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Rod Cros$ has published conclusions concerning the in-detected by different receptors which send signals through
teraction of baseball bats and baseballs that appear to diffglifferent dedicatedA8-type afferent nerve systems through
in some respects from my own resultslere | attempt to  the spinal cord to the thalamus and then to the cerebral
correct, clarify, and reconcile our conclusions. cortex>® In the hairlesgglabrous skin of primates such as
In particular, | address three pointd) the position and that on the batter's hands, Merkel receptors in the derma
meaning of the “sweet spot” of the ba®) the time required  detect steady pressure or skin indentation; Meisner’s cor-
for the ball-bat impact signal to travel to the hands and bacluscles in the derma detect low frequency oscillations or
to the impact point, and3) the duration of the ball-bat im- “flutter” near or below 50 Hz. Vibrations at frequencies
pact. The last two factors are important inasmuch as thegbove 50 Hz vibration are sensed by subcutaneous Pacinian
bear on the possible influence of the grip of the hands on theorpuscles. Measured in terms of the skin indentation near
bat on the ball-bat impact. sensitive points, the Pacinian corpuscle systems have a peak
The sweet spofThe “sweet spot” of a baseball bat is a sensitivity from 250 to 300 Hz where they send out an action
subjective baseball term, not a physics term, and is to beignal output pulse upon each vibration amplitude excursion
determined by batters, not defined by physicists. But outhat is greater than &Zm. The amplitude sensitivity falls off
positions on the “sweet spot” do not differ significantly. I by more than a factor of 10 at 50 Hz and the system is quite
say (page 64, “... the vibrational node or ‘sweet-spot’ of insensitive at lower frequencies. Similarly, the sensitivity
the bat ... .” Cross saygpage 778, Sec. VI)| “An impact  falls off strongly for frequencies above 300 Hz. Indeed,
at the fundamental node is about optimum ... .” above about 500 Hz, the signals are degraded in that the
However its basic irrelevance to the physics of the bat, thehannel capacity of the myelinated afferent nerve fibers that
“sweet spot” has an importance in the language of the sporterve the corpuscles is limited to about 500 Hz.
and we point out a simple experiment that will define it Hence the fundamental vibrations of a baseball bat are
operationally to most players and fans. Hold a wooden bat adetected sensitively by the Pacinian corpuscles in the batter's
if you were batting in a game, and strike a relatively unyield-hands, which send a signal to the central nervous system that
ing narrow vertical structure firmly with the barrel of the bat is qualitatively different than the sensations from other pres-
at various points in the hitting zonéWhile a small tree, a sure modalities. Insensitive to low frequency impulses on the
door frame, or even a telephone pole will do as a target, thlands from the bat and insensitive to the higher vibrational
4-in.-diam steel—Lally—columns filled with concrete found harmonics, that sensory system detects the fundamental vi-
in the basements of most American homes are particularlypration of the bat exclusively. Then the sweet spot, as de-
good) At one impact point it will feeljust right You will fined by baseball batters, is determined by the absence of the
have found your sweet spot, which you can mark. unique sensation derived from such signals and that absence
Then, following Brody>* you can determine the node of occurs when the ball is hit at the node of the fundamental bat
the fundamental vibration by hanging the bat from a shortvibration. This node is near the point at which the ball comes
string, striking it lightly with a hammer, and listening for the off of the bat fastest and travels the furthest and is thus
fundamental vibration of about 170 Hz. You should hear thadentified in the batter’'s experience with good hitting.
sound plainly when you strike the bat at the end or at the The signal velocityln his Fig. 2, Crossshows the varia-
trademark. But, at some point between you will hear no humtion of the acceleration with time of a spot on the handle of
You can mark that as a node of the vibration and we expedhe bat after the bat is struck sharply by a steel ball near the
that you will find it to be the same as your sweet spot withinhandle and interprets the time between acceleration maxima
the uncertainties of measuremertshich, with reasonable as the transmission time of a signal from that point to the end
care in the measurements, will be as little as 7.cm of the bat and back. Taking the distance from the measure-
For most wooden bats held at the end, the center of pement point to the end of the bat as 0.78 m and the elapsed
cussion is very near the vibrational node. But if you choketime between acceleration peaks as about 1.3 ms, the signal
up on the bat, changing the position of the center of percusvelocity is about 1200 m/s. However, Cross notes dispersion
sion (which is conjugate to the grip pointyou will find that  effects that show that the lower frequency components gen-
your sweet-spot position is unchanged. erated by the impact travel more slowly than the high fre-
Neurobiology of the “sweet spot’The basis of the iden- quency components. The accelerometer, with a response pro-
tification of the “sweet spot” with the node of the funda- portional to F2A, whereF is the frequency and\ is the
mental vibration can be found in the neurophysiology of sendisplacement, strongly emphasizes high frequency compo-
sation. Different modalities of somatic pressure sensation angents.
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1500 1.2 ms. This action is dominated by the 170-Hz fundamental
1250 B and the 560-Hz first-harmor!ic. The two amplitudes are out
/m 7 8 of phase and cancel at times less than 1000480)
ié‘ 1000 A — =0.4ms but are in phase and add at a time of 1.2 ms. Higher
= 750 / 4 5 - frequency m(_)des seem to modify this result by adding some
g / 3 " F X2 further damping of the fundamental.
o 500 2 In summary, we consider that an impact in the hitting zone
1 , at a timet=0 will not affect the bat significantly where it is

2501 held near the end for about 0.9 ms. Plausibly, the effect of

0 the hands will take another 0.9 ms to reach the point of the

0 1000 2000 3000 4000 5000 collision and affect that action. These times are a little longer
Frequency (Hz) than that 0.6 ms that Cross states and significantly shorter

than my estimateof 2 ms.
Fig. 1. The square points show phase velocities derived from Van Zandt and The hall-bat collision time Cros¢ measured the bat—ball
Hansen while the curve is a polynomial best fit to the points. The uppel|jision time as about 1.5 ms for balls with the velooiof
curve represents group-like velocities derived from that functional expres- . , .
sion of the phase velocities. about 4 mph obtqlned frpm t_he ball's falling abqut 1m.
Assuming approximate linearity of the ball elastic param-
eters, he then used this collision time in his consideration of
) ) ] N ball-bat impacts at baseball velocities of the order of 100
F|gure 1 shows bat vibration velocities t?.ken from themph W|th so |Ong an impact time, the gnp of the bat Cou|d
work of Van Zandt and HansénThe lower points give the influence the collision.
values of a phase velocity,,=F XX, whereF is the fre- However, from general considerations as well as from
quency and\ the wavelengths determined for the first eight measurements of static stress—strain curves by Paul
vibrational modes of the bat. The upper curve shows a veKirkpatrick,” the value of the effective ball “spring con-
locity vgp=dF/d(1/\) for the same frequencies where stant” increases as the ball is compressed. This leads to a
F(1/\) was fitted to the discrete frequencies and waveimomentum transfer time that decreases with increasing col-
lengths. lision velocity. Using a reasonable model of the nonlinear
At high frequencies where the density of modes is suffi-spring after Kirkpatrick, | showe¢Ref. 2, Figs. 5.5 and 5)6
ciently high so that a meaningful wave packet can be conthat for typical ball-bat collisions in baseball, the momen-
structed,v 4, corresponds to the group velocity of the wave tum transfer is cor_npletefj in about_ 0.6 ms. Since this is _much
packet. Considering the approximations implicit in the lim- shorter than the signal time from impact zone to the grip on
ited set of frequencies available and that they are measuriri§e bat and back, the conclusion that the ball-bat collision
different batsp , is in excellent agreement with the velocity can be considered as equivalent to the collision of the ball
of 1200 m/s estimated from Cross's measurements, whiclith a free bat can be retained. _ _
emphasize high frequency vibrations. At such a velocity, cer- Cross’s use of his unrealistically long impact time of 1.5
tainly relevant for high frequencies, the signal from a colli- Ms in considering the forces on the hands from the ball—bat
sion with a ball near the fundamental node about 70 cm fromimpact (Ref. 1, Sec. VI) leads to no significant error since
handle end of the bat will take about 0.56 ms to travel to thdhose forces are dominated by low frequency vibrations that
mean hand position about 10 cm from the end of the batare not different for a shorter impact time.
Plausibly, any effect of the grip will then be transmitted to
the hitting region after, approximately, another 0.56 ms,
reaching that point about 1.1 ms after the original impac

signal. This note reflects contributions from valuable discussions
For the lower frequency components,, is appreciably  with Rod Cross and Allan Nathan.

smaller, as Cross notes from the dispersion evident in his

data. If we take an effective velocity of 700 m/s from the

value shown in Fig. 1 at the first harmonic, the transit time 1?1-9%05& “The sweet spot of a baseball bat,” Am. J. Pi§g.772-779

WIIIIE%? att’.OUt %%4 ms.. i tly f the 2 ti that | 2R. K. Adair, The Physics of BasebalHarperCollins, New York, 1994
Ither ume ditters signimcantly irom the 2-ms time tha 2nd ed. This book, written for the layman, is an expansion of a report

p_ostulated(Ref. 2, page :_|-3ﬁf0r the time required for the  \yritten for A. Bartlett Giamatti, then President of the National League,

signal to travel from the impact to the hands. Elsewfidre,  when | served as Physicist to the National League. Hence the book has no

gave a value that is effectively about 4 ms. This is clearly equations in the body of the text and but a few in the end notes.

excessive. °H. Brody, “The sweet spot of a baseball bat,” Am. J. Phy4, 640—643
While a discussion in terms of “signal velocity” is espe- ,(1989-

cially useful—perhaps essential—in describing baseball forAH' Brody, “Models of a baseball bat," Am. J. PhyS8, 756-758(1990.
y —Pp p _ 9 5G. M. ShepherdNeurobiology(Oxford U.P., New York, 199% 3rd ed.

Iaymen, for physicists a complementary descrlptlon.of .theeE. R. Kandel, J. H. Schwartz, and T. M. Jesiinciples of Neural
motion of the bat based on an analysis of the excitations science(Appleton & Lange, East Norwalk, CT, 19913rd ed.
upon bat—ball impact of the orthonormal vibrational modes L. L. Van Zandt, “The dynamical theory of a baseball bat,” Am. J. Phys.
of the bat as described by Van Zaﬁdtay be more illumi- 60, 172-181(1990. This paper contains the results of measurements of
nating. Van Zandt's Fig. 4 describes the configuration of a bat vibrational f][eﬂuencies b);_Prqfess?rhUWe IHallns_en in ar]l af'pendix. Asha
ey consequence of the renormalization of the calculations to fit ansen’s, the
bat after a bat-ball collision that takes place about 4 cm times in Figs. 5 and 6 should be reduced by a factor of about 0.8.
closer to the handle than the sweet-spot _nod_e of thg fundasg K adair, “The physics of baseball,” Phys. Toda8, 26—31 (May
mental. The handle of the bat moves but little in the first 0.8 1995,

ms after impact but has moved considerably by the time of°P. Kirkpatrick, “Batting the ball,” Am. J. Phys31, 606—613(1963.
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Baseball, tennis, golf, and cricket players all identify theclaims that his sweet spot is the fundamental vibration node,
sweet spot of their striking implement in terms of the ab-the locations of the COP and second vibration node being
sence of shock and/or vibration coming from the handleirrelevant. As evidence, he cites the fact that his sweet spot
Players often report that they feel no force at all when theyemains fixed when he holds the bat further along the handle
strike the ball at the sweet spot. My measurements orf batsnd closer to the impact point. This evidence is not convinc-
and racketsindicate that this is a slight exaggeration. Theing. A change of say 10 cm in the position of the conjugate
forces on the hands and arms are minimized for an impact gioint in the handle, toward the barrel, leads to a shift of only
the sweet spot, but they are not zero. When a batter hits & or 2 cm in the location of the COP toward the end of the
ball, the handle changes speed suddenly, resulting in an infparrel, as indicated by Fig.(® in Ref. 1. This would not
pulsive force on the hands and arms. The bat does not behift the center of the COP zone more than 1 cm, which is
have as a rigid body on the time scale of the collision, sinceabout the stated uncertainty in Adair's measurement. If the
there is a measurable delay between the time at which the bhat is choked a lot further up the handle, then the COP even-
strikes the ball and the time at which the handle starts tdually moves out beyond the end of the bat and plays no role.
deflect suddenly from its previous path. In fact, the ball usudn that case, | would expect that the sweet spot would lie in
ally loses contact with the bat at about the same time that thihe sweet vibrations zone, not necessarily coincident with the
first, high frequency, high phase velocity ripples in the im-fundamental node, and that the feel of the bat would be quite
pulse arrive at the hand. The batter therefore experiences alifferent. Nevertheless, it is clear that a sample of two ama-
impulsive force starting at about the same time as the balleur batters(assuming an Aussie cricket player actually
departs, and persisting for a period of about 10 or 20 mgualifie9 is not representative of the broader community of
afterwards. The impulsive force is typically much larger thanbatters, and a larger sample is needed to locate the sweet spot
the force applied to swing the implement prior to the impact.and to determine whether it is in the same location for all
The impulsive force waveform is quite complex and containsplayers.
components due to translation, rotation, and vibration of the Adair argues that the hands are most sensitive to vibra-
bat. The waveform itself is modified by the hands, since theions in the frequency range from about 100 to 300 Hz, and
hands act to dampen the vibrations strongly and since motioa batter is therefore more likely to identify the sweet spot
of the handle is resisted by the force exerted by the handswith the fundamental mode vibration at about 170 Hz. If one

My initial measurements on a bat, and subsequent meaneasures the handle and arm motion using piezo sensors, as
surements and calculations for a tennis raéRendicate that  described in Refs. 1 and 2, then one can distinguish the
the sweet spotas located by playeyss likely to coincide  higher frequency vibrational motion from the lower fre-
with a narrow impact zone that leads to a minimum in thequency translational and rotational motion of the handle.
total (translatior-rotationt+vibration) energy in the handle. However, sudden rotation of the handle of a bat and the
Given that the energy coupled to the second vibration modsimultaneous impact with the hands appear to generate a nar-
of a bat is almost as large as the energy in the fundamentabw force spike of width about 2 ms which is difficult to
mode? and that the peak force on the hands due to this moddistinguish from the heavily damped second mbdespike
is as large if not larger than that due to the fundamentabf duration 2 ms contains a broad spectrum of frequency
mode! then the vibrational energy of the handle should becomponents and will be detected by the batter, regardless of
minimized for an impact at a point roughly half way betweenthe frequency dependence of the receptors in the hand. For a
the nodes of the fundamental and second modes. The transimilar reason, a player catching a fast ball may feel a sting
lational plus rotational energy at any given point in thein the hands, even though the ball does not vibrate.
handle is minimized for an impact on the barrel at the center There is another reason to believe that the node and the
of percussior{COP), defined in terms of the conjugate point COP both conspire to generate a sweet zone. If the funda-
in the handle. The COP is not a unique point on the bat sincenental node alone was responsible for the sweet spot, then
each point in the handle has a different COP in the barrelthere would be two sweet spots along the bat, one at each of
However, all COP points in the barrel, with correspondingthe two fundamental nodes. These nodes are located about
conjugate points under the hands, lie in a narrow band belt7 cm from each end of the bat. If one strikes a ball or a
tween the nodes of the fundamental and the second modkeavy object at each of the nodes in turn, it is immediately
The total handle energy is therefore minimized in this zoneobvious that one node is a lot sweeter than the other. The

For my wood bat, the fundamental node is 17 cm from thesweeter one is right beside the COP, for the reasons de-
end of the barrel and the node of the second mode is 13 ciscribed above.
from the end of the barrel. The region from 13 to 17 cm is Adair's comments on the effect of the hands during the
therefore a “sweet vibrations” zone. | located the sweet spotollision are valid. The impulsive reaction force exerted by
zone, as described in Ref. 1, by striking a ball and feeling thehe hands on the bat has no effect on the exit speed of the
effects on my hands and arms. This zone extended from 1Ball, at least for impacts along the fat part of the bat. This is
to 18 cm. Adair disagrees with my sweet-spot location andentirely consistent with detailed measurements and calcula-
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tions of the ball speetl* The main effect of the hands occurs °R. C. Cross, “The sweet spots of a tennis racket,” Sports Eng3-78
during the 20-ms period after the initial impact. The handss(lggg-C \ o bl with & b ot Am. 3. Ph
cause the vibration modes to be strongly damped, and the Géz_'70;‘(’f§§9.mpam of a ball with a bat or racket,” Am. J. Phgs,
also shift the axis of rotation of the bat. 4A. M. Nathan, “Dynamics of the baseball-bat collision,” Am. J. Phys.
68, 979-990(2000.

IR. C. Cross, “The sweet spot of a baseball bat,” Am. J. Plés.772— 5R. K. Adair, “Comment on ‘The sweet spot of a baseball bat,’” Am. J.
779(1998. Phys.69, 229-230(2001).
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We show how the pre-exponential factor of the Feynman propagator for the harmonic oscillator can
be computed by the generalizédunction method. Also, we establish a direct equivalence between
this method and Schwinger’s proper time method. 21 American Association of Physics Teachers.
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In a recent paper in this jourrfathe harmonic oscillator In this note we just add to the previous list one more
propagator was evaluated in a variety of ways, all of themmethod for computing the pre-exponential factor of the har-
based on path integrals. In fact, some of them did not involvenonic oscillator propagator, namely, the generalized
any explicit computation of the Feynman path integral, but,function method, so that this note can be considered as a

their common stayting point was actually an expre's§ion fogmall complement to Holstein's papkin fact, every time
the harmonic oscillator propagator which was explicitly de'We make a semiclassical approximation, no matter whether

rived by path integral means, namelye are using the no- in the context of quantum mechanics or quantum field
tation of Ref. 1 as much as possiple ; . . .

theory, we will get involved with the computation of a de-

detO | 12 terminant of a differential operator with some boundary con-

det®© ditions. If we try naively to compute these determinants as
_ the products of the corresponding eigenvalues we will get

< / m ex I—S[z 1 ill-defined expressions. Hence, it is imperative to give a finite
2mih(ti—t;) el prescription for computing determinants for these cases. The

generalized-function method is precisely one possible way

()
of doing that. It was introduced in physics in the mid-1970s

Dr(zs,t5:7 ati):(

where and it is in fact a very powerful regularization prescription
) d? ©) d? which has applications in several branches of phy&cde-
O=0"t+ . O07=gz (2)  tailed discussion can be found in Rej. This method, as we

) ) B will see, is based on an analytical extension in the complex
and the determinants must be computed with Dirichletyane e think that the harmonic oscillator propagator is the
boundary conditions. In Eql1), §zy] means the classical perfect scenario for introducing such an important method,
action, that is, the functional action evaluated at the classicglgcquse undergraduate students are all familiar with the
solution satisfying the Feynman conditiozgti)=z; and  g,;antum harmonic oscillator and besides, it is the first non-
z(ty)=z; and the factor before the exponential is the SO-yjia| example after the free particle. In what follows, we
called pre-exponential factor, which we shall denote bysha first introduce briefly the-function method, then we
F(t;—t;). In Ref. 1 three distinct methods were presente hall apply it to comput& (t,—t;) for the harmonic oscilla-

for the computation of (t—t;): (i) It was cpmputed di- tor propagator, and, finally, we shall establish a direct
rectly by the products of the corresponding eigenvalues of equivalence between this method and Schwinger’s proper
andO©) (some care must be taken here since both productﬁme method

are infinite, but their ratio is finite (ii) it was computed with Consider an operatok and let us assume, without loss of

the aid of Schwinger's proper time mettfo@n introductory . . X .
presentation of this method with simple applications can bé;enerahty, that it has a Q|screte S?t_ of nondegener.ate elgen-
found in Ref. 3; (iii) it was computed by the Green function values{\,}. When there is only a finite number of eigenval-
approach(a variety of simple examples worked out with this ues, def is just given by the product of these eigenvalues
approach can be found in Refs. 4 and 5 and we can write:
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deta=[] \,
n

= H exp{log\}

=exp{ ; Iog)\n}
ool -3 (22 |
o] -

—g(O;A)],

3

fa(T)

nw
sin(TT>;n=1,2,..+,
(7)

n2 a2

A= 0>+ ,
n 72

n=1,2,....

Consequently, the associated generalizéanction is given

by

7

)\rs] T
where we definedv=w7/7. Since the above series con-
verges only for Re>1/2, we need to make an analytical

extension in the complex plane sfto include the origin.
However, this can be done with no effort at all, for this series

oo

{(s;00)=2,

n=1

o]
2s 1

E(I’]TVZ)S'

n=1

®

where we define the generalized zeta function associatdd Précisely the so-called nonhomogeneous Epstein function,

with the operatoA as

L(S;A)=TrA™S, (4)

However, when there is an infinite number of eigenvalues

(and these are the cases of interest in physias occurs

whenA is a differential operator, the product of the eigen-
values will be an ill-defined quantity and will no longer serve

as a good prescription for dat In other words, expression
(3) with {(s;A) given by (4), as it stands, is meaningless
because it is not valid anymore to write:

(%) -2z

©)

s=0

Hence, for these cases we need to define a finite prescription
for detA. The generalized zeta function prescription consists

basically of the following three stepéi) We first compute

the eigenvalues ok subject to the appropriate boundary con-

ditions and then write down the correspondifigunction
{(s;A)=TrA =3\, °. (ii) Since the last sum does not

converge ats=0, we make an analytical extension of this

function to the whole complex plane of(or at least to a
domain that contains the origin(iii) After the analytical
extension is made, we just write detexp{—{'(s=0;A)}.

In order to apply th&-function method described above in
the computation oF (t;—t;), we first need to find the eigen-
values of© with Dirichlet boundary conditions. For conve-
nience/, we shall make the rotation in the complex plane
— e—iw 2T: _
interval in T by t;—t;=—i(T{—T;)=—i7. We then have
that

d? d?
—HOTZwZ— W

_ 2

(6)

This analytical extension guarantees that all the eigenvalues

(now of the operato®y) are positive. Of course, after the

calculations are finished, we must undo this transformation,

that is, we must substitute=i(t;—t;). Solving the eigen-
value equationO+f,(T)=\,f,(T) with Dirichlet boundary
conditionsf,(0)=0=f,(7), we get
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iT. Let us also define the corresponding finite

which we shall denote simply bE,(s;»?) and whose ana-
lytical extension to the whole complex plane is well known
and is given by® (see the Appendix for a brief deductjon

1 Jr T(s—1/2)

V2 e _
E (S,l)— 2V25+2V2571 F(S)
2\/; * nr s—1/2
+@zl 7) Ks—12nmv),  (9)

whereK ,(2) is the modified Bessel function of second kind.
This is a meromorphic function in the whole complex plane
with simple poles as=1/2,—1/2,—3/2,..., so that we can
take its derivative as=0 without any problem. Substituting
the sum appearing on the right-hand sidg®fby the ana-
lytical extension given by9), we may cast/(s;Or) into the
following form:

o 1(T>ZS F(s)
§(S,OT)——§ p +m, (10
where
2s
F(S)=(%) [—21:/2_111“(3—1/2)

* nm s—1/2
+2\m nzl (7) Ks_1(2n7)

is analytic ats=0. Taking, then, the derivative with respect
to sats=0 and using that'(s)~1/s for s—0, we get

"(s=0;07)=—1I / + i —F,(S)F —I—F,(S)]
Z (S_ 1 T)_ Og(T 7TV) SL”:) I‘Z(S) (S) F(S)
=—log(r/mv)+F(0). (12

From the above expression fé(s) we readily compute
F(0), sothat

r—1/2
{'(s=0;07)=—log(7/m7v)+ M

. (12

1207 S ALK 2nm)
n=1 nm

Using thatl'(— 1/2)= — 27 andK _,,(2) = J@/2ze %, we
obtain
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* Jd
' (s=0;07)=log(wvi7T)—mv+ Zlﬁle‘”””. (13 —{'(s=0;0)=—1Iim Iimg—i(s,a;(?)

a—0 s—0
It is not a difficult task to show that the above sum is given ——lim lim Tr ’( ) dTTS+a 1g-07
by (take its derivative with respect tp, sum the resultant 00 S0
geometric series, and then integratervinin order to elimi-
nate the arbitrary integration constant, just use the fact that Sta—l—On
this sum must vanish for— o) F(s) dT|09 T e
1 ) = dr o
E H e n2my_ mv—log[ 2 sin(7v)]. (14) =—lim Tr . TTae T, (21
= a—0

From Egs.(13) and(14) we then have Eq_uatio_n(21) corresponds precisely to Schwinger’s for_mula
written in a regularized way. Here we regularized by intro-
ducing positive powers of, but other regularization schemes
(15) can also be used, as for example, the one used by
Schwinget® in the computation of the Casimir effét(for a
) . simple introduction to this effect with some historical re-
where we used that=w7/7. For the operatoO7” we im-  marks see Ref. 121t is common to write Eq(21) formally
mediately gefit suffices to makev—0 in Eq.(15)] with «=0, but in fact, before taking this limit one should get
rid of all spurious termsthose with no physical meanihg
In this note we have presented the generalizédnction
method for computing determinants in a very introductory
level. A detailed discussion with a great variety of examples
Collecting all the previous results and rotating back to thecan be found in Ref. 7. One of the greatest advantages of this

{'(s=0;07)=log 5 i,

(16)

1
Ife—e-M0)—
£'(s=0;01)=log -

real time[ 7=i(t;—t;)], we finally obtain method is that for almost all differential operators and
boundary conditions that are relevant in physics, the corre-

\/ exd —¢'(0,0)] \/ m sponding generalized function (after the analytical exten-

N % . o . ! S )

F(ti—t) ex— ' (0.0°)] 2aih(t—1) sion is madgis a meromorphic function in the whole com

plex plane which is analytic at the origin. Furthermore, this
mo method can also be applied successfully in many other

\/2 7S — (17) branches of physics, as for example, statistical mechanics

mifi sifo(t;—1)] and quantum field theory among others. Of course there are
many easier ways of obtaining(t;—t;) for the harmonic
oscillator, but our purpose here was to introduce a new
method, which is a powerful one and widely used nowadays.
In this sense, we think that the harmonic oscillator provided
a perfect scenario for the understanding of the three basic
steps of the method, since every undergraduate student is
somehow familiar with the harmonic oscillator.

where we used that sinl#fj=—isin g, in perfect agreement
with Ref. 1.

Before we finish this note, we think it is interesting to
establish a general equivalence between thiinction
method and Schwinger's proper time method. From the
{-function method just presented, we can write

log detO=—¢'(s=0,0), (18
On the other hand, with the aid of the Mellin transférm APPENDIX

applied here to an operat@ with positive eigenvalues we |, yhis Appendix we shall obtain the analytical extension

can write ) ) 2 ) )
of the Epstein functiorE] (s;1), given in the text by Eq.
1 [« (9). With this goal, we first write down an equation involving
{(s;0)="Tr O‘S=Trr—f dr 57 1e 97 (199  the gamma function, which follows directly from its defini-
(s) Jo tion, namely’
However, the last expression is not analyticsat0 (though |7 1 —Ar
the presence of the exponential guarantees good behavior for T(@A = fo dr7~""e™™, Re2)>0. (22

larges, the limit s— 0 is a divergent oneso that as it stands ] ] s o ] )
it is not valid to take thes derivative ats=0. In order to  YSINg EQ.(22) with A=n"+v*, the Epstein function can be

circumvent this problem, we make the modificatioegular- ~ Written in the form:
ization) ) °° 1
. B ()= 2, (1250
1(5,0)—={(s,a;0)= —f dr 75te e 07, (20
I'(s) Jo

=%f dr Ts_le_”zTE e " (23
wherea is big enough to ensure that §4.9) is well behaved 0 n=1

ats=0. Hence, first taking the derivative ats=0 and then On the other hand, from the so-called Poisson summation
taking the limita— 0, we obtain rule? we can write:
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* , able number of poleswhich can be infinite and coincides
2 —nro _ —+ \[ \[ 2 -n?7%(Un 24y with the original sum in the region where the sum was de-

= fined. (i) It is worth emphasizing that the above expression

Substituting Eq(24) into (23), we get is analytic at the origin; in fact, the structure of simple poles
. of this function is dictated by the poles of the Euler gamma
Ef(s;l)z J' dr 5 le 7’7 function. It is easy to see that the poles are located at
2(s) Jo =1/2,-1/2, -3/2, —5/2, etc.
” S—3/24— 127 dElectronic mail: fabricio@if.ufrj.br
* 2I°(s) f dr 7 "re PElectronic mail: farina@if.ufrj.br
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A CONTINUAL SOURCE OF JOY

It is not the least of the triumphs of physics in the present century to have penetrated so gdeeply
behind the veil of our everyday perceptions as to reveal beyond doubt that our first-hand gxperi-
ence of the universe is at best a narrow and distorted view of whatever structure it is of which we
are a part; yet we have this assurance also, that our universe, in so far as we have been|able to
probe it, is a marvellously ordered creation whose fuller understanding is a continual soufce of
joy, in which intellectual satisfaction is mingled with wonder and humility.

A. B. Pippard,Forces and ParticlesJohn Wiley, New York, 1972 p. 311.
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