
Why bows get stiffer and racquets get softer when the strings are added
Rod Crossa)

Physics Department, University of Sydney, Sydney NSW 2006, Australia

~Received 31 October 2000; accepted 13 March 2001!

The frame of a string instrument is subject to a large tension force when the strings are installed.
Intuitively, one might expect that the frame would be stiffened by the strings. Experimental data and
a theoretical analysis are presented to show that this is not generally the case. An archer’s bow is
much stiffer when it is strung, but a tennis racquet is softened when the strings are added. As a
result, the mode frequencies for transverse vibrations increase for a bow and decrease for a racquet
when the strings are added. The effect of the strings depends on the extent to which the frame is bent
at equilibrium. © 2001 American Association of Physics Teachers.
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I. INTRODUCTION

There are many types of instruments fitted with strin
including violins, pianos, racquets, and bows used to sh
arrows. The physics of the strings is well understood, but
physics of the support frame is much more complex. T
frame has its own characteristic set of vibration mod
which generally enhance the performance of the instrum
but sometimes generate annoying resonances with the st
in musical instruments.1 An interesting question, but one tha
rarely seems to arise, is whether the mode frequencies o
frame depend on the string tension. One might expect
the frame would be stiffened by the strings, leading to
increase in the mode frequencies of the frame. Experim
conducted by the author indicate that the mode frequen
of a violin frame increase by less than 1% when the str
tension is increased from zero to normal tension. Howe
this is not typical of all devices fitted with strings. When
string is added to an archer’s bow the fundamental vibra
frequency of the bow increases by a factor of about 3 o
An even more surprising result is that the fundamental vib
tion frequency of the frame of a tennis racquetdecreasesby
about 10% when the strings are added, depending on
stiffness of the frame and the string tension. This is not s
ply due to the additional mass of the strings, about 15
which would account for a drop in frequency of only abo
2%. The author could find only one article2 in the literature
relevant to this observation. The authors used a finite
ment model of the racquet and predicted~incorrectly! that
the vibration frequency would increase when the strings
added.

When a violin or a racquet is strung, there is no visib
bending of the frame. The lowest frequency mode of
frame of a violin or a tennis racquet is a one-dimensio
bending mode, with nodes 10–15 cm from each end.
frequency is about 180 Hz in both cases since racquets
violins have about the same mass and stiffness and com
rable lengths. The above differences in the two cases are
in part to the factor of about 24 difference in the total tens
force. A violin has four strings at an average tension of ab
12 lb, but a racquet is strung with about 18 strings paralle
the long axis, each at a tension of about 60 lb. An arch
bow differs from a violin or a racquet in that the bow is be
before it is strung and it bends a lot further when it is stru

The drop in frequency when a racquet is strung is co
terintuitive. However, it is easily explained. In fact, it is th
bow that is harder to explain, at least in words. Any displa
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ment of an unstrung bow from its equilibrium position ge
erates a restoring force arising from bending of the bow. T
bow will have a certain stiffness or spring constant. Wh
the bow is strung, it assumes a new shape where the ten
force in the string is balanced by the stiffness of the bo
Any displacement of the bow from the new equilibrium p
sition involves a change in length of the string. For examp
if an external force is applied toreducethe curvature of the
bow, an extra force is required to stretch the string. If
external force is applied toincreasethe curvature of the bow
then one might think that the string will help here, and t
task will be relatively easy. However, in this case the str
tension drops so the string offers less assistance, not m
The situation can be compared with the case of a hel
spring that is compressed axially by means of a str
mounted along the axis of the spring and tied under tens
to each end. In that case, the spring constant of the syste
the sum of the spring constants of the spring and the str
The string therefore acts to stiffen the spring. The geome
of a strung bow is different, but the effect of the string is
stiffen the bow, as described in more detail below.

When a tennis racquet is strung, there is no change in
equilibrium curvature of the frame since the tension is a
plied along the main axis and the racquet remains straigh
an external force is applied to bend the frame in a direct
perpendicular to the axis, then the strings parallel to the a
are shortened and the tension drops. However, the main
fect of the strings is that they assist the external force, res
ing in a larger displacement of the frame, in the same w
that adding a string to a bow increases its curvature. The
that the string tension drops is not significant. The main
fect is that when the frame bends, the string tension deve
a component perpendicular to the axis, and this compon
enhances the displacement rather than resisting it. As a
sult, the frame of a racquet becomes softer rather than st
when the strings are added. The vibration frequency of
frame therefore decreases. If the string tension is la
enough the frequency can even drop to zero, in which c
the frame will be statically unstable and will buckle.

II. VIBRATION OF A UNIFORM BEAM

The effect of a stretched string on the vibration frequen
of its support structure is easiest to analyze if one conside
simple structure such as a rectangular cross-section be
The string may be mounted along the axis of the beam, or
axis as in a bow, as shown in Fig. 1. The equation of mot
907ajp/ © 2001 American Association of Physics Teachers
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for a straight or a curved beam subject to an external tra
verse force,F0 per unit length, has the form3–5

rA
]2n

]t2 5F02
]2

]x2 S EI
]2n

]s2 D , ~1!

wherer is the density of the beam,A is its cross-sectiona
area,E is Young’s modulus,I is the area moment of inertia
andn is the transverse displacement of the beam at coo
nates along the beam axis. If the equilibrium shape of t
beam has the form of a curved bow, thens is the local tan-
gential coordinate andn is the transverse displacement in
direction perpendicular tos. Equation~1! is valid only for
small values ofn, and is also valid for a curved bow pro
vided the radius of curvature is large compared with
transverse dimensions of the beam.3,4 For a uniform beam of
massM and lengthL, numerical solutions of Eq.~1! can be
obtained by dividing the beam intoN equal segments each o
massm5M /N and separated in thes direction by a distance
h5L/N. If an external transverse force,F5F0h, acts on
any segment, then the equation of motion for that segme
obtained by multiplying all terms in Eq.~1! by h, in which
case

m
]2n

]t2 5F2~EIh!
]4n

]s4 , ~2!

assuming that the beam is uniform so thatE and I are inde-
pendent ofs. If a segment is not subject to an external forc
then the equation of motion for that segment is given by
~2! with F50. The boundary conditions at a free end a
given by]2n/]s250 and]3n/]s350.

If the beam is perfectly straight and a string is mounted
tensionT along thex axis, thenF50 and there is no equi
librium bending of the beam. However, if the beam ben
due to vibration, then the string tension in thex direction
gives rise to a perpendicular force componentF5T]n/]s,
as illustrated in Fig. 2.F acts in a direction to assist rathe
than oppose the displacement of the beam. During any vi
tion cycle, asn increases,]n/]s increases, andT decreases

Fig. 1. Geometry of a simple beam tensioned by a string~a! along the beam
axis or ~b! off axis, as in a bow.

Fig. 2. Fundamental vibration mode of a straight beam tensioned by a s
mounted along the axis of the beam.
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due to the fact that the string length decreases. If the vib
tion amplitude is small, and if the beam is straight in t
equilibrium position, the variation inT can be neglected in
the termT]n/]s. If we let ]2n/]t252v2n then Eq.~2! can
be expressed in the form

]4n

]s4 5S mv2

EIh Dn1S T

EIhD ]n

]s
, ~3!

whereT acts on a segment near each end of the beam
T50 for all other segments. For numerical convenience,
beam was divided into 500 equal segments and the ten
was applied at the 5th and 496th segments so that
boundary conditions could be applied to the segments at e
end. A finite difference form of Eq.~3! was used to obtain
the numerical solutions, as described in Ref. 6. The te
nique used to obtain a solution was to integrate froms50 to
s5L, starting with a small displacementn and with assumed
values of bothv and]n/]s. The latter values were iterate
until both boundary conditions were satisfied ats5L. The
boundary conditions ats50 were used to start the integra
tion.

In the case of a strung bow, the equilibrium shape of
bow is determined by the stiffness of the bow and the str
tension. In order to describe small amplitude transverse
brations of the bow, the external forceF in Eq. ~2! can be
taken as the additional transverse force exerted on the b
by the string, arising from a small displacement of the bea
Such a force arises from~a! the change in length of the strin
and~b! the change in angle between the string and the b
The geometry is shown in Fig. 3. Suppose that the str
tension decreases fromT1 to T2 when the attachment poin
of the string is displaced a distancen in a direction perpen-
dicular to the bow, as in Fig. 4. If the tangent angle of t
bow at that point increases fromu1 to u2 , then

F5F22F15T2 sinu22T1 sinu1 . ~4!

T2 is given by

ng

Fig. 3. Fundamental vibration mode of a bow, showing a small displa
ment of the bow from its equilibrium position.

Fig. 4. Displacement of a bow and the string for small amplitude vibratio
908Rod Cross
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T25T122kD l , ~5!

where k is the spring constant of the string andD l
5n sinu1 is the decrease in length of the string at each e
Whenn is small, sin(u22u1)5]n/]s, in which case

F5T1 cosu1

]n

]s
22kn sin2 u1 . ~6!

For an initially straight beam,u150 and the transvers
force due to the string is given byF5T1]n/]s, as described
above. For a bow,kD l is typically much smaller thanT1 for
small amplitude vibrations, butT1]n/]s is typically much
smaller thankn. Consequently, the dominant term in Eq.~6!
is normally the term involvingk, in which caseF,0. In that
case, both terms on the right-hand side of Eq.~2! are nega-
tive, resulting in an increase in the vibration frequency. Fo
bow with a small but finite value ofu1 , both terms on the
right-hand side of Eq.~6! may be similar in magnitude andF
may even be zero. IfF50 then the vibration frequency of
strung bow is identical to that of the unstrung bow. If t
beam is straight in the equilibrium position thenF.0 and
the effect of the string is to reduce the vibration frequenc

III. EXPERIMENTAL RESULTS

In order to test the effect of stringing a beam, a sim
experiment was set up as shown in Fig. 5. An alumin
beam was chosen, of length 58 cm, widthb525.4 mm,
thicknessb53.0 mm, and massM5118 g. A 3 cm length at
each end was bent at right angles to provide a support to
a string, giving an effective beam lengthL552 cm. The fun-
damental vibration frequency of the beam, without being t
sioned by a string, but suspended freely by a length of str
was 48.6 Hz. It was determined by taping a light piezo d
to the middle of the beam, and tapping the beam with
finger to excite beam vibrations. The output from the pie
was fed to a storage oscilloscope to record the transient,
Q, damped oscillations.

The beam was then tensioned using a length of 1.30-m
diam nylon tennis string, of linear mass density, 1.50 g
Under tension, and with a string length of 48 cm, the be
bent into an arc like a bow. As a result, the fundamen
vibration frequency of the beam increased to 114.3 Hz. T
fundamental vibration frequency of the string was measu
separately, by plucking the string, to be 223 Hz.

Measurements at other string tensions were made by p
tically deforming the beam to a straighter shape by ha
thereby reducing its curvature and increasing the stretc
length of the string. This procedure is relatively easy with

Fig. 5. Experimental bow with~a! u1.0 and~b! u150.
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thin aluminum beam, since the beam can be permane
distorted by hand and since a nylon tennis string is relativ
easy to stretch. The stiffness of the unstrung beam decre
slightly when the beam was bent into a permanent bow,
this effect was too small to be significant in this experime
The fundamental vibration frequency of the free, unstru
straight beam decreased from 48.6 to 46.3 Hz when the b
was permanently deformed into a bow. When the beam
again straightened, the frequency returned to 48.6 Hz.

The string tension was not measured directly, but it w
calculated from the measured vibration frequency of
string, assuming that mass of the string remained fixed
0.70 g, when the string was stretched. The angle,u1 , be-
tween the string and the bow decreased when the bow
partially straightened. The string was attached to point
mm from the right-angle bends at each end of the bow,
shown in Fig. 5. The angleu1 was determined by extrapo
lating to an intersection point of the string and the bow
illustrated in Fig. 5. A summary of the results obtained
this method is given in Table I, whereLs is the length of the
string, f s is the fundamental vibration frequency of th
string, f b is the observed fundamental vibration frequency
the beam, andf is the theoretically predicted fundament
frequency of the beam. The result atu150 was obtained by
re-stringing the beam a second time at a lower tension, s
the original tension was too high and caused the beam
buckle at smallu1 . At sufficiently high tension, a straigh
beam will become statically unstable against bending. If
right-hand side of Eq.~2! becomes positive, then any sma
displacement of the beam will grow with time. In practic
buckling ceases when the beam bends far enough to ass
a new equilibrium position. This situation is similar to th
buckling of a column under compression.7

The most interesting results in Table I are that~a! the
vibration frequency of the beam increased by a large fac
when the beam was strung as a bow,~b! the vibration fre-
quency of the beam decreased back toward the unst
beam frequency as the beam was straightened, despite
increase in string tension, and~c! the frequency of the strung
bow is less than that of the unstrung bow whenu150. These
results are consistent with numerical solutions of Eqs.~2!,
~3!, and ~6!. Solutions obtained for an aluminum beam
lengthL552 cm, massM5118 g, withEI53.09 kg m2 are
shown in Table I. The value ofEI was chosen to fit the dat
for the unstrung beam. The value ofk used in the calcula-
tions was 2.13104 N m21, corresponding to the measure
value of the nylon string. A nylon string has a nonline
stress versus strain curve, but it remains approximately lin
at tensions in the range shown in Table I. A nylon ten
string enters the nonlinear region in the normal operat
range of tensions from about 250 to 400 N. As shown

Table I. Fundamental frequency of a strung, aluminum bow.

u1 ~deg! Ls ~cm! T1 ~N! f s ~Hz! f b ~Hz! f ~Hz!

25 48.0 66.3 223 114.3 116.8
22 49.0 78.5 240 108.1 106.5
19 49.5 86.1 250 101.3 95.0
17 50.5 114.7 286 85.1 85.2
12 51.0 154.6 330 60.0 56.9
0 52.0 96.9 258 33.3 29.2
0 52.0 0 0 48.6 48.6
909Rod Cross
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Table I, the beam frequency is quite sensitive tou1 , so that
small errors in the measurement ofu1 would be sufficient to
account for the differences between the measured and c
lated frequencies.

In Table I, the angle and the tension both change. Figu
shows theoretical calculations of the beam frequency a
function of u1 at two different tensions. It can be seen th
when T1550 N, there is no change in the frequency of t
bow if u1 is about 6°. AtT15100 N, the same result is foun
at u1;8°. This result follows from Eq.~6!, which shows
that F50 at a certainu1 , whereu1 depends on the string
tension and the stiffness of the string. This effect does
account for the fact that the mode frequencies of a vio
frame do not depend significantly on the string tension. T
strings are mounted at an angle of about 10° in a vio
Since the strings are relatively stiff and at a relatively lo
tension, the angle at whichF50 will be less than about 2° in

Fig. 6. Numerical solutions showing the vibration frequency of the exp
mental bow as a function ofu1 whenT1550 N or T15100 N.
910 Am. J. Phys., Vol. 69, No. 8, August 2001
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a violin. The relatively small increase in the mode freque
cies for a violin can therefore be attributed to the low stri
tension and the high initial frame stiffness. A calculation f
steel strings of length 42 cm, diameter 0.7 mm, and stiffn
k523105 N m21 indicates that the fundamental frequen
of a violin might increase from 180 Hz atT150 to 195 Hz at
T15200 N. This is larger than observed, but the geometr
considerably more complex than a simple bow, and is co
plicated by the additional transverse force applied at
bridge.

Real bows8 are not as simple as the idealized bow used
this experiment. The shape of most modern bows resem
a single-cycle cos function and the string is mounted alm
tangentially at the ends withu1 close to zero. Nevertheless
the fundamental vibration frequency increases by a large
tor when the bow is strung. This type of bow would requ
a more sophisticated analysis than presented above to
into account the stress distribution within the bow.

a!Electronic mail: cross@physics.usyd.edu.au
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