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A perfectly happy ball is one that bounces to its original height when dropped on a massive, rigid
surface. A completely unhappy ball does not bounce at all. In the former case, the coefficient of
restitution(COR) is unity. In the latter case, the COR is zero. It is shown that when an unhappy ball
collides with a happy ball, the COR increases from zero to unity as the stiffness of the happy ball
decreases from infinity to zero. The COR is independent of the mass of each ball. The implication
of reducing the COR of a tennis ball, as a possible means of slowing the serve in tennis, is also
considered. It is shown th#&h) the COR for a collision with a racket varies with the impact point
and is a maximum at the vibration node near the center of the stringgbatite serve speed is
reduced by only about 20% if the COR for a bounce on the court is reduced to zemoo@merican
Association of Physics Teachers.

[. INTRODUCTION wooden floor. In this case, the COR would be determined
more by the elastic properties of the floor rather than those of

Most students and physics professors are fascinated whéhe ball. _ _ _ _ _
they first see a rubber ball that refuses to bounce when it is An interesting experiment is to collide a happy ball with
dropped on the floor, especially when it is compared with ar@n unhappy ball. Apart from its purely academic interest, the
apparently identical ball that bounces like a superball. Such Bhysics of this type of collision is relevant to problems in the
ball is available for about $3 from Arbor Scientifias an  Physics of sport where a ball is struck by a bat or club or
“unhappy” ball of mass 10.3 g, and is sold together with aracket. The qoefﬂugnt of restitution for a baseball ora golf
happy ball of identical feel and appearance. When the unPall or a tennis ball_lmpactmg with a relevant surface is more
happy ball is dropped vertically onto the floor, it stops dead®" €SS well established by the rules of the game, but large
without bouncing. If it is thrown at an angle onto the floor, it SUMS Of money are now being spent by manufacturers to
rolls forwards without bouncing off the floor. The happy ball Incréase the COR using technically advanced baseball bats,
bounces to a height almost equal to the drop height. Thgolf clubs, and tennis rackets in or'der to drl\(e the ball furthgr
unhappy ball is made from a rubber compound sold undef" faster. Other attempts by sporting organizations are being
the trade name Norsorex, while the happy ball is made fronfade to prevent this happening, or to limif The COR can

neoprene rubber. The two balls have similar mass and statrt):e increased by making a bat or club more “springy,” in the

stiffness but have dramatically different dynamic properties.Same way that the strings in a tennis racket help to absorb

The collision of any two balls or any other massive objectsmgstt)fglf tgilgf-i(:e'{ §Pe(r)gl;fy sagiimzir]eintr?zi\\ﬁttﬁlesc?gg rf%)éebzﬁgﬁo
is always accompanied by aloss of energy. Newton was thg:ot hav.e the effect afqim gct of a spring” but this rule is
first to recognize that such collisions can be ConVeniembfmpossible to enforce sincg nothing isr?nfir?itely stiff. In base-

Qescnbed in terms of the coe.ff[0|ent of resntyuendeflned . ball, various illegal and unsuccessful methods have have
in the case of a head-on collision as the ratio of the relatlveﬁ]

. o . een used in the past to give the bat some extra power, by
speed of the objects after the collision to the relative spee serting rubber or cork inside the bat. More recently, alumi-

before the coII_|S|0r7r.Ip a pe_rf_ectly elastic collisiore=1.In [ \m bats with two, closely spaced thin walls have been in-
a completely inelastic collisiorg=0. In general, the COR  troduced in an attempt to reduce the stiffness of the outer
depends on the elastic properties of both objects, but undggall while maintaining the mass and strength of a single,
some conditions the COR may depend almost entirely on thghick wall.

elastic properties of only one of the objects. For example, if |n tennis, big serves tend to dominate the game, leading to
a relatively soft ball is dropped on a rigid surface such as &ome boring matches, especially on the fast grass courts at
hard floor, the resulting value efprovides a measure of the wimbledon. One of the suggestions to slow the serve is to
elastic properties of the ball, provided that there is no sigreduce the COR of the ball, as is done in top levels of com-
nificant deformation of the surface on which it bounces. Un-petitive squash. The COR of a tennis ball dropped onto a
der these circumstances, it is appropriate to refer to the CORoncrete slab is about 0.75. Suppose that the COR of a tennis
as an inherent property of the ball. In addition, if the rigid ball is reduced, for academic purposes, to zero. If we ignore
surface has a much larger mass than the ball, the COR i#e fact that the ball will not bounce when it lands on the
easily determined from the ratio of the rebound height to thecourt, and a match played with such a ball would be incred-
drop height. In the remainder of this paper, any reference tibly boring, an interesting question arises as to whether the
the COR of a particular ball is based on the assumption thaserve speed would be reduced drastically or only slightly. It
it impacts with a perfectly rigid surface. In practice, it is easyis also of interest to calculate the COR for a conventional
to find a suitably hard surface to measure the COR for ballsennis ball impacting on the strings of a racket, given that the
used in sport, but it would clearly be inappropriate to mea-COR has never been measured directly under conditions
sure the COR of a steel ball by dropping it on a hard,where the racket is free to translate, rotate, and vibrate. Mea-
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A\ - V2 mass frame. In any other reference frame, a collision with
e=0 is characterized by the fact that both balls recoil with a
@m\ m@ common speed and with finite kinetic energymij is effec-
tively infinite, such as in the collision of a ball with the floor,
k; ko then the center of mass frame is the same as the laboratory
frame. A perfectly happy ball will then rebound wit¥i;

=vp,; and withe=1. A completely unhappy ball does not
rebound at all sinc&,=0 whene=0.

«@m m@—* ll. MODELING THE ELASTIC PROPERTIES OF
BALLS
V1 k1 kz Vz

The COR for a collision between any two balls depends
on the energy loss resulting from deformation of each ball,
which in turn depends on the relative stiffness of the two
balls. The stiffness of each ball depends on its relevant ma-
terial properties, as well as the size and shape of each ball. In
surements of the COR in the past have always been made @gneral, there is no direct relation between the stiffness
a head-clamped racket or for an impact of the ball on a rigicnodulus and the loss modulus, although metal balls with a
surface. Measurements of the incident and rebound bahigh stiffness modulus also tend to have a low loss modulus
speeds have been made on free-standing rackets, but tagd vice-versa. For example, the COR for an impact between
COR cannot be determined without a simultaneous measur&o steel balls is higher than that between two lead Halls,
ment or calculation of the rebound speed of the racket. but it is similar to that between two superballs of much lower

stiffness. The COR also depends on the shape of the collid-
Il. CONSERVATION EQUATIONS ing objects. For example, a hollow rubber ball has a lower
COR than a solid rubber ball, even though the material prop-

Suppose that a ball of mass, collides head-on at speed erties might be the same, since a hollow ball is more easily
v, with another ball of masm, approaching the first ball at deformed. The physical dimensions of the colliding objects
speedv,, as shown in Fig. 1. In order to account for the may also affect the COR, particularly if the impulse duration
dynamics during the collision, one can model the elastidime is comparable to the period of vibration of one or both

properties of each ball by assuming thatis connected to a  ©f the colliding objectS:> The effect of vibrations on the
spring of spring constarkt; andm, is connected to a spring COR is considered below for the case of an impact between

a tennis ball and racket.

Unhappy ball Happy ball

Fig. 1. Collision of a ball of masm, and spring constark; with another
ball of massm, and spring constarkt,, showing the velocity of each ball
before(lower casev) and after(upper casé/) the collision.

of spring constank,. The springs may be linear or nonlinear LS . . -
and the spring constants may differ during the compressio At one point in time during the collision, both balls in Fig.

and expansion phases as a result of hysteresis losses in eacf/l momentarily come to rest in the center of mass frame,
ball at which point any remaining energy is stored as elastic en-

ergy due to compression of the balls. A useful approximation
. . . .. <. isto assume thdt; andk, remain constant and that there is
recoil at speed/,. It is convenient to analyze the collision in

. . . . 2
a reference frame where the center of mass remains at rest,I? ©"°'9Y loss up to this point, in which caBg=Kk;xi/2
which case the total momentum remains zero at all times, s_cL koX5/2, Wh_erexl is the maximum compression afy, Xz
My =My, andm;V;=m,V,. The coefficient of restitu- IS the maximum compression afh,, and kix;=kyX;.

After the collision, letm; recoil at speed/; and letm,

tion for the collision is then given by Hence,
Vi+V, V; 1 ., Ky
= == Ei=zkyxf| 1+ —]. 5)
e 01+, Ul. (1) iT9 171 k2
The total initial kinetic energy is A fraction k,/(k;+k,) of the initial energy is therefore
1 m stored in the ball with spring constak and a fraction
Ei=-mp? 1+ — (20 ki/(kitkp) is stored in the other ball. During the subse-
2 m; quent expansion phase, the total energy dissipated in the two
and the total final kinetic energy is balls is given by (+e?)E;. In many cases of interest, al-
most all of the energy dissipation occurs in only one of the
Ef=3mlu§e2 1+ ﬂ) (3) balls. For example, ifn; impacts on a hard surface where
2 my k,>k,; and if the COR for the impact is;, then the energy

The fractional energy losg, can be defined as the loss in dissipated inm, is (1—ei)k_1x§/_2 since kox5< klxi- Pro-
kinetic energy divided by the initial kinetic energy. From vided that the energy dissipation is not a function of the
Egs.(2) and(3), f is given by impact duration, then the same energy will be dissipated in

f—1_ @2 @) the ball whenever it compresses by an amoyntregardless

' of the surface with which it impacts. ih; impacts on an-
For a perfectly elastic collisiorg=1 and there is no energy other surface or another ball of spring constignt and if
loss. In a completely inelastic collisioe=0 and all of the there is no dissipation in the second object, then the COR for
initial kinetic energy is dissipated, at least in the center ofsuch an impact will be given by
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2 2 - ]

l-e E _k1+k2(1 e7). (6) E E 5o
For example, the COR for an impact of a tennis ball on & 4r .
concrete ise;=0.75. The ball has a spring constdqt-4 = E 4 40
% 10* Nm~?! during the compression phase. When it impacts ™~ 3 | ] -
on the strings of a head-clamped racket, the strings absorb i~ - 4 30 >
significant fraction of the impact energy but almost all of this © 5 [ X ] -
energy is then returned to the ball. The spring constant of the— 3 20
strings is typically aboutk,~4Xx10*Nm™%, giving e ]
~0.88, as observetiThe impact duration on concrete is ~ 1 310
about 4 ms, and on the strings is about 5 ms, but the chang¢* ]
in impact duration is not a strong factor in determining the 0 Looa bty T3 = )

loss in the ball. Nevertheless, it is known that there is a slight 0 05 1 15 2 25 3

decrease in both; and the impact duration as the ball speed

increase$. The decrease in impact duration is due to a non- t (ms)

linear increase in the ball stiffness as the magnitude of th,@ig_ 2. Solutions of Eqs(7) and (8) for an unhappy ball of mase,

deformation increases. The decreaseifis due to a nonlin- =103 and stiffnesk,=2x 10* Nm~* incident at speed,=4 ms ™ on a

ear increase in the hysteresis loss. A similar result is obrigid surface.

served with colliding metal balls, which have been subject to

more extensive analy$ié than the relatively soft balls de-

scribed in this paper. : . o
The above equations can also be used to model the behaﬁéz?seoiq:itigg gerfnac:;t(Iaonhg; mee ;ngrf:ﬁppy ball, when it im

ior of an unhappy ball when it impacts with a happy ball, '

given that energy dissipation in the happy ball is negligible d?x F

compared with the dissipation in the unhappy ball. Whenthe G~ ~ m_1 ®)

unhappy ball impacts on a rigid surface,=0. If the un-

happy ball has a spring constdqtand the happy ball has a

: o .
spring constantk,, then 1-e=kp/(k;tko), so e then a reasonable approximation is that x. Equations(7)

- l.(l./(kﬁk?) will vary ”0”.‘ Otol _askz decreases from and(8) can be solved numerically for initial and final condi-
infinity to zero. However, this result is based on the assump:.

. ; . . tionsdx/dt=v, anddx/dt=0, respectively. The result for a
tion made above tha¢; remains constant during the impact. all of massm.—=10.34 is shown in Fid. 2. Since the ball
In fact, the spring constant of an unhappy ball is strongl;{j’ b 1 —ax?d d 9. £ 9l I

nonlinear and drops to zero at maximum ball compressiondQ€s Not bounce; =dx/dt decreases monotonically to zero

This effect is examined in more detail in the following sec- 2Ndx remains finite at the end of the impact. The ball is not
tion. permanently deformed by the impact, like a plasticene ball,

but it returns to its original shape with a time constant of
order 0.2 s. During the latter perio#,is very small and it
V. COLLISION DYNAMICS OF UNHAPPY BALLS plays no significant role in the collision dynamics. The force

) waveform shown in Fig. 2 is an excellent fit to the observed
A measurement of the hysteresis curve, of force versugy ce waveform.

displacement of the center of mass, for an unhappy ball was The collision in Fig. 1 can be analyzed using E®.and

made by dropping it onto a hard piezo disk attached to gg) tg describe the unhappy ball. The corresponding equation
heavy brass cylinder as described by Cfb#swas found of motion for the happy ball is

that the hysteresis curve can be represented to a good ap-

where x is the displacement of the center of mass. If the
compression of the ball is much smaller than its diameter,

proximation by the force law dy F
dtZ ~ my,’ ©
X 2
F= Fosm(x—o @) wherey is the displacement of the happy ball amg is its
. . ) . mass. IfY is the compression of the happy ball, then
whereF, is the maximum forceX is the ball compression,
and X, is the maximum ball compression. This force law ~ X~Y—D=X+Y (10

resembles Hooke’s law for sma¥ but it has the property gnd
thatF =0 whenX=0 and also wheiX=X,. For an impact

on a rigid surfaceF increases to a maximum vallég when F=k,Y=F,sin 77_X> , (12)
X is half its maximum value, theR decreases to zero as Xo

increases X, . When an unhappy ball is dropped on arigid yhereD is the initial distance between the ball centers. The
surface, the force rises to a maximum at abbba0.36 ms,  value of D is irrelevant in determining the dynamics. It is
depending slightly on the ball speed, indicating from theassumed that the spring constant of the happy kall,re-
analysis given below thdt,=F,/X, is essentially constant mains constant as it compresses and expands so that there is
and equal to X 10° Nm~* and thatF, andX, are both pro- no energy loss in this ball. Equatiof8—(11) can be solved
portional to the impact speed of the ball. The energy loss imumerically for any given initial conditions, using an itera-
the ball is given by the area under tReversusX curve, and  tive procedure to solvél0) and(11) to determineX andY at

is equal to F X, /. each time step. The nature of the solutions depends on the
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ratio of the stiffness of the happy ball to the stiffness of the
unhappy ball. If the happy ball is relatively soft, then the
impact is similar to that between any other balls and the
COR increases towards unity as the happy ball is made
softer. Conversely, if the stiffness of the happy ball is in-
creased, the COR decreases towards zero. When the COR is
zero, both balls move with the same speed as a single body

(mm)

es

after the collision. 8
S
g
V. ANALYTICAL SOLUTION =
<C
An approximate analytical solution of the above equations
is available when the happy ball is softer than the unhappy Ly voa 0 1 4,
ball. The solution, which agrees very closely with numerical 0 0.5 1 15 2
results wherk, <3k, is given by ' t (ms) '
TXIX,= ot (12
Fig. 3. Numerical solutions of Eq$7)—(11) for a case where an unhappy
where ball of massm;=10.3 g and initial speedx/dt=4 ms™! collides head-on
1 1 with a happy ball of massm,=10.3g, and spring constark,=2
wl= kz(_ + —. (13 x 10 Nm™2, initially at rest. After the collision, the happy ball moves at
m;  mp speed 3.034 m¢ and the unhappy ball moves at speed 0.966nso e

Equation(12) can be substituted if7)—(9) to show that =0.517.X;=X+Y is the total compression of the two balls.

o FO .
X:<Ul_ w_ml t+ w’m, sin(wt) (14) It is interesting to consider these collisions in different
reference frames. For example, in a reference frame where
and the unhappy ball is incident at speex/dt=2 ms !, the
Fo _ happy ball is incident at speedy/dt=—2ms % In this
y= wzmz[wt—sm(wt)]- (15  case, the total initial momentum is zero, so the total momen-

The ball velocities are obtained by differentiatifi4) and
(15). Using Fo=KkgX,, and wt= 7 at the end of the colli-

tum after the collision is also zero. Both balls therefore recoil
with an equal and opposite speed, equabte1.034 ms?
after the collision, for the case shown in Fig. 3. Alterna-

sion, it is easy to show that the COR is given by tively, if the happy ball is incident at 4 m$ on an unhappy
ko — Kk ball initially at rest, then the unhappy ball moves off at 3.034
0 =2 ms ! after the collision. For the example shown in Fig. 4,

& otk both balls come almost to rest if they collide head-on with
The COR is independent of the masses of the two balls an8dual and opposite speeds.
depends only on the relative stiffness of the ballskJfis
much smaller thatk,, thene s close to unity. According to VII. COLLISION OF A TENNIS BALL AND A
(16), e=0 whenk,=mk,. However, the approximate ana- TENNIS RACKET
lytical solution is not valid ifk, is larger than about 1,
since it does not agree well with the numerical solutions ate
the end of the impact period and sineeannot be negative.
Nevertheless, the numerical solutions show that the COR is
independent of ball mass even whienis much larger than 4
ko.

(16)

In order to evaluate the effects of reducing the COR of a
nnis ball, it is first necessary to determine the COR for an

VI. NUMERICAL SOLUTIONS

Numerical solutions of Eq$7)—(11) are shown in Figs. 3
and 4 for a case where an unhappy ball of mass
=10.3g and initial speedx/dt=4 ms ! collides head-on
with a happy ball of mass,=10.3 g initially at rest. In Fig.
3,k,=2x10* Nm™%, while in Fig. 4,k,=1x10° Nm™L. For
the softer ball, the happy ball moves at speed 3.034'msd
the unhappy ball moves at speed 0.966 fafter the colli-
sion, soe=0.517. For the harder bale=0.001 and both 0
balls move at a speed close to 2.00 thafter the collision.

When the happy ball is relatively soft, the compression of the
happy ball is relatively large, the compression of the un-

happy ball remains relatively small, and the energy l0ss igig. 4. As for Fig. 3, buk,=1x 1P Nm™2. In this casee=0.001 and both
small. balls move at a speed close to 2.00 thafter the collision.

All variables (mm)
N

iy
(6]
N

1
t (ms)
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- ™0 to one-third of its actual mass for an impact near the center
] B of the strings.
Vi Suppose that a ball of mass; and spring constark; is
My O—’ '}" “O —=V incident in the laboratory frame on a stationary racket of
Vi effective massn, and spring constark,. Suppose also that
b the ball strikes the fundamental vibration node near the cen-
l ter of the strings so that there is no energy loss due to vibra-
CM lo]-Y-- —» Vem tions of the racket frame. In practice, this is a good approxi-
| | mation since the impact duration is too long to excite higher
e order modes efficiently. If the impact is analyzed in the cen-
ter of mass frame, then the fraction of the initial impact
energy stored in the ball as a result of its compression is
L L , given, from Eq.(5), by k,/(k;+k,). If a fractionf of this
] energy is subsequently dissipated in the ball, and no energy
Before collision After collision is dissipated in the strings, then the COR for the collision is
given, from Eq.(4), by e?=1—f. If the racket head is now
clamped, so that the effective mass of the racket is infinite,
and the ball is projected onto the strings at the same speed
(in the laboratory frameas before, then the initial impact
energy is the same in the laboratory frame but it is increased
in the center of mass frame. The ball compression will be
somewhat larger since none of the impact energy is absorbed

vibration —»
node

B

Fig. 5. Impact of a ball with an initially stationary, free-standing racket. The
impact point on the racket recoils at speée V ,+bw.

impact of a standard tennis ball on the strings of a racket. |

practice, it is difficult to measure the COR for such an im- ; X o
pact, since it is not a trivial task to measure the speed of By recoil of the racket. However, the fraction of the initial

swung racket at the actual impact point, as well as the spedg/'€r9y stored in the ball as a result of its compression re-

of the ball, both before and after the collision. ConsequentlyMains the same, since it depends onlykgrandk;, and not

the COR is almost always measured by projecting a ball ont®n Mz, as shown by Eq(5). The fractionf is independent of

the strings of a stationary racket clamped around the head @€ energy stored in the ball, sois unaltered. Even if the

a heavy support. It is usually assumed that the COR wilStrings dissipate a significant fractlor_w of the initial energy, it

remain unaltered when the head is unclamb@&tiis assump- IS easy to show by the same reasoning #habuld be unal-

tion is not generally valid, since the COR can be stronglytered if the racket head is clamped. o _

affected by energy loss due to vibrations induced in the Foranimpact at any point other than the vibration node, it

racket. In addition, some of the impact energy is absorbed bis possible to calculate the energy coupled to vibrational

recoil and rotation of the racket, thereby reducing the deformodes, and to calculate the apparent coefficient of restitu-

mation of the ball and the resulting energy loss in the ball. Ation, ea=V; /v, using a flexible beam model for the racket.

first sight, it might appear that the latter effect should make é&Numerical calculations of this type have previously been re-

significant difference to the COR, but it has no effect on theported by Van Zand? for a baseball bat and by Crdsgor

COR, for the following reason. a tennis racket. If the racket vibrates, then the velocity of the
Suppose that a ball of mass, is incident on a stationary, racket at any point, well after the collision is over, can be

free-standing racket of mas4 as shown in Fig. 5. If the ball decomposed into a time-independent or dc component and a

exerts a forcé= at a distancd from the center of masgm)  time-dependent or ac component. The ac component arises

of the racket, then the cm will recoil at spe¥d, given by ~ from energy stored in racket vibrations, this energy repre-
senting part of the total energy lost or dissipated during the

F=MdV.,/dt, (17 collision. The time-independent component must satisfy the
same conservation equations for linear and angular momen-
tum that one would obtain using a rigid body model of the
Fp=I:mdw/dt, (18 racket. This situation is the same as that involved in the

h is th f inertia of th ket ab ._collision of any two masses, one of which vibrates as a result
wherel o IS the moment of inertia of the racket about an axisf the collision. The momentum of the vibrating mass, after

through its cm. One can define the effective mass, of the  the collision is over, is unaffected by its vibrational motion.
racket by the relation If a ball of massm, is incident at speed; in the labora-
dV,, do tory frame on an initially stationary racket of effective mass
F=m,dV/dt=m,| —— +b—], (19  m,, the ball rebounds at spe&f , and the impact point on
dt dt ; )
the racket recoils at speéf,, then conservation of momen-
whereV=V_,+bw is the recoil speed of the racket at the tum can be used to show that
point of impact. From Eqs17)—(19) it is easy to show that VitV
1 1 b2 e= lv 2=eA+(1+eA)m1/m2. (21
J— (20) 1

and the racket will rotate at angular frequeneyiven by

my M lem Van zandt® used a similar expression for the COR but he
The dynamics of the impact can therefore be studied by reincorrectly included the vibrational component\8f in the
placing the extended racket with an equivalent point massumerator of Eq(21). Graphs ofe, versus impact parameter
m,, without having to consider separately the translationafor a tennis racket are given by Crdsssrom these data, one
and rotational motion of the racket. The effective mass variesan show that the COR has a maximum value of about 0.86
with position along the racket and is typically about one-halfat the vibration node near the center of the strings, and falls
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monotonically to about 0.54 at the tip of the racket and about It is also of interest to consider more generally the case of
0.71 at the throat. The simple estimate of the COR given ira bat or racket incident at speed on a ball traveling at
Sec. Il is therefore consistent with these more detailed calspeedv,, as in Fig. 1. The collision was analyzed in the
culations, at least for an impact at the vibration node. Despit@enter of mass frame in Sec. Il.df, andv, are measured in

the fact thaie is a maximum at the vibration node, since the se |aboratory frame, then it can be shown that the fractional
vibration losses are a minimum at this point, the rebouncgnergy loss is given by

speed of the ball is not necessarily a maximum at this point.

For an initially stationary rackeg, is a maximum near the ~ (A-e)mmy(vyFvy)? 29

throat of the racket since the effective mass is increased in ~ (m;+m,)(mwi+myu3)’

this region and hence the energy coupled to translation and, i

rotation of the racket is reduced. which reduces to Eq4) whenm,v,=m,v,. The fraction of
the initial kinetic energy converted to elastic energy is easily

VIl IMPLICATIONS OF REDUCING THE COR OF determined by setting=0 in Eq. (23). For example, ifm,

A TENNIS BALL =3m, as in the above case, anduf=v,, then? of the

initial kinetic energy is converted to elastic energy during the
The effect of serving a zero COR tennis ball can be esticollision. These conditions are typical of a forehand or back-
mated by considering a head-on impact of a racket of effechand in tennis, or of a vigorous hit in baseball. The rebound
tive massm, incident at speed, in the laboratory frame on speed of the ball is then much more sensitive to the ball COR
a stationary ball of mass, . Treating the mass, as a point than for a collision where the ball is initially at rest.
particle, it is easy to show that the ball spe¥q, after the

collision, is given by IX. CONCLUSIONS

(1+e)m21)2 . o .
T (22 A r_ubber_ball that sticks to the f!oor v_vh_en it is drqppgq is
1re a curious sight. Equally curious, since it is counter-intuitive,
The effective mass of a racket is typically about three timess the sight of the same unhappy ball bouncing to a consid-
the mass of the ball for an impact near the center of theerable height when it is dropped on a soft, elastic surface
strings. If my,=3m, in Eqg. (22), thenV,=0.75(1+€)v,. such as a stretched rubber membrane. This provides a dra-

The maximum possible ball speed is thenvb.5assuming Matic classroom demonstration of the nature of elastic and

thate=1. The maximum speed of a conventional ball with inelastic collisions, highlighting the significance of relative
e=0.86is 1.39,. This can be as high as 60 or 65 M£130 stiffness in determining the deformation and energy loss in

to 140 mph, which many people feel is too fast for the good each of the colliding objects. If one were to test the elastic
of the gamé. properties of a surface such as a hard floor or a soft mem-

If a tennis ball is constructed with zero COR for an impactPr@né by bouncing a happy ball on the surface, then both
on a rigid surface, and if the ball and the strings have abougurfaces would appear to have identical properties, since the
the same stiffness, then E@.6) shows that will be about all WOUlq bounce equally well. The differences are much
0.5 for an impact with the strings. This was confirmed bymore obvious Wh_en one also tests the s_urf_aces using an un-
dropping an unhappy ball on the strings of a head-clampe§@PPy ball, but this test alone does not indicate whether the
racket. The racket was strung at a tension of about 5345 cnergy loss occurs mainly in the floor or mainly in the ball.
N), which is typical of most rackets, giving a string plane The happy ball test shows that there is no energy dissipation

stiffness of about X 10 Nm~L. An even higher bounce was " € happy ball or the floor or the membrane, but it pro-
observed when the ball was. dropped on a stretched rubbwdes no information on the relative stiffness of these objects

thiess the impact duration is also measured. The unhappy
membrane constructed from a rubber glovee0.5 for the ball test shows that the floor is much stiffer than the mem-

tennis racket, then/;=1.12,, corresponding t0 a speed prane and that none of the elastic energy stored in the un-
reduction of 19% compared with balls currently in use. If thehapon ball is released during a collision of the ball.

racket is strung at a higher tension, the speed reduct_lon The implications in the physics of sport are equally inter-
would be larger. Conversely, a racket strung at lower tensm@sting_ For example, tennis players can choose a wide variety
would have a smaller effect on the ball speed. _of different strings for their racket and can string the racket

_ The speed reduction for a ball with zero COR is surpris-i5 any desired tension, but all strings appear to have the same
ingly small, given that none of the elastic energy stored ing|astic properties, regardless of the string tension, when
the ball is recovered during the collision. The only elasticiested by bouncing a solid wood or metal ball on the strings.
energy available is that stored in the strings and the rackey;s test shows that there is essentially no energy dissipation
frame. The explanano_n_ll_es in thg fact that, in the Iaborat(_)rym the ball or in any of the strings, even if the strings have
frame, not all of the initial kinetic energy of the racket is |ost tension over many years of abuse. At first sight, this test
converted to elastic energy. In the above example whergeems to indicate that all strings are essentially the same and
m,=3my, it is easy to show that only of the initial kinetic  that players should not waste their money on expensive
energy of the racket is converted to elastic energy. Even i§trings. However, differences do become apparent when a
the racket and the ball both dissipated all of their storedennis ball impacts with the strings, since rackets strung at
elastic energy, so that the COR for the collision was zerojow tension lead to smaller energy losses in the ba, do

Eq. (22) shows that the ball could be served at a sp€ed strings such as natural gut which have a relatively low dy-
=0.7%,. This is consistent with the fact thaof the initial  namic stiffness. Any attempt to decrease the serve speed in
energy is retained by the racket and the ball. The ball wouldennis by using balls with a low coefficient of restitution is
stick to the strings under these conditions, at least until théikely to be unsuccessful since the reduction in speed is sur-
server reduced the racket speed. prisingly small. Even if the ball COR is reduced to zero, the
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ball can still be served at about 80% of the speed of a normafNewton was the first to make detailed measurements on the impact of
ball since the strings absorb some of the impact energy, andmperfectly elastic bodies and to describe such collisions in terms of what
only a small fraction is dissipated in the ball. For similar is now known as the coefficient of restitution. In doing so, Newton ex-
reasons, the ball speed in baseball and gOIf can be increaseET”ded the laws of impact previously established by Wren, Wallis, Huy-
by making the bat or the club softer or more springy in order 9ens: and Mariotte for perfectly hard or perfectly elastic bodies. A fasci-
to decrease the energy loss in the ball. Of course, this will 12ind historical account is given by R. Dugallechanics in the

. . Lo ! Seventeenth CentufZentral Book, New York, 1958
only work if the fraction of the energy dissipated in the bat ;

h lub . iqnifi | I h he f - S. P. Hendee, R. M. Greenwald, and J. J. Crisco, “Static and dynamic
or the club remains significantly smaller than the fraction properties of various baseballs,” J. Appl. BiomedH, 390—-400(1998.

dissipated in the ball. 4W. Goldsmith,Impact(Arnold, London, 196Q pp. 257—288.
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INTUITION

Our intuitive fear of heights would be ridiculous for an albatross; our intuitive appreciation of
the flight of a ball is silly if we want to trace a quark. Intuition gives us plausible nonsense| like
astrology, homeopathy, or quantum-mechanics-turned-into-Zen. Intuition does not help us|much
in doing physics, be it quantum theory or classical mechageiesr tried to understand the motions
of a spinning top intuitively

Vincent Icke, The Force of SymmetifCambridge University Press, Cambridge, 193%. xiii—xiv.
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