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Abstract
Most elite tennis players customise their rackets by adding weights at various points to
enhance the performance of the racket and to improve its balance and feel. The
additional weights also alter the swing weight, vibration frequency, amplitude and node
location, the centre of percussion, apparent coef®cient of restitution and racket power.
In this paper, experimental data is presented on the effects of adding a 30-g mass at
several points on the racket frame. The data is consistent with a one-dimensional,
nonuniform beam model of the racket, with a few minor exceptions. Mass added at the
tip of a racket is more effective in increasing racket power than mass added at any other
location, and has the additional advantage of shifting the point of maximum power
towards the tip of the racket. For a serve, the point of maximum power can be shifted to
a point near the tip of the racket, giving the player a signi®cant height advantage. For a
groundstroke, the added mass will shift the point of maximum power to a point near the
centre of the strings, where players normally impact the ball.
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Introduction

Tennis rackets can be classi®ed as either neutrally
balanced, head heavy or head light, depending on
whether the balance point (i.e. the centre of mass)
is, respectively, in the middle of the racket, closer
to the head or closer to the handle. The average
recreational player is probably unaware of the
location of the balance point of his or her racket,
since it has no obvious signi®cance to the player.
Professional players usually add lead weights to the
head and/or handle, partly to make the racket
heavier but also to give it the correct feel and to
improve the performance of the racket. The effect
of the additional weights is not as straightforward
as one might expect. As well as shifting the balance
point and changing the total weight of the racket,
the addition of mass also affects the swing weight

(i.e. the moment of inertia about an axis near the
end of the handle), the polar moment of inertia
(for rotation about the long axis), the vibration
frequency and amplitude, the location of the
vibration nodes, the location of the centre of
percussion (COP) and the apparent coef®cient of
restitution (ACOR). The ACOR is de®ned as the
ratio of the normal components of the rebound to
incident speed of a ball in a reference frame where
the racket is initially at rest. All of these parameters
affect the feel of the racket and they also affect
racket power and control. In this paper, the more
obvious physical effects of additional weights are
examined, but the effects on racket feel, power and
control are more dif®cult to quantify. The swing
weight and the polar moment both affect the speed
at which a racket can be swung or manoeuvered and
therefore affect both racket power and the ability of
a player to control the racket. The relation between
swing weight and racket speed is not well known.
Studies of swing speed have been made for golf
clubs (Daish 1972) and baseball bats (Watts &
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Bahill 1990), but the equivalent study for tennis
rackets is still in a preliminary stage (Mitchell et al.
2000).

The dynamic behaviour of a tennis racket can be
modelled theoretically at various levels of sophis-
tication, depending on whether the model is one,
two or three dimensional and depending on
whether the player is considered as part of the
dynamic system. In this paper, a simple theoretical
model is considered where the racket is treated as a
one-dimensional ¯exible beam with a nonuniform
mass distribution in a direction along the beam.
Numerical solutions are compared with experi-
mental data for an actual tennis racket, which was
modi®ed by adding a 30-g mass at various loca-
tions. A one-dimensional model can be used to
predict with certainty the theoretical shift in the
balance point, the change in swing weight and the
shift in the centre of percussion. As shown below,
the one-dimensional model also provides good
agreement with measurements of the ACOR as well
as the vibration frequency and node locations.

Centre of mass, moment of inertia
and centre of percussion

It is not easy to determine the mass distribution of
any given racket by physical measurements, apart
from cutting it into small pieces and measuring the
mass of each piece. However, a useful approxima-
tion is to assume that the racket consists of two
uniform beam sections, a handle of length L1 and
mass M1, and a head of length L2 and mass M2, as
shown in Fig. 1. The head itself has a more
complex structure than a uniform beam, but the
dynamics can usefully be modelled in terms of

beam theory, at least for impacts along the major
(long) axis of the racket. For this model, it is easy to
show that the centre of mass (CM) is located at a
distance h from the end of the handle, where

h �M1L1 �M2L2 � 2M2L1

2�M1 �M2� �1�

The moment of inertia of the racket about an axis
through the CM, for rotation in the direction
normally used to strike a ball incident at right
angles to the string plane, is given by

Icm � �M1L1 �M2L2�2 � 4M1M2�L2
1 � L1L2 � L2

2�
12�M1 �M2�

�2�
and the moment of inertia about a parallel axis
through the end of the handle is given by

Ih � Icm �Mh2

� 1

3
�M1L2

1 �M2L2
2� �M2L1�L1 � L2� �3�

where M �M1 + M2 is the total mass of the racket.
For any given M, L1 and L2, both h and Ih increase
as M2 increases, i.e. as the racket is made more head
heavy. In principle, measurements of both h and Icm

or Ih could be used to determine the mass and
length of each segment uniquely. Allowable solu-
tions include a zero length but ®nite mass segment,
corresponding to a point mass located at one end
of a uniform beam. In practice, it is dif®cult
to measure Icm or Ih with suf®cient accuracy to
determine the segment masses and lengths with
good precision. Solutions that give the correct
value of h all have the same value of Icm or Ih within
a few percent. Similarly, the moment of inertia of
a racket is determined primarily by its mass, its
length and the location of the balance point, and it
is not otherwise very sensitive to the precise details
of the mass distribution. For example, suppose that
the head section is modelled as a circular ring of
mass M and radius R. The moment of inertia
(MOI) of the ring about an axis through any
diameter is MR2/2. If a racket is approximated as a
uniform beam of mass M/2 and length 2R (the
handle) attached to a circular ring of mass M/2 and

Figure 1 Two segment beam model of a tennis racket, with a
handle of length L1 and a head of length L2.
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diameter 2R (the head), then the MOI about an axis
through the butt end of the handle is 65MR2/
12 � 5.417MR2. If the racket is approximated as a
uniform beam of mass M and length 4R, the MOI
about one end is 16MR2/3 � 5.333MR2. The
circular head model therefore has a MOI that is
only 1.6% larger than a uniform beam model.

The above expressions simplify if L1 � L2 � L/2,
where L is the total length of the racket. In this
case,

h � L�M1 � 3M2�
4�M1 �M2� �4�

and

Ih � 1

12
�M1 � 7M2�L2 �5�

indicating that the head mass is seven times
more signi®cant than the handle mass in determin-
ing Ih. If the beam is completely uniform, then
M1 �M2 �M/2, h � L/2, Icm �ML2/12 and Ih �
ML2/3.

If a ball impacts on the head of a racket at normal
incidence and at a distance b from the CM, then the
impact point is the centre of percussion (COP) with
respect to a conjugate point in the handle. If the
conjugate point is located a distance c from the
CM, then b � Icm/(Mc). The location of the COP
therefore depends on the assumed location of the
conjugate point, as well as the mass distribution of
the racket. Figure 2 shows the COP location for a
conjugate point at the far end of the handle, where
c � h. The COP location is given in terms of its
distance, d, from the tip of the racket, where
d � L ) h ) b. Also shown in Fig. 2 are dimen-
sionless plots of h/L, Icm/(ML2/12) and Ih/(ML2/3)
for the simpli®ed beam model where L1 � L2.
These plots are independent of the racket mass or
length and provide a useful indication of the effects
of varying the ratio of the head mass to the handle
mass.

Effects of adding a point mass m at a distance p
from the tip of the racket are shown in Fig. 3. If the
racket itself is modelled as two uniform segments
of masses M1 and M2 and of equal length
(i.e. L1 � L2 � L/2) then

h

L
�M1 � 3M2

4�M �m� �
m�1ÿ p=L�
�M �m� �6�

where M �M1 + M2 is the original racket mass
before the point mass is added. The moment of
inertia about the end of the handle is increased to

Ih � �M1 � 7M2�L2

12
�m�Lÿ p�2 �7�

Icm can be obtained by means of the parallel axis
theorem, Icm � Ih ) (M + m)h2, where h is given by

Figure 2 Variation of h/L, d/L, Ih/(ML2/3) and Icm/(ML2/12) vs.
M2/M for a racket, where M2 is the head mass, M is the total
racket mass, L is the racket length, h is the distance of the CM
from the butt end of the handle and d is the distance of the
COP from the tip of the racket.

Figure 3 Variation of h/L, d/L, Ih/(ML2/3) and Icm/(ML2/12) vs.
p/L for a uniform racket of mass M, when a mass m � 0.1M is
added at a distance p from the tip of the racket, where L is the
racket length, and h and d are shown in Fig. 1.
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Eq. (6). The plots in Fig. 3 are shown for a case
where M1 �M2, L1 � L2 and where a mass
m �M/10 is added at various points along the
racket from the tip to the end of the handle. There
is a signi®cant increase in both Icm and Ih when the
mass is added near the tip of the racket, but no
increase in Ih if the mass is added at the far end of
the handle. The addition of the small mass shifts
the COP signi®cantly towards the tip of the racket
when the mass is added near the tip, but it shifts the
COP slightly towards the throat of the racket if the
mass is added near the throat or in the handle.
There is no change in the location of the COP if
the additional mass m is located at the original
COP. Without the added mass, h/L � 0.5 and
d/L � 1/3 for a completely uniform racket. The
addition of a mass m �M/10 at the tip of the racket
shifts the CM to h/L � 0.545, it shifts the COP to
d/L � 0.278 and it increases Ih by 30%. For
example, if L � 70 cm, the CM is shifted by
3.1 cm and the COP is shifted by 3.9 cm, both
towards the tip.

The effects of removing mass at various points
along the racket are also described by Eqs (6) and
(7) if m is taken to be negative. For example, one
can shift the COP towards the tip of the racket by
removing mass from the region near the top of the
handle (i.e. near the throat of the racket) as pointed
out by Frolow (1983). A player cannot easily
remove mass from a ®nished racket, but the
manufacturer can choose this option when design-
ing a racket.

Swing weight

The swing weight of a racket, or any other similar
item of sporting equipment, is sometimes de®ned
by the product of M and h, since this is easier to
measure than Ih (Daish 1972; Jorgensen 1999). The
two are related, but Ih is of more direct relevance in
determining the angular momentum or acceler-
ation or the rotational kinetic energy of a racket.
Swing weight is sometimes de®ned as the moment
of inertia about an axis within the handle, at a ®nite
distance from the end of the handle, but the
distance can be chosen differently by different

authors depending on the experimental arrange-
ment used to swing the racket. In any case, the
actual axis of rotation of a racket, when it is swung
towards a ball, is typically 5±20 cm beyond the end
of the handle (Brody 1997), depending on the
amount of wrist action and the type of stroke. In
terms of the biomechanics of a stroke, separate
swing weights could be identi®ed for rotation
about a number of other axes including the wrist,
elbow and shoulder, each of which will generate
a different feel of the racket depending on the
particular player and stroke. For example, a player
using a lot of wrist action could ®nd that a head
heavy racket is dif®cult to control, especially if
the player has a relatively weak wrist. Similarly,
the addition of mass to the handle of a racket has
essentially no effect on Ih but it will alter the
balance point and the swing weight about any other
axis. Mass added to the handle may therefore be
used to increase the swing weight about an axis
through the elbow or the shoulder without chan-
ging the swing weight about an axis through the
wrist.

Given that L, M and h are more easily and
accurately measured than the swing weight Ih, an
interesting practical question is whether a simple
calculation of the ®rst moment Mh is suf®cient to
characterize a racket, and whether a measurement
of Ih provides any new or fundamentally different
information. An alternative but equivalent question
is whether one can estimate or calculate Ih reliably
just from measurements of L, M and h. In theory,
the answer is no, since Mh and Ih provide intrin-
sically different measures of the mass distribution.
The quantity Mh is a measure of the ®rst moment
of mass and Ih is a measure of the second moment.
In practice however, one can estimate Ih reliably
from L, M and h, since the mass distribution of
a typical racket is not suf®ciently pathological to
introduce a signi®cant error. Figure 4 shows a plot
of Ih vs. h for a uniform (neutrally balanced) racket
of length 71 cm and mass 320 g, modi®ed by
adding a 30-g mass at various positions along the
racket from one end to the other. The actual values
of h and Ih are given by Eqs (6) and (7). Alternat-
ively, if one were to measure L, M and h for such a

Customising a tennis racket · R. Cross

4 Sports Engineering (2001) 4, 1±14 · Ó 2001 Blackwell Science Ltd



racket, where M � 350 g is the total mass of the
racket, then one could model the racket as two
equal length segments with a head to handle mass
ratio given, from Eq. (4), by

M2

M1
� 4hÿ L

3Lÿ 4h
�8�

One can then estimate Ih for the racket using
Eq. (5), which is also plotted in Fig. 4. The
difference between the actual and estimated values
of Ih is typically less than 2%, which is comparable
to the accuracy with which Ih can usually be
measured. Furthermore, a difference of 2% in Ih

would not be noticed by most players (Brody 2000).
Beak et al. (2000) obtained a similar result,
although in their experiment the balance point
was not held constant when the swing weight was
varied. One can therefore characterize a racket,
with some degree of con®dence, purely in terms
of its mass, length and balance point, all three
measurements being required to calculate the
swing weight about any given axis. An interesting
exception to this general rule was used by Brody
(2000) to vary Ih by up to 10% even though M, L
and h were all kept constant. This was achieved by
adding about 50 g at the balance point to minimize
the increase in Ih or by adding half the mass at the
tip and half at the butt end of the handle to
maximize the increase in Ih. Brody (1985) also
describes a method of measuring Icm to better than
1% using a torsional pendulum.

Vibration modes and apparent coef®cient
of restitution for a nonuniform beam

Despite the relatively complex structure of a tennis
racket, the vibration modes of the frame and the
location of the vibration nodes can be described
with reasonable accuracy by treating the racket as a
simple one-dimensional beam (Brody 1995; Cross
1998a). For a uniform, freely suspended beam of
length L, the fundamental vibration nodes are
located at a distance 0.224 L from each end of the
beam. If L � 0.7 m, the nodes are located 15.7 cm
from each end. One of the two nodes in a tennis
racket is usually located near the centre of the
strings, typically about 16 cm from the tip of the
racket, the other being located about 15 cm from
the end of the handle. A racket will also support
higher frequency modes, but these are excited with
signi®cant amplitude only if the racket is subject to
a relatively short duration impulse, typically 2 ms
or less. In practice, the impact with a ball has a
duration of about 4 or 5 ms, which effectively
damps all vibrations other than the fundamental
mode. The fundamental vibration period varies
from about 5 ms for stiff, wide-body rackets to
about 10 ms for relatively ¯exible rackets.

In this section, solutions for a nonuniform beam
are examined in order to obtain more accurate
estimates of the node locations and vibration fre-
quencies of head heavy and head light rackets. The
beam model is easily extended to include calcula-
tions of the vibration amplitude and the ACOR, by
considering the impact of a ball on the beam.

The equation of motion for a beam subject to an
external force, Fo per unit length, has the form
(Cross 1999)

qA
o2y

ot2
� Fo ÿ o2

ox2
EI

o2y

ox2

 !
�9�

where q is the density of the beam, A is its cross-
sectional area, E is Young's modulus, I is the area
moment of inertia and y is the transverse displace-
ment of the beam at coordinate x along the
beam. For a rectangular beam with cross-sectional
dimensions a ´ b, I � ba3/12 where b is the width

Figure 4 Actual and estimated swing weight, Ih, vs. balance
point, h, for a racket of mass 350 g and length 71 cm.
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of the beam and a is the dimension in the direction
of vibration. Equation (9) neglects the shear
force which is of minor signi®cance for short
wavelength modes but is negligible for long wave-
length modes.

The quantity EI represents the beam stiffness or
the ¯exural rigidity of the beam (Timoshenko &
Young 19682 ). If the material properties, expressed
by the parameters q and E, remain constant, but the
beam dimensions are functions of x, then both A
and I will vary with x. However, in this paper, we
are interested mainly in the effects of adding lead
weights at various points along the beam, in which
case the primary effect is to alter the local value of
the density, q. The lead weights added to a racket
normally take the form of thin, self-adhesive strips.
If the weights are added to a uniform beam, then
EI remains essentially constant along the beam.
Numerical solutions of Eq. (9) for a uniform beam
of mass M and length L can be obtained by dividing
the beam into N equal segments each of mass
m �M/N and separated in the x direction by a
distance s � L/N. If a lead weight is added to any
segment, then m can be modi®ed for that segment
to include the mass of the lead. Similarly, if extra
weight is added to the handle in the form of a grip
or an actual lead weight, this can also be treated as a
change in the local density. The grip may also alter
the local value of EI, but this effect was not
included in the calculations presented below since
changes at the handle end of a racket have a
negligible effect on the ACOR and on the location
of the node in the head region. For example, the
ACOR is unaffected even if the handle is clamped
in a vice (Cross 1999).

An impacting ball may exert a force acting over
several adjacent segments, depending on the ball
diameter and the assumed number of segments. For
simplicity it was assumed that the ball impacts on
only one of the segments, exerting a time-depend-
ent force, F. The equation of motion for that
segment (the nth segment) is obtained by multi-
plying all terms in Eq. (9) by s, in which case

m
o2yn

ot2
� F ÿ �EIs� o

4yn

ox4
�10�

assuming that E and I are independent of x. The
equation of motion for the other segments is given
by Eq. (10) with F � 0. In fact, a ball impacting on
the strings of a racket exerts an almost simultaneous
force acting over the whole head region of the
frame, since the strings transmit the force to the
frame with a propagation delay of only about
0.5 ms. The force is not transmitted equally to all
sections of the head and tends to be concentrated by
the cross strings, in a direction along the major axis,
near the impact point. The one-dimensional model
ignores this detail, but it includes the fact that a
force is rapidly transmitted to segments adjacent to
the impact point, via the second term on the right of
Eq. (10). This term represents the force exerted on
the nth segment by the adjacent segments.

The ball and the strings can both be modelled as
simple springs, with a combined spring constant kb.
The equation of motion for the ball is then given
by

mbd
2yb=dt2 � ÿF � ÿkb yb ÿ yn� � �11�

where mb is the ball mass, yb is the displacement of
the ball, and yb ) yn is the compression of the ball
and the strings. The spring constant was taken
as kb � 3 ´ 104 N m)1 to be consistent with the
observed impact duration, about 5 ms. It was
assumed that at t � 0, yb � 0, y � 0 for all beam
segments, the beam was initially at rest and that
dyb/dt � v1. The subsequent motion of the ball and
the beam was evaluated numerically as described by
Cross (1999). These results were used to determine
the rebound speed of the ball, v2, and the apparent
coef®cient of restitution (ACOR), eA � v2/v1.

Solutions of Eqs (10) and (11) over-estimate the
ACOR due to the neglect of energy dissipation in
the ball. A correction factor for ball losses was
obtained from measurements of the COR when the
ball impacted on the strings with the head clamped.
At the low impact speeds used in this paper,
e � 0.86 � 0.01. Values of eA quoted below are the
theoretical values obtained from Eqs (10) and (11)
multiplied by 0.86.

The vibration modes of a beam with uniform E
and I but with a nonuniform mass distribution can
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be obtained by numerical solution of Eq. (10),
assuming that F � 0, and that ¶2y/¶t2 � )x2y
where x is the vibration frequency. In this case,
Eq. (10) reduces to

o4y

ox4
� lx2

S

� �
y �12�

where l � qA and S � EI. Numerical solutions of
Eq. (12) show that the the modes of a nonuniform
beam are qualitatively similar to those of a uniform
beam and that the node locations are shifted in a
direction that one would expect from a localized
increase or decrease in wave speed along the beam.
For example, if the wave speed is locally small, then
the wavelength is locally small and the nodes are
relatively close together. For a uniform beam, one
can assume that ¶2y/¶x2 � )k2y, in which case the
dispersion relation has the form k2 � x(l/S)1/2. For
any given x, k increases and the wavelength
decreases as l increases. Consequently, if the left
end of a beam has a higher l than the right end, the
vibration nodes of the beam are shifted, relative to
those for a uniform beam, towards the left end of
the beam.

Solutions of Eqs (10)±(12) are presented below
only for cases where the model racket is freely
supported at both ends. The handle of a racket is
subject to the force exerted by the player, but this
force can be neglected when calculating the ACOR
since the impulse re¯ected off the handle arrives
back at the impact point after the ball leaves the
strings (Brody 1997; Cross 1999). As a result, the
ACOR is independent of any force that may be
applied to the handle. Furthermore, the vibration
frequencies of a hand-held racket are essentially the
same as those for a freely supported racket. The
boundary conditions at a freely supported end are
given by ¶2y/¶x2 � 0 and ¶3y/¶x3 � 0. For a uni-
form, rectangular cross-section beam, these bound-
ary conditions yield analytical solutions for the
mode frequencies for transverse vibrations, given
by

x � G2a

L2

��������
E

12q

s
�13�

where G � kL � 4.730, 7.853, 10.996 for the ®rst
three modes. For a nonuniform beam, numerical
solutions of Eq. (12) can be found by guessing both
the frequency and ¶y/¶x at one end of the beam,
and then iterating until both boundary conditions
are satis®ed at both ends of the beam.

Experimental results

The racket studied in this paper was a head light,
Topspin 660 Powerlite racket manufactured since
the late 1990s, strung at a tension of 260 N. The
string area is 660 cm2. The racket is shown in
Fig. 5. It was constructed from a long, hollow tube
of graphite composite material in the manner
commonly used to construct most modern rackets.
The throat section of the head, used to support the
main strings in the centre of the racket, was

Figure 5 Topspin 660 Powerlite racket parameters, showing
the node locations of the fundamental vibration mode at
129 Hz, and the second mode at 373 Hz, with no added mass.
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constructed separately and moulded with some
reinforcing material into the tubular section form-
ing the rest of the head and extending down to the
end of the handle. An interesting feature of the
racket is a tight-®tting, removable plastic handle
which allows the player to insert additional weights
in a cavity inside the handle. The total mass of the
racket, 332 g without any additional weights,
consisted of the complete graphite frame (236.4 g),
the removable handle (60.6 g), grommet strips for
the strings (19.6 g) and the strings (15.4 g). Some
of the properties of this racket are shown in
Table 1, together with the corresponding proper-
ties when a 30-g lead mass was added to the tip and
when 15 g masses were added at the 3 and 9 o'clock
positions. Normally, masses smaller than 30 g
would be added at any particular point to customise
a racket, but relatively large masses were used in
this experiment so that the effects could be more
clearly observed. A mass of 30 g at the tip changed
the racket from a head light to a slightly head heavy
racket.

The balance point was measured simply by
balancing the racket on the edge of a ruler. The
swing weight was measured by swinging the racket
as a pendulum about an axis near the butt end of
the handle, and timing the period of oscillation, as
described by Brody (1985). A small correction was
made, using the parallel axis theorem, to calculate
Ih about the axis through the butt end. The parallel
axis theorem was also used to calculate Icm from the
measured values of h and Ih.

The location of the COP is commonly deter-
mined by swinging the racket as a pendulum in
order to calculate both Icm and the COP point. In

this paper, a more direct method was used, in order
to compare the actual and predicted locations of
the COP. The COP was measured by suspending
the racket by a 1.0-m length of string attached
to the butt end of the handle and impacting the
strings with a ball, along the major axis, to ®nd the
location on the strings at which the butt end of the
handle did not de¯ect. It was not possible to
adequately resolve rapid motion of the butt end by
eye, although the motion can be captured on ®lm as
illustrated by Brody (1987). The COP was located
using a small piezo disk mounted at the butt end of
the handle as an accelerometer. The piezo signal
was integrated to obtain the velocity waveform,
which provides a much clearer picture of motion of
the handle than does the acceleration waveform.
The COP was identi®ed by the change in sign of
the DC velocity component for impacts either side
of the COP, as described by Cross (1998a, 1998b).

The vibration frequency was measured by taping
a small piezo disk to the frame and recording the
output with a spectrum analyser. The racket was
suspended by a 1.0-m length of string and vibrations
were excited by tapping at various points on the
frame with a soft hammer. The node points on the
frame and on the string plane were located with
the same apparatus, by searching for points where
the fundamental mode was not excited. Table 1
shows the distance N, from the tip, of the node
point on the major axis. For the unweighted racket,
the node point 168 mm from the tip lies on the
same cross string joining the 3 and 9 o'clock
locations on the frame. A two-dimensional plot of
the node line in the string plane is shown in Fig. 5.
As described by Kawazoe (1997), the node line

Table 1 Measured and predicted racket parameters (1% error in Ih, 5% error in Icm)

No added mass 15 g at 3 & 9 o'clock 30 g at tip

Parameter Sym. Unit Measured Predicted Measured Predicted Measured Predicted

Mass M g 332 � 0.1 362 � 0.2 362 � 0.2

Bal. point h mm 327 � 1 327 345 � 1 344 357 � 1 356

Swing wt Ih kg m2 0.049 0.049 0.058 0.057 0.064 0.063

MOI Icm kg m2 0.0133 0.0133 0.0153 0.0145 0.0178 0.0168

COP d mm 220 � 5 250 220 � 5 240 205 � 5 213

Frequency f1 Hz 129 � 1 129.0 129 � 1 129.2 117 � 1 116.3

Node point N mm 168 � 2 166 168 � 2 166 120 � 2 130

Customising a tennis racket · R. Cross

8 Sports Engineering (2001) 4, 1±14 · Ó 2001 Blackwell Science Ltd



forms an approximately circular arc joining node
points in the frame near the 2 and 10 o'clock
positions.

The measured values of the balance point and
fundamental vibration frequency of the unweighted
racket indicate, from Eqs (8) and (12), that the
racket can be modelled as two uniform beam
sections with L1 � L2 � 350 mm, M1 � 188 g,
M2 � 144 g and with EI � 147 Nm2 in both sec-
tions. Using this model, the effects of an additional
30 g mass can be predicted, as outlined above, and
are shown in Table 1. The predicted results for the
balance point, swing weight and fundamental
vibration frequency are in excellent agreement with
the observed results in Table 1. As predicted, there
is no change in the vibration frequency or node
location when the additional mass is located at the 3
and 9 o'clock positions, i.e. in line with the vibration
node in the middle of the string bed. There was also
no observable shift in the location of the COP with
added mass at these positions. Given that the node
location on the frame, for the unweighted racket,
was actually located close to the 2 and 10 o'clock
positions, one might expect a small shift in the node
location when masses are added at 3 and 9 o'clock.
However, within experimental error, the node
location along the major axis did not change. This
is consistent with theoretical predictions that the
shift in vibration frequency and node location is very
small when mass is added at or near a node point.

Numerical solutions of Eq. (12) indicate that the
fundamental node, with an additional 30 g at the
tip, should be located 130 mm from the tip, rather
than the observed 120 mm. The shift in the node
location was therefore in the correct direction but
larger than predicted. The COP was also found to
be closer to the tip than expected, by about 20 mm,
as described in more detail below.

Additional experiments were undertaken to
measure changes in the vibration amplitude of the
handle, for a ®xed impact speed and impact
location, when the 30 g mass was added at various
locations on the racket frame. For this purpose, the
racket was suspended by a length of string, and a
piezo taped close to the butt end of handle was used
to measure the acceleration waveform. A reduction

in the acceleration amplitude of up to 20% was
observed at most locations, but this is insigni®cant
when compared with a factor of three reduction
observed when the handle was held by one hand.
Consequently, extra mass in the handle or at any
other point would be of little use as a vibration
dampener, unless the added mass is used to stiffen
the frame or has energy absorbing properties.

Comment on node location

The vibration nodes of a racket along the major
axis are located in essentially the same positions as
those for a straight beam. However, this result is
somewhat coincidental since the nodes in the frame
are not at this position at all, but near the 2 and 10
o'clock locations, as shown in Fig. 5. It was
observed that the locations of the nodes on the
frame were not altered by stringing the racket,
although the vibration frequency was lowered
signi®cantly when the racket was strung. The
fundamental frequency dropped from 148 Hz to
141 Hz when the grommets were added and it
dropped further, to 129 Hz, when the racket was
strung. The nodes in the frame each moved 12 mm
closer to the tip of the frame when the grommets
were added to the frame, but the node locations did
not shift any further when the strings were added.

Intuitively, one might expect that the strings
would stiffen the frame, leading to an increase in
the vibration frequency. However, the frequency
decreased by 8.5% when the strings were added.
The additional mass of the strings would account
for about a 2% drop in frequency, given that the
frequency is inversely proportional to the square
root of the total racket mass. The additional
decrease in frequency can be explained in terms
of beam bending. If one applies a transverse force
to the tip of an unstrung racket, then the racket will
bend by an amount that depends on its stiffness. If
the racket is then strung, and the experiment is
repeated, the racket will bend further due to the
component of string tension acting in a direction
perpendicular to the tip. Consequently, the trans-
verse stiffness of a racket is reduced when it is
strung.
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The location of the vibration nodes in the frame
cannot be explained in terms of the one-
dimensional beam model, but a qualitative picture
of the fundamental mode and node locations,
consistent with the above results, is shown in
Fig. 6. The picture is also consistent with the fact
that the vibration amplitude of the frame at the 6
o'clock position was observed to be essentially the
same as that at the 12 o'clock position. The
location of the node near the middle of the strings
differs from that in the frame since the strings
remain under tension and will tend to stretch along
a straight line path between points of attachment to
the frame, the cross strings preventing the mains
being exactly straight. The string plane itself has a
fundamental vibration frequency of about 500 Hz,
so motion at about 129 Hz represents an almost
quasi-static stretch of the strings. If the frame has a
node in line with the 2 and 10 o'clock positions, the
centre main string will have a node point closer to
the centre of the string plane, as illustrated in
Fig. 6.

Comment on the centre of percussion location

If one assumes that the racket is completely free of
all external forces, then an impact anywhere along
the major axis will cause the CM to recoil at speed
Vcm and the racket to rotate at angular frequency x.
The resulting speed at the butt end of the handle is
vB � Vcm ) hx. For an impact at the COP, vB � 0,

at least for a short period during and immediately
after the impact. At any time t after the impact, the
racket will have rotated through an angle h � xt
and the component of the rotational velocity, in a
direction parallel to the incident ball, will be
hx cosh. Consequently, the butt end of the racket
will start to move in the direction of the incident
ball after the racket has rotated a few degrees. In
the experiment described above, the butt end of the
racket was tied to a length of string, which exerts a
restoring force on the handle as soon as the butt
end begins to move. In order to identify the
location of the COP, it was necessary to wait
several vibration cycles, about 20 ms, in order to
determine if the DC component of vB was zero.
During this time, a restoring force can arise from
displacement of the handle, in which case the axis
of rotation of the racket is shifted slightly. This
effect was not studied in detail, but estimates of the
magnitude of this effect are consistent with a shift
of 20 mm in the expected location of the COP.

Of more direct signi®cance is the possible shift in
the COP resulting from the much larger force on
the handle that would be exerted by the hand, as
described by Hatze (1998). This effect warrants
further careful experimental investigation. How-
ever, it is not easy to locate the COP precisely,
since motion of the handle in this impact region is
dominated by effects due to vibration of the handle
(Cross 1998a; 1998b)

Measurements of apparent coef®cient
of restitution

The arrangement used to measure the ACOR is
shown in Fig. 7. The racket was suspended hori-
zontally, with the string bed in a vertical plane,
using two lengths of string tied to the racket, one at
the butt end of the handle and the other at the
3 o'clock point on the frame. A tennis ball was
mounted, as a pendulum bob, at the apex of a
V-shaped string support, so that it could impact the
strings horizontally, at right angles to the string
plane and at selected points along the major axis.
This arrangement provided good reproducibility as
well as a simple and accurate means of controlling

Figure 6 Schematic diagram showing the fundamental vibration
mode of the racket frame and the resulting location of the main
string along the major axis.
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the impact point. The impact was ®lmed using a
JVC 9600 video camera recording at 100
frames s)1, with 2 ms exposure, in order to capture
at least four frames close to the string plane before
and after each impact. The centre of the ball facing
the camera was marked with a felt pen to help track
the speed of the ball. The ball impact speed was
held constant at 1.6 ms)1, much lower than the
usual speed in a game of tennis, but perfectly
adequate to compare with theoretical predictions
and to observe the effect of adding weights to the
racket frame. Off-axis impacts were not studied in
this paper, although it is recognized that the
addition of weights at points off-axis signi®cantly
increases the polar moment of inertia and will
therefore increase the ACOR and reduce the
tendency for the racket to twist in the hand for an
off-axis impact (Brody 1985).

Measurements of the ACOR, and the corres-
ponding theoretical estimates of the ACOR, are
shown in Figs 8 and 9. The unweighted racket was
modelled, as described above, with M2/M1 � 0.77
and EI � 147 Nm2. Agreement between the the-
oretical and experimental values of eA is very good,
apart from the region near the throat where the
ACOR is slightly higher than predicted. The latter
effect may be associated with the additional mass
used in the construction of the throat section. The
most interesting result is that additional mass has
the largest effect on the ACOR when it is located at
the tip of the racket. One might expect that the

ACOR near the middle of the strings might be
maximized if the additional mass were located in
line with the middle of the strings. However, it is
maximized when the additional mass is located at
the tip. A simple explanation of this effect is that
additional mass at the tip gives the largest increase
in swing weight or rotational inertia. Extra mass at
the tip also shifts the CM of the racket closer to the
centre of the strings than mass added at any other
location. The ACOR is a maximum for impacts at
the CM of the racket and decreases with distance
from the CM due to the energy chanelled into
rotational motion of the racket. The maximum

Figure 7 Experimental arrangement used to measure the
ACOR along the major axis.

Figure 8 Numerical solutions of Eqs (10) and (11) for the
Topspin racket with and without the addition of a 30-g mass.

Figure 9 Experimental data showing eA vs. x for the Topspin
racket. The curves are third order polynomial ®ts to the data,
not the theoretical curves shown in Fig. 8.
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possible ACOR of a racket is obtained when the
head is clamped, in which case there is no energy
transferred to rotation or translation of the racket
and the ACOR is then equal to the COR (0.86 in
this case).

Comment on racket power

Given that the ACOR is increased signi®cantly by
adding a small mass to the tip of a racket, an
obvious question is whether or not this acts to
increase racket power. In the case of a serve, the
ball speed, v, is given by v � (1 + eA)V where V is
the speed of the racket at the impact point and eA is
the ACOR. The serve speed is therefore directly
proportional to V and depends only weakly on eA.
For example, a 20% increase in V leads to a 20%
increase in serve speed, but a 20% increase in eA,
from say 0.40±0.48, leads to only a 5.7% increase in
serve speed.

Any useful de®nition of racket power must
therefore include both the ACOR and the swing
weight of the racket. If the swing weight was
in®nite, the racket head speed would be zero. If the
swing weight was zero, the racket head speed would
not be in®nite since a player cannot swing his or
her arm that fast. However, within the normal
range of racket weights from about 250 g to about
400 g, it is reasonable to assume that racket head
speed will be proportional to some inverse power of
swing weight, I. The head speed itself depends on
the impact point on the racket. If the racket is
swung at angular velocity x about an axis at a
distance A beyond the butt end of the handle, and
the ball strikes the strings at a distance x from the
tip of the racket, then the velocity of the impact
point is V � (A + L ) x)x. The angular velocity
will depend on the swing weight about that axis,
given by I � Icm + (A + h)2. If x � k/I n, then the
serve speed is given by

v � k
�1� eA��A� Lÿ x�

Icm � �A� h�2
h in �14�

where k is a constant that depends on the strength
of any given player and n is a number, yet to be

determined, that describes the relation between
head speed and swing weight for any given player.
This number is not well known for tennis rackets.
Nevertheless, it is of interest to examine solutions
of Eq. (14) for typical values of n that may be
relevant. For example, if one assumes that the total
energy of the racket, 0.5Ix2, remains constant when
the swing weight is varied, then n � 0.5. If the total
energy of the arm remains constant, then n � 0. If
the total energy of the racket plus the arm remains
constant, then n will be less than 0.5. Studies of golf
clubs and baseball bats (Daish 1972; Watts & Bahill
1990) are more consistent with the latter assump-
tion, and indicate that n is typically about 0.2 for
these implements.

Plots of v vs. x for the eA pro®les in Fig. 9 are
given in Fig. 10. It was assumed that the racket
could be swung to generate a serve speed v =
200 km h)1 for an impact at x � 15 cm, when
A � 0.05 m, regardless of the additional mass or
its location. There is no logical reason for such an
assumption, but (a) it provides a convenient if
somewhat arbitrary means of comparing the three
pro®les and (b) the resulting value of n is within
the range of interest between 0 and 0.5. Con-
versely, if one were to arbitrarily assume other
values of n, then the three pro®les would intersect
at different points. The results in Fig. 10 were

Figure 10 Serve speed v vs. impact distance from the tip, x,
when the angular velocity of the racket is chosen to give
v � 200 km h)1 at x � 15 cm and when the axis of rotation is
5 cm beyond the end of the handle.
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obtained using x � 69.00 rad s)1 with no added
mass, x � 65.86 rad s)1 with 15 g at both the 3
and 9 o'clock positions, and x � 63.63 rad s)1

when 30 g is added to the tip. For these param-
eters, x is given to a good approximation by
x � 28.64/I0.314. The exponent n here is roughly
consistent with the initial study reported by
Mitchell et al. (2000).

It is also of interest to consider the effect of
additional mass on groundstrokes. If the ball is
incident normally at speed vin, then the speed of the
ball off the racket is given by v � eAvin + (1 + eA)V.
Figure 11 shows an example where vin � 78 km h)1,
x � 30 rad s)1, A � 0.2 m and where eA is given by
the experimental data in Fig. 9. It was assumed for
simplicity that x is independent of swing weight. For
a groundstroke, this is a reasonable approximation
since (a) the player does not normally swing as fast as
possible and (b) the variation in swing weight is not
as signi®cant when the rotation axis is further from
the butt end of the handle.

The results in Fig. 10 suggest that when weights
are added to the racket head there may be only a
slight or no change in power when serving from the
middle of the strings, but there may be a signi®cant
increase in power when serving from a point near
the tip. Even though power from the tip is
generally a fraction lower than power from a point

near the middle of the strings, the added height is
an advantage to a server since the serve angle
window is increased (Brody 1987). Adding mass at
the tip also shifts the point of maximum power
closer to the tip, particularly when the axis of
rotation is close to the end of the handle. The
actual axis of rotation is likely to vary from one
player to another, but the general conclusions here
will not be affected, provided the axis of rotation is
not a large distance from the butt.

If a player chooses to hit an incident ball with
zero racket speed, then v � eAvin and the ball will
rebound with maximum speed from a point near
the throat of the racket where eA is a maximum. At
higher racket speeds, and/or when mass is added to
the tip of the racket, the maximum power point
shifts towards the tip of the racket. In Fig. 11,
vin � 20 m s)1 and V varies from 27 m s)1 at the
tip of the racket to 18 m s)1 at the throat.
Figure 11 shows that the maximum power point
can be shifted to the centre of the strings when
V � vin and when additional mass is added at the
tip. Furthermore, the maximum power is also
increased. Mass added at the 3 and 9 o'clock
positions is not as effective in this respect. The
primary reason for adding mass at 3 and 9 o'clock is
to increase the polar moment of inertia and hence
improve the rotational stability of the racket.

Conclusions

The addition of weights to a tennis racket has an
effect on almost every physical parameter of the
racket. Noteable exceptions include the fact that
(a) a weight located at the balance point does not
shift the balance point, (b) a weight located at the
centre of percussion does not shift the centre of
percussion, (c) a weight at a vibration node does not
shift the location of the node or the vibration
frequency and (d) a weight added at any point in
the handle does not change the swing weight about
that point. A one-dimensional model of the racket
provides a good description of all these effects, but
a two-dimensional model would provide a better
description of the vibration modes of the racket
head. Further experimental studies would be

Figure 11 Ball speed v vs. impact distance from the tip, x, for a
groundstroke. The incident ball speed is 20 m s)1 (78 km h)1),
the angular velocity of the racket is x � 30 rads)1 and
A � 0.2 m.
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desirable to unravel the complications introduced
by the force of the player's hand on the handle, in
relation to the effect on the COP. Further studies
are also required to determine the relationship
between racket speed and swing weight so that the
concept of racket power can be more properly
assessed. However, it is clear that mass added at the
tip of a racket is effective in increasing racket power
and that the point of maximum power is shifted
towards the tip of the racket. For a serve, this
locates the maximum power point near the tip,
which gives the player an added height advantage.
For a groundstroke, the maximum power point is
shifted to a point near the centre of the strings,
where players normally impact the ball. The effect
of additional weights on the feel of a racket was not
studied directly in this paper, but this will be
determined in part by the location of the two sweet
spots formed by the vibration node and the COP.
The biomechanics of this would make an interesting
study (see, for example, Beak et al. 2000 and the
references therein).
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