surface, has the form

d2x

dt2
52

F

m1
, ~8!

where x is the displacement of the center of mass. If t
compression of the ball is much smaller than its diame
then a reasonable approximation is thatX5x. Equations~7!
and~8! can be solved numerically for initial and final cond
tionsdx/dt5v1 anddx/dt50, respectively. The result for a
ball of massm1510.3 g is shown in Fig. 2. Since the ba
does not bounce,v5dx/dt decreases monotonically to zer
andx remains finite at the end of the impact. The ball is n
permanently deformed by the impact, like a plasticene b
but it returns to its original shape with a time constant
order 0.2 s. During the latter period,F is very small and it
plays no significant role in the collision dynamics. The for
waveform shown in Fig. 2 is an excellent fit to the observ
force waveform.

The collision in Fig. 1 can be analyzed using Eqs.~7! and
~8! to describe the unhappy ball. The corresponding equa
of motion for the happy ball is

d2y

dt2
5

F

m2
, ~9!

wherey is the displacement of the happy ball andm2 is its
mass. IfY is the compression of the happy ball, then

x2y2D5X1Y ~10!

and

F5k2Y5Fo sinS pX

Xo
D , ~11!

whereD is the initial distance between the ball centers. T
value of D is irrelevant in determining the dynamics. It
assumed that the spring constant of the happy ball,k2 , re-
mains constant as it compresses and expands so that th
no energy loss in this ball. Equations~8!–~11! can be solved
numerically for any given initial conditions, using an iter
tive procedure to solve~10! and~11! to determineX andY at
each time step. The nature of the solutions depends on

Fig. 2. Solutions of Eqs.~7! and ~8! for an unhappy ball of massm1

510.3 g and stiffnessk0523104 Nm21 incident at speedv154 ms21 on a
rigid surface.
1027Rod Cross
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ratio of the stiffness of the happy ball to the stiffness of t
unhappy ball. If the happy ball is relatively soft, then t
impact is similar to that between any other balls and
COR increases towards unity as the happy ball is m
softer. Conversely, if the stiffness of the happy ball is
creased, the COR decreases towards zero. When the CO
zero, both balls move with the same speed as a single b
after the collision.

V. ANALYTICAL SOLUTION

An approximate analytical solution of the above equatio
is available when the happy ball is softer than the unha
ball. The solution, which agrees very closely with numeri
results whenk2,3k0 , is given by

pX/Xo5vt ~12!

where

v25k2S 1

m1
1

1

m2
D . ~13!

Equation~12! can be substituted in~7!–~9! to show that

x5S v12
Fo

vm1
D t1

Fo

v2m1
sin~vt ! ~14!

and

y5
Fo

v2m2
@vt2sin~vt !#. ~15!

The ball velocities are obtained by differentiating~14! and
~15!. Using Fo5k0Xo , and vt5p at the end of the colli-
sion, it is easy to show that the COR is given by

e5
pk02k2

pk01k2
. ~16!

The COR is independent of the masses of the two balls
depends only on the relative stiffness of the balls. Ifk2 is
much smaller thank0 , thene is close to unity. According to
~16!, e50 whenk25pk0 . However, the approximate ana
lytical solution is not valid ifk2 is larger than about 3k0
since it does not agree well with the numerical solutions
the end of the impact period and sincee cannot be negative
Nevertheless, the numerical solutions show that the CO
independent of ball mass even whenk2 is much larger than
k0 .

VI. NUMERICAL SOLUTIONS

Numerical solutions of Eqs.~7!–~11! are shown in Figs. 3
and 4 for a case where an unhappy ball of massm1

510.3 g and initial speeddx/dt54 ms21 collides head-on
with a happy ball of massm2510.3 g initially at rest. In Fig.
3, k2523104 Nm21, while in Fig. 4,k2513105 Nm21. For
the softer ball, the happy ball moves at speed 3.034 ms21 and
the unhappy ball moves at speed 0.966 ms21 after the colli-
sion, soe50.517. For the harder ball,e50.001 and both
balls move at a speed close to 2.00 ms21 after the collision.
When the happy ball is relatively soft, the compression of
happy ball is relatively large, the compression of the u
happy ball remains relatively small, and the energy loss
small.
1028 Am. J. Phys., Vol. 68, No. 11, November 2000
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It is interesting to consider these collisions in differe
reference frames. For example, in a reference frame wh
the unhappy ball is incident at speeddx/dt52 ms21, the
happy ball is incident at speeddy/dt522 ms21. In this
case, the total initial momentum is zero, so the total mom
tum after the collision is also zero. Both balls therefore rec
with an equal and opposite speed, equal tov51.034 ms21

after the collision, for the case shown in Fig. 3. Altern
tively, if the happy ball is incident at 4 ms21 on an unhappy
ball initially at rest, then the unhappy ball moves off at 3.0
ms21 after the collision. For the example shown in Fig.
both balls come almost to rest if they collide head-on w
equal and opposite speeds.

VII. COLLISION OF A TENNIS BALL AND A
TENNIS RACKET

In order to evaluate the effects of reducing the COR o
tennis ball, it is first necessary to determine the COR for

Fig. 3. Numerical solutions of Eqs.~7!–~11! for a case where an unhapp
ball of massm1510.3 g and initial speeddx/dt54 ms21 collides head-on
with a happy ball of massm2510.3 g, and spring constantk252
3104 Nm21, initially at rest. After the collision, the happy ball moves
speed 3.034 ms21 and the unhappy ball moves at speed 0.966 ms21, so e
50.517.XT5X1Y is the total compression of the two balls.

Fig. 4. As for Fig. 3, butk2513105 Nm21. In this case,e50.001 and both
balls move at a speed close to 2.00 ms21 after the collision.
1028Rod Cross
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impact of a standard tennis ball on the strings of a racket
practice, it is difficult to measure the COR for such an i
pact, since it is not a trivial task to measure the speed
swung racket at the actual impact point, as well as the sp
of the ball, both before and after the collision. Consequen
the COR is almost always measured by projecting a ball o
the strings of a stationary racket clamped around the hea
a heavy support. It is usually assumed that the COR
remain unaltered when the head is unclamped.9 This assump-
tion is not generally valid, since the COR can be stron
affected by energy loss due to vibrations induced in
racket. In addition, some of the impact energy is absorbed
recoil and rotation of the racket, thereby reducing the de
mation of the ball and the resulting energy loss in the ball.
first sight, it might appear that the latter effect should mak
significant difference to the COR, but it has no effect on
COR, for the following reason.

Suppose that a ball of massm1 is incident on a stationary
free-standing racket of massM as shown in Fig. 5. If the bal
exerts a forceF at a distanceb from the center of mass~cm!
of the racket, then the cm will recoil at speedVcm given by

F5M dVcm/dt, ~17!

and the racket will rotate at angular frequencyv given by

Fb5I cmdv/dt, ~18!

whereI cm is the moment of inertia of the racket about an a
through its cm. One can define the effective mass,m2 , of the
racket by the relation

F5m2 dV/dt5m2S dVcm

dt
1b

dv

dt D , ~19!

whereV5Vcm1bv is the recoil speed of the racket at th
point of impact. From Eqs.~17!–~19! it is easy to show tha

1

m2
5

1

M
1

b2

I cm
. ~20!

The dynamics of the impact can therefore be studied by
placing the extended racket with an equivalent point m
m2 , without having to consider separately the translatio
and rotational motion of the racket. The effective mass va
with position along the racket and is typically about one-h

Fig. 5. Impact of a ball with an initially stationary, free-standing racket. T
impact point on the racket recoils at speedV5Vcm1bv.
1029 Am. J. Phys., Vol. 68, No. 11, November 2000
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to one-third of its actual mass for an impact near the cen
of the strings.

Suppose that a ball of massm1 and spring constantk1 is
incident in the laboratory frame on a stationary racket
effective massm2 and spring constantk2 . Suppose also tha
the ball strikes the fundamental vibration node near the c
ter of the strings so that there is no energy loss due to vib
tions of the racket frame. In practice, this is a good appro
mation since the impact duration is too long to excite high
order modes efficiently. If the impact is analyzed in the ce
ter of mass frame, then the fraction of the initial impa
energy stored in the ball as a result of its compression
given, from Eq.~5!, by k2 /(k11k2). If a fraction f of this
energy is subsequently dissipated in the ball, and no ene
is dissipated in the strings, then the COR for the collision
given, from Eq.~4!, by e2512 f . If the racket head is now
clamped, so that the effective mass of the racket is infin
and the ball is projected onto the strings at the same sp
~in the laboratory frame! as before, then the initial impac
energy is the same in the laboratory frame but it is increa
in the center of mass frame. The ball compression will
somewhat larger since none of the impact energy is abso
by recoil of the racket. However, the fraction of the initi
energy stored in the ball as a result of its compression
mains the same, since it depends only onk1 andk2 , and not
on m2 , as shown by Eq.~5!. The fractionf is independent of
the energy stored in the ball, soe is unaltered. Even if the
strings dissipate a significant fraction of the initial energy
is easy to show by the same reasoning thate would be unal-
tered if the racket head is clamped.

For an impact at any point other than the vibration node
is possible to calculate the energy coupled to vibratio
modes, and to calculate the apparent coefficient of res
tion, eA5V1 /v1 , using a flexible beam model for the racke
Numerical calculations of this type have previously been
ported by Van Zandt10 for a baseball bat and by Cross11 for
a tennis racket. If the racket vibrates, then the velocity of
racket at any point, well after the collision is over, can
decomposed into a time-independent or dc component a
time-dependent or ac component. The ac component a
from energy stored in racket vibrations, this energy rep
senting part of the total energy lost or dissipated during
collision. The time-independent component must satisfy
same conservation equations for linear and angular mom
tum that one would obtain using a rigid body model of t
racket. This situation is the same as that involved in
collision of any two masses, one of which vibrates as a re
of the collision. The momentum of the vibrating mass, af
the collision is over, is unaffected by its vibrational motio

If a ball of massm1 is incident at speedv1 in the labora-
tory frame on an initially stationary racket of effective ma
m2 , the ball rebounds at speedV1 , and the impact point on
the racket recoils at speedV2 , then conservation of momen
tum can be used to show that

e5
V11V2

v1
5eA1~11eA!m1 /m2 . ~21!

Van Zandt10 used a similar expression for the COR but
incorrectly included the vibrational component ofV2 in the
numerator of Eq.~21!. Graphs ofeA versus impact paramete
for a tennis racket are given by Cross.11 From these data, one
can show that the COR has a maximum value of about 0
at the vibration node near the center of the strings, and f
1029Rod Cross
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monotonically to about 0.54 at the tip of the racket and ab
0.71 at the throat. The simple estimate of the COR given
Sec. III is therefore consistent with these more detailed
culations, at least for an impact at the vibration node. Des
the fact thate is a maximum at the vibration node, since t
vibration losses are a minimum at this point, the rebou
speed of the ball is not necessarily a maximum at this po
For an initially stationary racket,eA is a maximum near the
throat of the racket since the effective mass is increase
this region and hence the energy coupled to translation
rotation of the racket is reduced.

VIII. IMPLICATIONS OF REDUCING THE COR OF
A TENNIS BALL

The effect of serving a zero COR tennis ball can be e
mated by considering a head-on impact of a racket of ef
tive massm2 incident at speedv2 in the laboratory frame on
a stationary ball of massm1 . Treating the massm2 as a point
particle, it is easy to show that the ball speed,V1 , after the
collision, is given by

V15
~11e!m2v2

m11m2
. ~22!

The effective mass of a racket is typically about three tim
the mass of the ball for an impact near the center of
strings. If m253m1 in Eq. ~22!, then V150.75(11e)v2 .
The maximum possible ball speed is then 1.5v2 , assuming
that e51. The maximum speed of a conventional ball w
e50.86 is 1.39v2 . This can be as high as 60 or 65 ms21 ~130
to 140 mph!, which many people feel is too fast for the goo
of the game.

If a tennis ball is constructed with zero COR for an impa
on a rigid surface, and if the ball and the strings have ab
the same stiffness, then Eq.~16! shows thate will be about
0.5 for an impact with the strings. This was confirmed
dropping an unhappy ball on the strings of a head-clam
racket. The racket was strung at a tension of about 55 lb~245
N!, which is typical of most rackets, giving a string plan
stiffness of about 33104 Nm21. An even higher bounce wa
observed when the ball was dropped on a stretched ru
membrane constructed from a rubber glove. Ife50.5 for the
tennis racket, thenV151.12v2 , corresponding to a spee
reduction of 19% compared with balls currently in use. If t
racket is strung at a higher tension, the speed reduc
would be larger. Conversely, a racket strung at lower tens
would have a smaller effect on the ball speed.

The speed reduction for a ball with zero COR is surpr
ingly small, given that none of the elastic energy stored
the ball is recovered during the collision. The only elas
energy available is that stored in the strings and the ra
frame. The explanation lies in the fact that, in the laborat
frame, not all of the initial kinetic energy of the racket
converted to elastic energy. In the above example wh
m253m1 , it is easy to show that only14 of the initial kinetic
energy of the racket is converted to elastic energy. Eve
the racket and the ball both dissipated all of their sto
elastic energy, so that the COR for the collision was ze
Eq. ~22! shows that the ball could be served at a speedV1

50.75v2 . This is consistent with the fact that3
4 of the initial

energy is retained by the racket and the ball. The ball wo
stick to the strings under these conditions, at least until
server reduced the racket speed.
1030 Am. J. Phys., Vol. 68, No. 11, November 2000
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It is also of interest to consider more generally the case
a bat or racket incident at speedv2 on a ball traveling at
speedv1 , as in Fig. 1. The collision was analyzed in th
center of mass frame in Sec. II. Ifv1 andv2 are measured in
the laboratory frame, then it can be shown that the fractio
energy loss is given by

f 5
~12e2!m1m2~v11v2!2

~m11m2!~m1v1
21m2v2

2!
, ~23!

which reduces to Eq.~4! whenm1v15m2v2 . The fraction of
the initial kinetic energy converted to elastic energy is eas
determined by settinge50 in Eq. ~23!. For example, ifm2

53m1 as in the above case, and ifv15v2 , then 3
4 of the

initial kinetic energy is converted to elastic energy during t
collision. These conditions are typical of a forehand or ba
hand in tennis, or of a vigorous hit in baseball. The rebou
speed of the ball is then much more sensitive to the ball C
than for a collision where the ball is initially at rest.

IX. CONCLUSIONS

A rubber ball that sticks to the floor when it is dropped
a curious sight. Equally curious, since it is counter-intuitiv
is the sight of the same unhappy ball bouncing to a con
erable height when it is dropped on a soft, elastic surf
such as a stretched rubber membrane. This provides a
matic classroom demonstration of the nature of elastic
inelastic collisions, highlighting the significance of relativ
stiffness in determining the deformation and energy loss
each of the colliding objects. If one were to test the elas
properties of a surface such as a hard floor or a soft m
brane by bouncing a happy ball on the surface, then b
surfaces would appear to have identical properties, since
ball would bounce equally well. The differences are mu
more obvious when one also tests the surfaces using an
happy ball, but this test alone does not indicate whether
energy loss occurs mainly in the floor or mainly in the ba
The happy ball test shows that there is no energy dissipa
in the happy ball or the floor or the membrane, but it pr
vides no information on the relative stiffness of these obje
unless the impact duration is also measured. The unha
ball test shows that the floor is much stiffer than the me
brane and that none of the elastic energy stored in the
happy ball is released during a collision of the ball.

The implications in the physics of sport are equally inte
esting. For example, tennis players can choose a wide va
of different strings for their racket and can string the rac
to any desired tension, but all strings appear to have the s
elastic properties, regardless of the string tension, w
tested by bouncing a solid wood or metal ball on the strin
This test shows that there is essentially no energy dissipa
in the ball or in any of the strings, even if the strings ha
lost tension over many years of abuse. At first sight, this
seems to indicate that all strings are essentially the same
that players should not waste their money on expens
strings. However, differences do become apparent whe
tennis ball impacts with the strings, since rackets strung
low tension lead to smaller energy losses in the ball,6 as do
strings such as natural gut which have a relatively low d
namic stiffness. Any attempt to decrease the serve spee
tennis by using balls with a low coefficient of restitution
likely to be unsuccessful since the reduction in speed is
prisingly small. Even if the ball COR is reduced to zero, t
1030Rod Cross
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ball can still be served at about 80% of the speed of a nor
ball since the strings absorb some of the impact energy,
only a small fraction is dissipated in the ball. For simil
reasons, the ball speed in baseball and golf can be incre
by making the bat or the club softer or more springy in ord
to decrease the energy loss in the ball. Of course, this
only work if the fraction of the energy dissipated in the b
or the club remains significantly smaller than the fracti
dissipated in the ball.
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INTUITION

Our intuitive fear of heights would be ridiculous for an albatross; our intuitive appreciation of
the flight of a ball is silly if we want to trace a quark. Intuition gives us plausible nonsense like
astrology, homeopathy, or quantum-mechanics-turned-into-Zen. Intuition does not help us much
in doing physics, be it quantum theory or classical mechanics~ever tried to understand the motions
of a spinning top intuitively?!

Vincent Icke,The Force of Symmetry~Cambridge University Press, Cambridge, 1995!, pp. xiii–xiv.
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