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Rod Cross1 has published conclusions concerning the
teraction of baseball bats and baseballs that appear to d
in some respects from my own results.2 Here I attempt to
correct, clarify, and reconcile our conclusions.

In particular, I address three points,~1! the position and
meaning of the ‘‘sweet spot’’ of the bat,~2! the time required
for the ball–bat impact signal to travel to the hands and b
to the impact point, and~3! the duration of the ball–bat im
pact. The last two factors are important inasmuch as t
bear on the possible influence of the grip of the hands on
bat on the ball–bat impact.

The sweet spot: The ‘‘sweet spot’’ of a baseball bat is
subjective baseball term, not a physics term, and is to
determined by batters, not defined by physicists. But
positions on the ‘‘sweet spot’’ do not differ significantly.
say2 ~page 64!, ‘‘... the vibrational node or ‘sweet-spot’ o
the bat ... .’’ Cross says1 ~page 778, Sec. VIII!, ‘‘An impact
at the fundamental node is about optimum ... .’’

However its basic irrelevance to the physics of the bat,
‘‘sweet spot’’ has an importance in the language of the sp
and we point out a simple experiment that will define
operationally to most players and fans. Hold a wooden ba
if you were batting in a game, and strike a relatively unyie
ing narrow vertical structure firmly with the barrel of the b
at various points in the hitting zone.~While a small tree, a
door frame, or even a telephone pole will do as a target,
4-in.-diam steel—Lally—columns filled with concrete foun
in the basements of most American homes are particul
good.! At one impact point it will feeljust right. You will
have found your sweet spot, which you can mark.

Then, following Brody,3,4 you can determine the node o
the fundamental vibration by hanging the bat from a sh
string, striking it lightly with a hammer, and listening for th
fundamental vibration of about 170 Hz. You should hear
sound plainly when you strike the bat at the end or at
trademark. But, at some point between you will hear no hu
You can mark that as a node of the vibration and we exp
that you will find it to be the same as your sweet spot with
the uncertainties of measurements~which, with reasonable
care in the measurements, will be as little as 1 cm!.

For most wooden bats held at the end, the center of
cussion is very near the vibrational node. But if you cho
up on the bat, changing the position of the center of perc
sion ~which is conjugate to the grip point!, you will find that
your sweet-spot position is unchanged.

Neurobiology of the ‘‘sweet spot’’: The basis of the iden
tification of the ‘‘sweet spot’’ with the node of the funda
mental vibration can be found in the neurophysiology of s
sation. Different modalities of somatic pressure sensation
229 Am. J. Phys.69 ~2!, February 2001 http://ojps.aip.org
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detected by different receptors which send signals thro
different dedicatedAb-type afferent nerve systems throug
the spinal cord to the thalamus and then to the cere
cortex.5,6 In the hairless~glabrous! skin of primates such as
that on the batter’s hands, Merkel receptors in the der
detect steady pressure or skin indentation; Meisner’s c
puscles in the derma detect low frequency oscillations
‘‘flutter’’ near or below 50 Hz. Vibrations at frequencie
above 50 Hz vibration are sensed by subcutaneous Pac
corpuscles. Measured in terms of the skin indentation n
sensitive points, the Pacinian corpuscle systems have a
sensitivity from 250 to 300 Hz where they send out an act
signal output pulse upon each vibration amplitude excurs
that is greater than 1mm. The amplitude sensitivity falls off
by more than a factor of 10 at 50 Hz and the system is q
insensitive at lower frequencies. Similarly, the sensitiv
falls off strongly for frequencies above 300 Hz. Indee
above about 500 Hz, the signals are degraded in that
channel capacity of the myelinated afferent nerve fibers
serve the corpuscles is limited to about 500 Hz.

Hence the fundamental vibrations of a baseball bat
detected sensitively by the Pacinian corpuscles in the bat
hands, which send a signal to the central nervous system
is qualitatively different than the sensations from other pr
sure modalities. Insensitive to low frequency impulses on
hands from the bat and insensitive to the higher vibratio
harmonics, that sensory system detects the fundamenta
bration of the bat exclusively. Then the sweet spot, as
fined by baseball batters, is determined by the absence o
unique sensation derived from such signals and that abs
occurs when the ball is hit at the node of the fundamental
vibration. This node is near the point at which the ball com
off of the bat fastest and travels the furthest and is th
identified in the batter’s experience with good hitting.

The signal velocity: In his Fig. 2, Cross1 shows the varia-
tion of the acceleration with time of a spot on the handle
the bat after the bat is struck sharply by a steel ball near
handle and interprets the time between acceleration max
as the transmission time of a signal from that point to the e
of the bat and back. Taking the distance from the meas
ment point to the end of the bat as 0.78 m and the elap
time between acceleration peaks as about 1.3 ms, the s
velocity is about 1200 m/s. However, Cross notes dispers
effects that show that the lower frequency components g
erated by the impact travel more slowly than the high f
quency components. The accelerometer, with a response
portional to F2A, where F is the frequency andA is the
displacement, strongly emphasizes high frequency com
nents.
229/ajp/ © 2001 American Association of Physics Teachers
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Figure 1 shows bat vibration velocities taken from t
work of Van Zandt and Hansen.7 The lower points give the
values of a phase velocity,vf5F3l, whereF is the fre-
quency andl the wavelengths determined for the first eig
vibrational modes of the bat. The upper curve shows a
locity vgrp5dF/d(1/l) for the same frequencies whe
F(1/l) was fitted to the discrete frequencies and wa
lengths.

At high frequencies where the density of modes is su
ciently high so that a meaningful wave packet can be c
structed,vgrp corresponds to the group velocity of the wa
packet. Considering the approximations implicit in the lim
ited set of frequencies available and that they are measu
different bats,vgrp is in excellent agreement with the veloci
of 1200 m/s estimated from Cross’s measurements, wh
emphasize high frequency vibrations. At such a velocity, c
tainly relevant for high frequencies, the signal from a co
sion with a ball near the fundamental node about 70 cm fr
handle end of the bat will take about 0.56 ms to travel to
mean hand position about 10 cm from the end of the b
Plausibly, any effect of the grip will then be transmitted
the hitting region after, approximately, another 0.56 m
reaching that point about 1.1 ms after the original imp
signal.

For the lower frequency components,vgrp is appreciably
smaller, as Cross notes from the dispersion evident in
data. If we take an effective velocity of 700 m/s from th
value shown in Fig. 1 at the first harmonic, the transit tim
will be about 0.94 ms.

Either time differs significantly from the 2-ms time that
postulated~Ref. 2, page 136! for the time required for the
signal to travel from the impact to the hands. Elsewhere8 I
gave a value that is effectively about 4 ms. This is clea
excessive.

While a discussion in terms of ‘‘signal velocity’’ is espe
cially useful—perhaps essential—in describing baseball
laymen, for physicists a complementary description of
motion of the bat based on an analysis of the excitati
upon bat–ball impact of the orthonormal vibrational mod
of the bat as described by Van Zandt7 may be more illumi-
nating. Van Zandt’s Fig. 4 describes the configuration o
bat after a bat–ball collision that takes place about 4
closer to the handle than the sweet-spot node of the fun
mental. The handle of the bat moves but little in the first
ms after impact but has moved considerably by the time

Fig. 1. The square points show phase velocities derived from Van Zand
Hansen while the curve is a polynomial best fit to the points. The up
curve represents group-like velocities derived from that functional exp
sion of the phase velocities.
230 Am. J. Phys., Vol. 69, No. 2, February 2001
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1.2 ms. This action is dominated by the 170-Hz fundamen
and the 560-Hz first-harmonic. The two amplitudes are
of phase and cancel at times less than 1000/(43560)
50.4 ms but are in phase and add at a time of 1.2 ms. Hig
frequency modes seem to modify this result by adding so
further damping of the fundamental.

In summary, we consider that an impact in the hitting zo
at a timet50 will not affect the bat significantly where it is
held near the end for about 0.9 ms. Plausibly, the effec
the hands will take another 0.9 ms to reach the point of
collision and affect that action. These times are a little lon
than that 0.6 ms that Cross states and significantly sho
than my estimate2 of 2 ms.

The ball–bat collision time: Cross1 measured the bat–ba
collision time as about 1.5 ms for balls with the velocity~of
about 4 mph! obtained from the ball’s falling about 1 m
Assuming approximate linearity of the ball elastic para
eters, he then used this collision time in his consideration
ball–bat impacts at baseball velocities of the order of 1
mph. With so long an impact time, the grip of the bat cou
influence the collision.

However, from general considerations as well as fro
measurements of static stress–strain curves by P
Kirkpatrick,9 the value of the effective ball ‘‘spring con
stant’’ increases as the ball is compressed. This leads
momentum transfer time that decreases with increasing
lision velocity. Using a reasonable model of the nonline
spring after Kirkpatrick, I showed~Ref. 2, Figs. 5.5 and 5.6!
that for typical ball–bat collisions in baseball, the mome
tum transfer is completed in about 0.6 ms. Since this is m
shorter than the signal time from impact zone to the grip
the bat and back, the conclusion that the ball–bat collis
can be considered as equivalent to the collision of the
with a free bat can be retained.

Cross’s use of his unrealistically long impact time of 1
ms in considering the forces on the hands from the ball–
impact ~Ref. 1, Sec. VII! leads to no significant error sinc
those forces are dominated by low frequency vibrations t
are not different for a shorter impact time.
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claims that his sweet spot is the fundamental vibration no
the locations of the COP and second vibration node be
irrelevant. As evidence, he cites the fact that his sweet s
remains fixed when he holds the bat further along the han
and closer to the impact point. This evidence is not convi
ing. A change of say 10 cm in the position of the conjuga
point in the handle, toward the barrel, leads to a shift of o
1 or 2 cm in the location of the COP toward the end of t
barrel, as indicated by Fig. 8~b! in Ref. 1. This would not
shift the center of the COP zone more than 1 cm, which
about the stated uncertainty in Adair’s measurement. If
bat is choked a lot further up the handle, then the COP ev
tually moves out beyond the end of the bat and plays no r
In that case, I would expect that the sweet spot would lie
the sweet vibrations zone, not necessarily coincident with
fundamental node, and that the feel of the bat would be q
different. Nevertheless, it is clear that a sample of two am
teur batters~assuming an Aussie cricket player actua
qualifies! is not representative of the broader community
batters, and a larger sample is needed to locate the swee
and to determine whether it is in the same location for
players.

Adair argues that the hands are most sensitive to vib
tions in the frequency range from about 100 to 300 Hz, a
a batter is therefore more likely to identify the sweet sp
with the fundamental mode vibration at about 170 Hz. If o
measures the handle and arm motion using piezo sensor
described in Refs. 1 and 2, then one can distinguish
higher frequency vibrational motion from the lower fre
quency translational and rotational motion of the hand
However, sudden rotation of the handle of a bat and
simultaneous impact with the hands appear to generate a
row force spike of width about 2 ms which is difficult t
distinguish from the heavily damped second mode.1 A spike
of duration 2 ms contains a broad spectrum of freque
components and will be detected by the batter, regardles
the frequency dependence of the receptors in the hand. F
similar reason, a player catching a fast ball may feel a st
in the hands, even though the ball does not vibrate.

There is another reason to believe that the node and
COP both conspire to generate a sweet zone. If the fun
mental node alone was responsible for the sweet spot,
there would be two sweet spots along the bat, one at eac
the two fundamental nodes. These nodes are located a
17 cm from each end of the bat. If one strikes a ball o
heavy object at each of the nodes in turn, it is immediat
obvious that one node is a lot sweeter than the other.
sweeter one is right beside the COP, for the reasons
scribed above.

Adair’s comments on the effect of the hands during t
collision are valid. The impulsive reaction force exerted
the hands on the bat has no effect on the exit speed of
ball, at least for impacts along the fat part of the bat. This
entirely consistent with detailed measurements and calc
Baseball, tennis, golf, and cricket players all identify t
sweet spot of their striking implement in terms of the a
sence of shock and/or vibration coming from the hand
Players often report that they feel no force at all when th
strike the ball at the sweet spot. My measurements on b1

and rackets2 indicate that this is a slight exaggeration. Th
forces on the hands and arms are minimized for an impac
the sweet spot, but they are not zero. When a batter hi
ball, the handle changes speed suddenly, resulting in an
pulsive force on the hands and arms. The bat does not
have as a rigid body on the time scale of the collision, sin
there is a measurable delay between the time at which the
strikes the ball and the time at which the handle starts
deflect suddenly from its previous path. In fact, the ball us
ally loses contact with the bat at about the same time that
first, high frequency, high phase velocity ripples in the im
pulse arrive at the hand. The batter therefore experience
impulsive force starting at about the same time as the
departs, and persisting for a period of about 10 or 20
afterwards. The impulsive force is typically much larger th
the force applied to swing the implement prior to the impa
The impulsive force waveform is quite complex and conta
components due to translation, rotation, and vibration of
bat. The waveform itself is modified by the hands, since
hands act to dampen the vibrations strongly and since mo
of the handle is resisted by the force exerted by the han

My initial measurements on a bat, and subsequent m
surements and calculations for a tennis racket,2,3 indicate that
the sweet spot~as located by players! is likely to coincide
with a narrow impact zone that leads to a minimum in t
total (translation1rotation1vibration) energy in the handle
Given that the energy coupled to the second vibration m
of a bat is almost as large as the energy in the fundame
mode,4 and that the peak force on the hands due to this m
is as large if not larger than that due to the fundamen
mode,1 then the vibrational energy of the handle should
minimized for an impact at a point roughly half way betwe
the nodes of the fundamental and second modes. The tr
lational plus rotational energy at any given point in th
handle is minimized for an impact on the barrel at the cen
of percussion~COP!, defined in terms of the conjugate poin
in the handle. The COP is not a unique point on the bat si
each point in the handle has a different COP in the bar
However, all COP points in the barrel, with correspondi
conjugate points under the hands, lie in a narrow band
tween the nodes of the fundamental and the second m
The total handle energy is therefore minimized in this zo

For my wood bat, the fundamental node is 17 cm from t
end of the barrel and the node of the second mode is 13
from the end of the barrel. The region from 13 to 17 cm
therefore a ‘‘sweet vibrations’’ zone. I located the sweet s
zone, as described in Ref. 1, by striking a ball and feeling
effects on my hands and arms. This zone extended from
to 18 cm. Adair5 disagrees with my sweet-spot location an
231/ajp/ © 2001 American Association of Physics Teachers
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during the 20-ms period after the initial impact. The han
cause the vibration modes to be strongly damped, and
also shift the axis of rotation of the bat.

1R. C. Cross, ‘‘The sweet spot of a baseball bat,’’ Am. J. Phys.66, 772–
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We show how the pre-exponential factor of the Feynman propagator for the harmonic oscillator can
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In this note we just add to the previous list one mo
method for computing the pre-exponential factor of the h
monic oscillator propagator, namely, the generaliz
z-function method, so that this note can be considered a
small complement to Holstein’s paper.1 In fact, every time
we make a semiclassical approximation, no matter whe
in the context of quantum mechanics or quantum fi
theory, we will get involved with the computation of a de
terminant of a differential operator with some boundary co
ditions. If we try naively to compute these determinants
the products of the corresponding eigenvalues we will
ill-defined expressions. Hence, it is imperative to give a fin
prescription for computing determinants for these cases.
generalizedz-function method is precisely one possible w
of doing that. It was introduced in physics in the mid-19706

and it is in fact a very powerful regularization prescriptio
which has applications in several branches of physics~a de-
tailed discussion can be found in Ref. 7!. This method, as we
will see, is based on an analytical extension in the comp
plane. We think that the harmonic oscillator propagator is
perfect scenario for introducing such an important meth
because undergraduate students are all familiar with
quantum harmonic oscillator and besides, it is the first n
trivial example after the free particle. In what follows, w
shall first introduce briefly thez-function method, then we
shall apply it to computeF(t f2t i) for the harmonic oscilla-
tor propagator, and, finally, we shall establish a dire
equivalence between this method and Schwinger’s pro
time method.

Consider an operatorA and let us assume, without loss o
generality, that it has a discrete set of nondegenerate ei
values$ln%. When there is only a finite number of eigenva
ues, detA is just given by the product of these eigenvalu
and we can write:
In a recent paper in this journal1 the harmonic oscillator
propagator was evaluated in a variety of ways, all of th
based on path integrals. In fact, some of them did not invo
any explicit computation of the Feynman path integral, b
their common starting point was actually an expression
the harmonic oscillator propagator which was explicitly d
rived by path integral means, namely~we are using the no-
tation of Ref. 1 as much as possible!:

DF~zf ,t f ;zi ,t i !5S detO
detO~o!D 21/2

3A m

2p i\~ t f2t i !
expH i

\
S@zcl#J ,

~1!

where

O5v21
d2

dt2
, O~o!5

d2

dt2
, ~2!

and the determinants must be computed with Dirich
boundary conditions. In Eq.~1!, S@zcl# means the classica
action, that is, the functional action evaluated at the class
solution satisfying the Feynman conditionsz(t i)5zi and
z(t f)5zf and the factor before the exponential is the s
called pre-exponential factor, which we shall denote
F(t f2t i). In Ref. 1 three distinct methods were present
for the computation ofF(t f2t i): ~i! It was computed di-
rectly by the products of the corresponding eigenvalues oO
andO(o) ~some care must be taken here since both produ
are infinite, but their ratio is finite!; ~ii ! it was computed with
the aid of Schwinger’s proper time method2 ~an introductory
presentation of this method with simple applications can
found in Ref. 3!; ~iii ! it was computed by the Green functio
approach~a variety of simple examples worked out with th
approach can be found in Refs. 4 and 5!.
232/ajp/ © 2001 American Association of Physics Teachers
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detA5)
n

ln

5)
n

exp$ logln%

5expH(
n

loglnJ
5expH 2(

n
S ]ln

2s

]s D
s50

J
5expH 2

]z

]s
~0;A!J , ~3!

where we define the generalized zeta function associ
with the operatorA as

z~s;A!5Tr A2s. ~4!

However, when there is an infinite number of eigenvalu
~and these are the cases of interest in physics!, as occurs
when A is a differential operator, the product of the eige
values will be an ill-defined quantity and will no longer ser
as a good prescription for detA. In other words, expressio
~3! with z(s;A) given by ~4!, as it stands, is meaningles
because it is not valid anymore to write:

(
n

S ]ln
2s

]s D
s50

5H ]

]s S (
n

ln
2sD J

s50

. ~5!

Hence, for these cases we need to define a finite prescrip
for detA. The generalized zeta function prescription cons
basically of the following three steps:~i! We first compute
the eigenvalues ofA subject to the appropriate boundary co
ditions and then write down the correspondingz function
z(s;A)5Tr A2s5Sn ln

2s . ~ii ! Since the last sum does no
converge ats50, we make an analytical extension of th
function to the whole complex plane ofs ~or at least to a
domain that contains the origin!. ~iii ! After the analytical
extension is made, we just write detA5exp$2z8(s50;A)%.

In order to apply thez-function method described above
the computation ofF(t f2t i), we first need to find the eigen
values ofO with Dirichlet boundary conditions. For conve
nience, we shall make the rotation in the complex plant
5e2 ip/2T52 iT. Let us also define the corresponding fin
interval in T by t f2t i52 i (Tf2Ti)52 i t. We then have
that

O5v21
d2

dt2
→OT5v22

d2

dT2 . ~6!

This analytical extension guarantees that all the eigenva
~now of the operatorOT! are positive. Of course, after th
calculations are finished, we must undo this transformat
that is, we must substitutet5 i (t f2t i). Solving the eigen-
value equationOTf n(T)5lnf n(T) with Dirichlet boundary
conditionsf n(0)505 f n(t), we get
233 Am. J. Phys., Vol. 69, No. 2, February 2001
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f n~T!5H sinS np

t
TD ;n51,2,...J ,

~7!

ln5v21
n2p2

t2 , n51,2,... .

Consequently, the associated generalizedz function is given
by

z~s;OT!5 (
n51

`
1

ln
s 5S t

p D 2s

(
n51

`
1

~n21n2!s , ~8!

where we definedn5vt/p. Since the above series con
verges only for Res.1/2, we need to make an analytic
extension in the complex plane ofs to include the origin.
However, this can be done with no effort at all, for this ser
is precisely the so-called nonhomogeneous Epstein funct
which we shall denote simply byE1(s;n2) and whose ana-
lytical extension to the whole complex plane is well know
and is given by7,8 ~see the Appendix for a brief deduction!

En2
~s;1!52

1

2n2s 1
Ap

2n2s21

G~s21/2!

G~s!

1
2Ap

G~s! (
n51

` S np

n D s21/2

Ks21/2~2npn!, ~9!

whereKm(z) is the modified Bessel function of second kin
This is a meromorphic function in the whole complex pla
with simple poles ats51/2,21/2,23/2,..., so that we can
take its derivative ats50 without any problem. Substituting
the sum appearing on the right-hand side of~8! by the ana-
lytical extension given by~9!, we may castz(s;OT) into the
following form:

z~s;OT!52
1

2 S t

pn D 2s

1
F~s!

G~s!
, ~10!

where

F~s!5S t

p D 2sH Ap

2n2s21 G~s21/2!

12Ap (
n51

` S np

n D s21/2

Ks21/2~2npn!J
is analytic ats50. Taking, then, the derivative with respe
to s at s50 and using thatG(s)'1/s for s→0, we get

z8~s50;OT!52 log~t/pn!1 lim
s→0

H 2
G8~s!

G2~s!
F~s!1

F8~s!

G~s! J
52 log~t/pn!1F~0!. ~11!

From the above expression forF(s) we readily compute
F(0), sothat

z8~s50;OT!52 log~t/pn!1FApnG~21/2!

2

12Ap (
n51

` A n

np
K21/2~2npn!G . ~12!

Using thatG(21/2)522Ap andK21/2(z)5Ap/2ze2z, we
obtain
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z8~s50;OT!5 log~pn/t!2pn1 (
n51

`
1

n
e2n2pn. ~13!

It is not a difficult task to show that the above sum is giv
by ~take its derivative with respect ton, sum the resultan
geometric series, and then integrate inn; in order to elimi-
nate the arbitrary integration constant, just use the fact
this sum must vanish forn→`!

(
n51

`
1

n
e2n2pn5pn2 log@2 sinh~pn!#. ~14!

From Eqs.~13! and ~14! we then have

z8~s50;OT!5 logF v

2 sinh~vt!G , ~15!

where we used thatn5vt/p. For the operatorOT
(o) we im-

mediately get@it suffices to makev→0 in Eq. ~15!#

z8~s50;OT
~o!!5 logF 1

2tG . ~16!

Collecting all the previous results and rotating back to
real time@t5 i (t f2t i)#, we finally obtain

F~ t f2t i !5A exp@2z8~0,O!#

exp@2z8~0,O~o!!#
3A m

2p i\~ t f2t i !

5A mv

2p i\ sin@v~ t f2t i !#
, ~17!

where we used that sinh(iu)52i sinu, in perfect agreemen
with Ref. 1.

Before we finish this note, we think it is interesting
establish a general equivalence between thez-function
method and Schwinger’s proper time method. From
z-function method just presented, we can write

log detO52z8~s50,O!, ~18!

On the other hand, with the aid of the Mellin transform9

applied here to an operatorO with positive eigenvalues we
can write

z~s;O!5Tr O2s5Tr
1

G~s!
E

0

`

dt ts21e2Ot. ~19!

However, the last expression is not analytic ats50 ~though
the presence of the exponential guarantees good behavio
larges, the limit s→0 is a divergent one!, so that as it stands
it is not valid to take thes derivative ats50. In order to
circumvent this problem, we make the modification~regular-
ization!

z~s;O!→z~s,a;O!5
1

G~s!
E

0

`

dt ts1a21e2Ot, ~20!

wherea is big enough to ensure that Eq.~19! is well behaved
at s50. Hence, first taking thes derivative ats50 and then
taking the limita→0, we obtain
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at

e

e

for

2z8~s50;O!52 lim
a→0

lim
s→0

]z

]s
~s,a;O!

52 lim
a→0

lim
s→0

TrH 2
G8~s!

G2~s!
E

0

`

dt ts1a21e2Ot

1
1

G~s!
E

0

`

dt logtts1a21e2OtJ
52 lim

a→0
TrH E

0

` dt

t
tae2OtJ . ~21!

Equation~21! corresponds precisely to Schwinger’s formu
written in a regularized way. Here we regularized by intr
ducing positive powers oft, but other regularization scheme
can also be used, as for example, the one used
Schwinger10 in the computation of the Casimir effect11 ~for a
simple introduction to this effect with some historical r
marks see Ref. 12!. It is common to write Eq.~21! formally
with a50, but in fact, before taking this limit one should g
rid of all spurious terms~those with no physical meaning!.

In this note we have presented the generalizedz-function
method for computing determinants in a very introducto
level. A detailed discussion with a great variety of examp
can be found in Ref. 7. One of the greatest advantages of
method is that for almost all differential operators a
boundary conditions that are relevant in physics, the co
sponding generalizedz function ~after the analytical exten
sion is made! is a meromorphic function in the whole com
plex plane which is analytic at the origin. Furthermore, th
method can also be applied successfully in many ot
branches of physics, as for example, statistical mecha
and quantum field theory among others. Of course there
many easier ways of obtainingF(t f2t i) for the harmonic
oscillator, but our purpose here was to introduce a n
method, which is a powerful one and widely used nowada
In this sense, we think that the harmonic oscillator provid
a perfect scenario for the understanding of the three b
steps of the method, since every undergraduate stude
somehow familiar with the harmonic oscillator.

APPENDIX

In this Appendix we shall obtain the analytical extensi

of the Epstein functionE1
n2

(s;1), given in the text by Eq.
~9!. With this goal, we first write down an equation involvin
the gamma function, which follows directly from its defin
tion, namely:9

G~z!A2z5E
0

`

dt tz21e2At, Re~z!.0. ~22!

Using Eq.~22! with A5n21n2, the Epstein function can be
written in the form:

E1
n2

~s;1!5 (
n51

`
1

~n21n2!s

5
1

G~s!
E

0

`

dt ts21e2n2t (
n51

`

e2n2t. ~23!

On the other hand, from the so-called Poisson summa
rule,9 we can write:
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n51

`

e2n2t52
1

2
1

1

2
Ap

t
1Ap

t (
n51

`

e2n2p2~1/t!. ~24!

Substituting Eq.~24! into ~23!, we get

E1
n2

~s;1!5
21

2G~s!
E

0

`

dt ts21e2n2t

1
Ap

2G~s!
E

0

`

dt ts23/2e2n2t

1
Ap

G~s! (
n51

` E
0

`

dt ts23/2e2n2t2n2p2/t. ~25!

Using ~22!, the first and second integrals of the right-ha
side of Eq. ~25! can be written directly in term of Eule
gamma functions. For the last term, we use the integral
resentation for the modified Bessel function of second ki

E
0

`

dx xa21x2b/x2gx

52S b

g D a/2

Ka~2Abg!, Reb,Reg.0. ~26!

Therefore, we finally obtain for Eq.~25!:

E1
n2

~s;1!52
1

2n2s 1
ApG~s21/2!

2G~s!n2s21

1
Ap

G~s! (
n51

` S np

n D s21/2

Ks21/2~2pnn!, ~27!

which is precisely Eq.~9!. Some comments are in order her
~i! To say that Eq.~27! corresponds to the analytical exte
sion of En2

(s;1) to a meromorphic function in the whol
complex plane means that this expression is an analy
function in the whole complex plane except for an enum
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p-
:

.

al
-

able number of poles~which can be infinite! and coincides
with the original sum in the region where the sum was d
fined. ~ii ! It is worth emphasizing that the above express
is analytic at the origin; in fact, the structure of simple pol
of this function is dictated by the poles of the Euler gamm
function. It is easy to see that the poles are located as
51/2, 21/2, 23/2, 25/2, etc.

a!Electronic mail: fabricio@if.ufrj.br
b!Electronic mail: farina@if.ufrj.br
1Barry R. Holstein, ‘‘The harmonic oscillator propagator,’’ Am. J. Phy
66, 583–589~1998!.

2J. Schwinger, ‘‘Gauge invariance and vacuum polarization,’’ Phys. R
82, 664 ~1951!.

3L. C. Albuquerque, C. Farina, and S. Rabello, ‘‘Schwinger’s method
computing determinants,’’ Am. J. Phys.66, 524–528~1998!.

4H. Boschi-Filho, C. Farina, and A. de Souza Dutra, ‘‘Green function a
proach for computing non-relativistic determinants,’’ Rio de Janeiro, p
print ~1994!.

5H. Boschi-Filho, C. Farina, and A. de Souza Dutra, ‘‘Partition function f
an anyon-like oscillator,’’ J. Phys. A28, L7–L12 ~1995!.

6A. Salam and J. Strahdee, ‘‘Transition electromagnetic fields in part
physics,’’ Nucl. Phys. B90, 203–220~1975!; J. S. Dowker and R. Critch-
ley, ‘‘Effective Lagrangian and energy-momentum tensor in de Si
space,’’ Phys. Rev. D13, 3224–3232~1976!; S. W. Hawking, ‘‘Zeta
Function Regularization of Path Integrals in Curved Spacetime,’’ Co
mun. Math. Phys.55, 133–148~1977!; G. W. Gibbons, ‘‘Thermal Zeta
Functions,’’ Phys. Lett.60A, 385–386~1977!.

7E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bitsenko, and S. Zerbi
Zeta Regularization Techniques with Applications~World Scientific, Sin-
gapore, 1994!.

8J. Ambjorn and S. Wolfram, ‘‘Properties of the Vacuum. I. Mechanic
and Thermodynamic,’’ Ann. Phys.~Leipzig! 147, 1–32~1983!.

9George Arfken,Mathematical Methods for Physicists~Academic, New
York, 1970!.

10J. Schwinger, ‘‘Casimir Effect in Source Theory. II,’’ Lett. Math. Phy
24, 59–61~1992!.

11H. B. G. Casimir, ‘‘On the Attraction Between Two Perfectly Conductin
Planes,’’ Proc. K. Ned. Akad. Wet.51, 793–795~1948!.

12E. Elizalde and A. Romeo, ‘‘Essentials of the Casimir Effect and its Co
putation,’’ Am. J. Phys.59, 711–719~1991!.
A CONTINUAL SOURCE OF JOY

It is not the least of the triumphs of physics in the present century to have penetrated so deeply
behind the veil of our everyday perceptions as to reveal beyond doubt that our first-hand experi-
ence of the universe is at best a narrow and distorted view of whatever structure it is of which we
are a part; yet we have this assurance also, that our universe, in so far as we have been able to
probe it, is a marvellously ordered creation whose fuller understanding is a continual source of
joy, in which intellectual satisfaction is mingled with wonder and humility.
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