Why bows get stiffer and racquets get softer when the strings are added

Rod Cross?
Physics Department, University of Sydney, Sydney NSW 2006, Australia

(Received 31 October 2000; accepted 13 March 2001

The frame of a string instrument is subject to a large tension force when the strings are installed.
Intuitively, one might expect that the frame would be stiffened by the strings. Experimental data and

a theoretical analysis are presented to show that this is not generally the case. An archer’s bow is
much stiffer when it is strung, but a tennis racquet is softened when the strings are added. As a
result, the mode frequencies for transverse vibrations increase for a bow and decrease for a racquet
when the strings are added. The effect of the strings depends on the extent to which the frame is bent
at equilibrium. © 2001 American Association of Physics Teachers.
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[. INTRODUCTION ment of an unstrung bow from its equilibrium position gen-
erates a restoring force arising from bending of the bow. The
There are many types of instruments fitted with stringsbow will have a certain stiffness or spring constant. When
including violins, pianos, racquets, and bows used to shoahe bow is strung, it assumes a new shape where the tension
arrows. The physics of the strings is well understood, but théorce in the string is balanced by the stiffness of the bow.
physics of the support frame is much more complex. TheAny displacement of the bow from the new equilibrium po-
frame has its own characteristic set of vibration modessition involves a change in length of the string. For example,
which generally enhance the performance of the instrumerif an external force is applied teeducethe curvature of the
but sometimes generate annoying resonances with the stringsw, an extra force is required to stretch the string. If an
in musical instrumentSAn interesting question, but one that external force is applied timcreasethe curvature of the bow,
rarely seems to arise, is whether the mode frequencies of thteen one might think that the string will help here, and the
frame depend on the string tension. One might expect thaask will be relatively easy. However, in this case the string
the frame would be stiffened by the strings, leading to artension drops so the string offers less assistance, not more.
increase in the mode frequencies of the frame. ExperimentShe situation can be compared with the case of a helical
conducted by the author indicate that the mode frequenciespring that is compressed axially by means of a string
of a violin frame increase by less than 1% when the stringnounted along the axis of the spring and tied under tension
tension is increased from zero to normal tension. Howevero each end. In that case, the spring constant of the system is
this is not typical of all devices fitted with strings. When a the sum of the spring constants of the spring and the string.
string is added to an archer’s bow the fundamental vibratiorThe string therefore acts to stiffen the spring. The geometry
frequency of the bow increases by a factor of about 3 or 4of a strung bow is different, but the effect of the string is to
An even more surprising result is that the fundamental vibrastiffen the bow, as described in more detail below.
tion frequency of the frame of a tennis racqdetreasedy When a tennis racquet is strung, there is no change in the
about 10% when the strings are added, depending on thequilibrium curvature of the frame since the tension is ap-
stiffness of the frame and the string tension. This is not simplied along the main axis and the racquet remains straight. If
ply due to the additional mass of the strings, about 15 gan external force is applied to bend the frame in a direction
which would account for a drop in frequency of only about perpendicular to the axis, then the strings parallel to the axis
2%. The author could find only one artiél the literature  are shortened and the tension drops. However, the main ef-
relevant to this observation. The authors used a finite elefect of the strings is that they assist the external force, result-
ment model of the racquet and predictédcorrectly that ing in a larger displacement of the frame, in the same way
the vibration frequency would increase when the strings ar¢hat adding a string to a bow increases its curvature. The fact
added. that the string tension drops is not significant. The main ef-
When a violin or a racquet is strung, there is no visiblefect is that when the frame bends, the string tension develops
bending of the frame. The lowest frequency mode of thea component perpendicular to the axis, and this component
frame of a violin or a tennis racquet is a one-dimensionaknhances the displacement rather than resisting it. As a re-
bending mode, with nodes 10-15 cm from each end. Theult, the frame of a racquet becomes softer rather than stiffer
frequency is about 180 Hz in both cases since racquets anhen the strings are added. The vibration frequency of the
violins have about the same mass and stiffness and comp&ame therefore decreases. If the string tension is large
rable lengths. The above differences in the two cases are d@mough the frequency can even drop to zero, in which case
in part to the factor of about 24 difference in the total tensionthe frame will be statically unstable and will buckle.
force. A violin has four strings at an average tension of about
12 Ib, but a racquet is strung with about 18 strings parallel tq; \/ BRATION OF A UNIFORM BEAM
the long axis, each at a tension of about 60 Ib. An archer’s
bow differs from a violin or a racquet in that the bow is bent The effect of a stretched string on the vibration frequency
before it is strung and it bends a lot further when it is strung.of its support structure is easiest to analyze if one considers a
The drop in frequency when a racquet is strung is counsimple structure such as a rectangular cross-section beam.
terintuitive. However, it is easily explained. In fact, it is the The string may be mounted along the axis of the beam, or off
bow that is harder to explain, at least in words. Any displaceaxis as in a bow, as shown in Fig. 1. The equation of motion
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Fig. 1. Geometry of a simple beam tensioned by a stf@@long the beam ] )
axis or(b) off axis, as in a bow. due to the fact that the string length decreases. If the vibra-

tion amplitude is small, and if the beam is straight in the
equilibrium position, the variation i can be neglected in
for a straight or a curved beam subject to an external tranghe termTan/ds. If we let 9°n/dt>= — w?n then Eq.(2) can

verse forceF, per unit length, has the foriw be expressed in the form
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wherep is the density of the bean# is its cross-sectional whereT acts on a segment near each end of the beam but
area,E is Young’'s modulus| is the area moment of inertia, T=0 for all other segments. For numerical convenience, the
andn is the transverse displacement of the beam at coordbeam was divided into 500 equal segments and the tension
nates along the beam axis. If the equilibrium shape of thewas applied at the 5th and 496th segments so that free
beam has the form of a curved bow, thers the local tan-  boundary conditions could be applied to the segments at each
gential coordinate and is the transverse displacement in a end. A finite difference form of Eq(3) was used to obtain
direction perpendicular ts. Equation(1) is valid only for  the numerical solutions, as described in Ref. 6. The tech-
small values ofn, and is also valid for a curved bow pro- nique used to obtain a solution was to integrate fsoa0 to
vided the radius of curvature is large compared with thes=| , starting with a small displacementand with assumed
transverse dimensions of the beafrFor a uniform beam of  \a1ues of bothw and gn/gs. The latter values were iterated
massM and lengthL, numerical solutions of Eq1) can be until both boundary conditions were satisfiedsatL. The

obtained by dividing the beam inté equal segments each of o _ . )
massm=M/N and separated in thedirection by a distance E)g;:ndary conditions &=0 were used to start the integra

h=L/N. If an external transverse forc&,=Fqh, acts on 4 yhe case of a strung bow, the equilibrium shape of the
any segment, then the equation of motion for that segment iy is determined by the stiffness of the bow and the string
obtained by multiplying all terms in Ed1) by h, in which anqjon. In order to describe small amplitude transverse vi-
case brations of the bow, the external foréein Eq. (2) can be
a2n a*n taken as the additional transverse force exerted on the beam
m—z = F—(Elh) 558 (2) by the string, arising from a small displacement of the beam.
Such a force arises frofa) the change in length of the string
assuming that the beam is uniform so tEaand| are inde- and(b) the change in angle between the string and the bow.
pendent of. If a segment is not subject to an external force,The geometry is shown in Fig. 3. Suppose that the string
then the equation of motion for that segment is given by Eqtension decreases froiy, to T, when the attachment point
(2) with F=0. The boundary conditions at a free end areof the string is displaced a distannen a direction perpen-
given by 9°n/ds’*=0 andd®n/9s®=0. dicular to the bow, as in Fig. 4. If the tangent angle of the
If the beam is perfectly straight and a string is mounted abow at that point increases from to 6,, then
tensionT along thex axis, thenF=0 and there is no equi- . _ Co :
librium bending of the beam. However, if the beam bends F=F2=F1=Tpsin6;~ Ty sind,. @
due to vibration, then the string tension in tkedirection T, is given by
gives rise to a perpendicular force componEnt Taon/ds,
as illustrated in Fig. 2F acts in a direction to assist rather

than oppose the displacement of the beam. During any vibra- T,
tion cycle, asn increasesgn/Js increases, and decreases @~ "TTTTTTToo-- N
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Fig. 2. Fundamental vibration mode of a straight beam tensioned by a string
mounted along the axis of the beam. Fig. 4. Displacement of a bow and the string for small amplitude vibrations.
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91 Table I. Fundamental frequency of a strung, aluminum bow.

~I- 7/ """" . 6, (deg Ls (cm) T, (N) fs (Hz) fp (H2) f (Hz)
~ 4 String
N 25 48.0 66.3 223 114.3 116.8
(a) \___/ 22 49.0 78.5 240 108.1 106.5
19 495 86.1 250 1013 95.0
Piezo 17 50.5 114.7 286 85.1 85.2
12 51.0 154.6 330 60.0 56.9
String 0 52.0 96.9 258 33.3 29.2
® I 1] 0 52.0 0 0 486 486
- 52cm >

Fig. 5. Experimental bow witlia) #,>0 and(b) #,=0.
thin aluminum beam, since the beam can be permanently
distorted by hand and since a nylon tennis string is relatively
To=T;—2KAl, (5)  easy to stretch. The stiffness of the unstrung beam decreased
where k is the spring constant of the string antl  Sightly when the beam was bent into a permanent bow, but
—nsing. is the decrease in lenath of the string at each en this effect was too small to be significant in this experiment.
1 ) gt . 9 dThe fundamental vibration frequency of the free, unstrung,
Whenn is small, sinf,—¢,)=dn/as, in which case straight beam decreased from 48.6 to 46.3 Hz when the beam
an was permanently deformed into a bow. When the beam was
F=T, cos&lE—an Sir? 6. (6)  again straightened, the frequency returned to 48.6 Hz.
The string tension was not measured directly, but it was
For an initially straight beam@;=0 and the transverse calculated from the measured vibration frequency of the
force due to the string is given By=T,dn/Js, as described string, assuming that mass of the string remained fixed, at
above. For a bowkAl is typically much smaller thafi, for ~ 0.70 g, when the string was stretched. The andle, be-
small amplitude vibrations, buf,dn/Js is typically much  tween the string and the bow decreased when the bow was
smaller tharkn. Consequently, the dominant term in £g)  Partially straightened. The string was attached to points 5
is normally the term involving, in which case<0. Inthat MM from the right-angle bends at each end of the bow, as
case, both terms on the right-hand side of E).are nega- Shown in Fig. 5. The anglé, was determined by extrapo-
tive, resulting in an increase in the vibration frequency. For ating to an intersection point of the string and the bow as
bow with a small but finite value of;, both terms on the llustrated in Fig. 5. A summary of the results obtained by
right-hand side of Eq6) may be similar in magnitude arfd th|§ metho'd is given in Table I, V\{het% is the length of the
may even be zero. F=0 then the vibration frequency of a String, fs is the fundamental vibration frequency of the
strung bow is identical to that of the unstrung bow. If thestring, fy is the observed fundamental vibration frequency of
beam is straight in the equilibrium position th&w0 and the beam, and is the theoretically predicted funcjamental
the effect of the string is to reduce the vibration frequency. frequency of the beam. The result@t=0 was obtained by
re-stringing the beam a second time at a lower tension, since
IIl. EXPERIMENTAL RESULTS the original tension was too high and caused the beam to
buckle at smallg;. At sufficiently high tension, a straight
In order to test the effect of stringing a beam, a simplebeam will become statically unstable against bending. If the
experiment was set up as shown in Fig. 5. An aluminunright-hand side of Eq(2) becomes positive, then any small
beam was chosen, of length 58 cm, widbth-25.4mm, displacement of the beam will grow with time. In practice,
thicknessh=3.0mm, and mass=118g. A 3 cm length at buckling ceases when the beam bends far enough to assume
each end was bent at right angles to provide a support to ti@ New equilibrium position. This situation is similar to the
a string, giving an effective beam length-52 cm. The fun-  buckling of a column under compressibn.
damental vibration frequency of the beam, without being ten- The most interesting results in Table | are thak the
sioned by a string, but suspended freely by a length of stringvibration frequency of the beam increased by a large factor
was 48.6 Hz. It was determined by taping a light piezo diskVhen the beam was strung as a bdt, the vibration fre-
to the middle of the beam, and tapping the beam with glUéncy of the beam decreased back 'goward the unstrung
finger to excite beam vibrations. The output from the piezo_beam frequency as the beam was straightened, despite the
was fed to a storage oscilloscope to record the transient, higRCrease in string tension, aiid the frequency of the strung
Q, damped oscillations. bow is less than Fhat of the unstrung bow w@ﬁc 0. These
The beam was then tensioned using a length of 1.30-mni€sults are consistent with numerical solutions of E@s,
diam nylon tennis string, of linear mass density, 1.50 g/m(3), and (6). Solutions obtained for an aluminum beam of
Under tension, and with a string length of 48 cm, the beamengthL=>52cm, massV=118g, withEl=3.09kgnf are
bent into an arc like a bow. As a result, the fundamentashown in Table I. The value dl was chosen to fit the data
vibration frequency of the beam increased to 114.3 Hz. Théor the unstrung beam. The value bfused in the calcula-
fundamental vibration frequency of the string was measuretions was 2.X10* N m™%, corresponding to the measured
separately, by plucking the string, to be 223 Hz. value of the nylon string. A nylon string has a nonlinear
Measurements at other string tensions were made by plastress versus strain curve, but it remains approximately linear
tically deforming the beam to a straighter shape by handat tensions in the range shown in Table I. A nylon tennis
thereby reducing its curvature and increasing the stretchestring enters the nonlinear region in the normal operating
length of the string. This procedure is relatively easy with arange of tensions from about 250 to 400 N. As shown in
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- EEEEE R A S R e a violin. The relatively small increase in the mode frequen-

100 F 3 cies for a violin can therefore be attributed to the low string

C ] tension and the high initial frame stiffness. A calculation for
8o - steel strings of length 42 cm, diameter 0.7 mm, and stiffness

) soF 3 k=2x10° Nm ! indicates that the fundamental frequency

“ C - ] of a violin might increase from 180 Hz at =0 to 195 Hz at

40 / Unstrung bow - T,=200N. This is larger than observed, but the geometry is
20 E E considerably more complex than a simple bow, and is com-

C ] plicated by the additional transverse force applied at the

0 bbb b s b bridge.
5 10 15 20 25 Real bow& are not as simple as the idealized bow used in
61 (degrees) this experiment. The shape of most modern bows resembles
a single-cycle cos function and the string is mounted almost
tangentially at the ends with, close to zero. Nevertheless,
the fundamental vibration frequency increases by a large fac-
tor when the bow is strung. This type of bow would require
) ) - a more sophisticated analysis than presented above to take
Table I, the beam frequency is quite sensitivegio so that  nto account the stress distribution within the bow.
small errors in the measurement®f would be sufficient to
account for the differences between the measured and calc@electronic mail: cross@physics.usyd.edu.au
lated frequencies. IN. H. Fletcher and T. D. Rossing;he Physics of Musical Instruments
In Table I, the angle and the tension both change. Figure (Springer-verlag, New York, 1991pp. 271-272. _
shows theoretical calculations of the beam frequency as aM: A B. Winding and M. H. Moeinzadeh, “Finite element modeling of a
function of ¢, at two different tensions. It can be seen that tennis racket with variable string patterns and tensions,” Int. J. Sports
. . Biomech.6, 78—91(1990.
whenT;=50N, there is no change in the frequency of the %K. F. Graff, Wave Motion in Elastic SolidéOxford U.P., Oxford, 1975
bow if 8, is about 6°. AtT; =100 N, the same resultis found pp. 140-210.
at #,~8°. This result follows from Eq(6), which shows  “W. Goldsmith,Impact(Arnold, London, 1960 pp. 108—129.
thatEF=0 at a certain&l, where 6, depends on the string 5G. Vandegr'ift, ::Transverse bending waves and the breaking broomstick
tension and the stiffness of the string. This effect does no'regemconsuat"‘?”' Atm'fJ' ngﬁ%' _?:5—561?(1997).k o AmL 3. PGZ
account for the fact that the mode frequencies of a violin go, 7% (J0Pa¢t o1 & BT W & DAL OF TACKEL - Am. = L.
fra,me do not depend significantly on the string te_nS|on._ T,he7S. P. Timoshenko and D. H. Younglements of Strength of Materials
strings are mounted at an angle of about 10° in a violin. (yan Nostrand, New York, 1968pp. 268—293.
Since the strings are relatively stiff and at a relatively low sy, c. Marlow, “Bow and arrow dynamics,” Am. J. Phy9, 320-333
tension, the angle at whidh=0 will be less than about 2°in  (1981.
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Fig. 6. Numerical solutions showing the vibration frequency of the experi-
mental bow as a function adf; whenT,;=50N orT,=100 N.
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