
Introduction

The speed of a tennis court is of interest to players, to
administrators of the game and to people involved in
the construction and purchase of tennis courts, but it
is a parameter that has proved difficult to measure on a
routine basis. The International Tennis Federation
(ITF) has sponsored the development of a device
called the Sestee or Surface Pace Rating Apparatus
(ITF, 1977) to measure court speed, which functions

by projecting a tennis ball onto a surface and uses
infrared beams to monitor the incident and rebound
speeds and angles. The Sestee device costs around
$50 000 and it is not sufficiently simple or portable to
be used routinely by tennis clubs. It requires a trained
person to operate it. For these reasons, the ITF has
also sponsored the development of a simpler and
cheaper device called the Haines Pendulum which can
be used to measure the coefficient of friction between
a tennis ball and a court surface. The ball is mounted
on the end of a pendulum, brushes against the court at
the bottom of its swing and rises to a height that
depends on the coefficient of friction. The Australian
and United States Tennis Associations are investigat-
ing the use of a commercial device called a Tortus to
measure the coefficient of friction between a rubber
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Abstract

Tennis courts are normally classified as fast or slow depending on whether the coefficient of
sliding friction (COF) between the ball and the surface is respectively small or large. This classifi-
cation is based on the fact that the change in horizontal ball speed is directly proportional to the
COF if the ball is incident at a small angle to the horizontal. At angles of incidence greater than
about 16° it is commonly assumed that the ball will roll during the bounce, in which case one can
show that the ratio of the horizontal speed after the bounce to that before the bounce will be
0.645 regardless of the angle of incidence or the speed of the court. Measurements are presented
showing that (a) at high angles of incidence, tennis balls grip or ‘bite’ the court but they do not roll
during the bounce, (b) the bounce:speed ratio can be as low as 0.4 on some courts and (c) the
normal reaction force acts through a point ahead of the centre of mass. An interesting conse-
quence is that, if court A is faster than court B at low angles of incidence, then A is not necessarily
faster than B at high angles of incidence. An exception is a clay court which remains slow at all
angles of incidence. The measurements also show that the coefficient of restitution for a tennis
ball can be as high as 0.9 for an oblique bounce on a slow court, meaning that the ball bounces like
a superball in the vertical direction and that slow courts are fast in the vertical direction. 
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pad and the court surface but it works reliably only on
relatively smooth surfaces and is not suitable for meas-
urements on grass or clay, or acrylic surfaces with
small ridges. Measurements of court speed in this
paper were obtained by filming the bounce of a ball
with a video camera. This provides a measurement of
court speed in both the vertical and horizontal direc-
tions (as does the Sestee) and it is the only technique
currently available to measure the spin of the ball. An
additional advantage of this technique is that it can be
used by anyone with access to a digital video camera
and a computer with a video card.

In tennis, the horizontal component of the ball
velocity is usually much larger than the vertical
component. The horizontal speed of a ball decreases
suddenly when the ball bounces, by an amount that
depends on several factors, including the angle of
incidence, the type of court surface and the rate at
which the ball is spinning when it hits the surface.
Tennis courts can be classified as fast or slow,
depending on whether the coefficient of sliding
friction (COF) between the ball and the court is
respectively small or large. The COF on a fast grass
court is about 0.6 while the COF on a clay court is
typically about 0.8. Grass is the fastest court used for
major tennis tournaments and clay is the slowest.

An additional factor determining the playing char-
acteristics of a court surface is the coefficient of
restitution (COR), defined as the ratio of the vertical
component of the rebound speed to the vertical
component of the incident speed. The COR affects
the bounce height off the court and it also affects the
rebound angle and the change in horizontal speed
during the bounce. The latter effect is due to an
increase in the normal reaction force if the COR is
larger, and hence the friction force is also larger. The
rules of tennis specify that a ball dropped from a
height of 100 inches (2540 mm) onto a hard surface
such as concrete must bounce to a height between 53
and 58 inches (1350–1470 mm). This translates to a
COR of 0.745 ± 2.3%. It is well known that the COR
decreases as the incident ball speed increases (Brody,
1979; Casolo et al., 1994; Cross, 1999) or if the ball is
dropped onto a soft inelastic surface such as carpet or
grass. The decrease in the COR with ball speed is in
fact not of much relevance for a fast serve, since the
vertical component of the ball speed at impact is

typically about the same as that for a vertical 100 inch
drop. Less well known but of greater significance is
the fact that the COR increases under some condi-
tions for an oblique angle impact. At ball speeds and
angles typical of those for a fast serve, the COR on
grass varies from about 0.6 to about 0.9, depending on
the condition of the surface. The corresponding COR
for an oblique impact on clay varies from about 0.8 to
about 0.9. Since the bounce height is proportional to
the COR squared, a ball can bounce higher off a clay
court than a grass court by a factor of
(0.85/0.6)2 = 2.0, and by an even larger factor if a ball
is hit with topspin, since the ball is usually incident at a
greater vertical speed when hit with topspin.

The modern game of professional tennis is played
at a much faster pace than in the pre–1970s wood
racquet era, due to technical advances in racquet
design and to the increased strength, fitness and
height of modern players. This is especially noticeable
on fast courts. For example, the average first serve
speed for men competing at Wimbledon is about
185 km h–1 (115 mile/h) while the average first serve
speed for men competing at the French Open is only
160 km h–1 (Haake et al., 2000). The court itself has no
effect on the speed at which a player can serve the ball,
but most players reduce their serve speed when
playing on clay in order to impart more spin to the
ball. An interesting question is whether players base
this choice on the horizontal speed of the court or on
the vertical speed (i.e. the COR), or on a combination
of both factors. In this paper, the main emphasis is to
identify those factors that have the greatest influence
on the horizontal and vertical speed of the court. It is
shown that the simplified bounce model described by
Brody (1984) accounts for the behaviour of a ball
incident at low angles, but the model is unsatisfactory
at higher angles of incidence. Brody’s model indicates
that at large angles of incidence the change in hori-
zontal speed of a ball should be the same for all courts.
This is not consistent with the experimental data
presented below.

Surface pace and the Brody bounce model

Consider a spherical ball of mass m, radius R and
moment of inertia I = αmR2. For a thin spherical shell,
α = 2/3 but for a tennis ball of outer radius 33 mm and
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wall thickness 6 mm, α = 0.55. We consider a situation
where the ball is incident at speed v1, at an angle θ1 and
at angular speed ω1 on a horizontal surface, as shown
in Figure 1. It can be assumed that the mass of the
surface is infinite and that the impact force is much
larger than the gravitational force. As shown by Brody
(1984), the ball will slide throughout the bounce if θ1 is
sufficiently small, in which case 

= 1 − µ(1 + e) tan θ1 (1)

where µ is the coefficient of sliding friction, vx is the
velocity component in a direction parallel to the
surface, subscripts 1 and 2 denote values before and
after the bounce respectively, and e = vy2/vy1 is the
coefficient of restitution. The time taken for the ball
to reach the player after it bounces therefore depends
on a number of factors, but it is independent of the
initial ball spin if the ball slides throughout the
bounce. The effect of the court on the change in hori-
zontal ball speed depends primarily on µ but it also
depends to a small extent on e. In the remainder of this
paper µ will be regarded loosely as a measure of the
speed of the court, but the speed at any given value of
θ1 will be quantified in terms of the ratio vx2 /vx1. It is
shown below that this ratio is a more generally
relevant measure of court speed since (a) it is directly
related to the horizontal speed of the ball and (b) when
the angle of incidence is greater than about 20°, the
standard definition of court pace does not provide a
valid indication of the change in horizontal ball speed.

It can be seen from Eqn. (1) that at low angles of
incidence the reduction in the horizontal speed of the

vx2

vx1

ball is directly proportional to µ, hence courts with a
low value of µ are fast and courts with a high value of µ
are slow. It is on this basis that the ITF has adopted a
definition of court speed or ‘pace’ that is based on the
COF. The pace rating is defined by the relation (ITF,
2000) 

Pace = 100 [1 − ] (2) 

This definition reduces to Pace = 100(1 − µ) if the ball
slides throughout the bounce. A court with a Pace
rating less than about 30 is classified as slow and a
court with Pace greater than about 40 is classified as
fast. The ITF (2002) defines slow as 0–35, medium as
30–45 and fast as > 40. In order to standardise and
simplify Pace measurements, the ITF has adopted a
procedure whereby the bounce of a tennis ball is
measured for a ball projected from a ball launcher
without spin at v1 = 30 m s−1 and θ1 = 16°. Such a meas-
urement yields a value for e and it also yields a value of
µ if the ball slides throughout the bounce. The ball
will slide throughout the bounce if µ is small enough
but it is unlikely to do so if µ is larger than about 0.8.

The condition for the ball to slide throughout the
bounce is given by Rω2 < vx2 , which yields the result
(Cross, 2002b) that 

µ < + (3)

where S = Rω1/vx1 is a dimensionless spin parameter
and D is the distance between the line of action of the
normal reaction force, N, and the centre of mass (CM)
of the ball. It is assumed that D > 0 if N acts ahead of
the CM as shown in Figure 1. If a rigid ball bounces
on a rigid surface then D = 0 since there is only one
point of contact between the ball and the surface,
directly below the CM. However there are many
points of contact when a flexible ball bounces and the
distribution of N is not necessarily symmetric about
the centre of the contact area. For example, any ball
that rolls on a horizontal surface with vx = Rω will
eventually come to rest due to the fact that the coeffi-
cient of rolling friction is not exactly zero. N must
then act ahead of the CM in order to generate a torque
so that ω decreases when vx decreases. This situation
can arise if the ball and/or the surface on which it rolls
is deformed asymmetrically (Hierrezuelo et al., 1995).

D
(1 + α) R

1 − S
(1 + 1/α) (1 + e) tan θ1

(vx1 − vx2)
(1 + e)vy1
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Alternatively, the deformation may remain symmetric
but the force distribution will be asymmetric if there
are hysteresis losses in the ball (Tabor, 1994).

The bottom of a bouncing ball will come to rest on
the surface during the bounce if at any time vx = Rω.
Brody (1984) assumed that the ball would then start to
roll and the friction force would drop instantaneously
to zero. Since there is no further change in spin or
horizontal speed if the friction force is zero, the final
speed and spin of the ball are independent of the time
at which the ball starts to roll and they are therefore
independent of µ. In that case vx2 would be given by
vx2 = Rω2 = 0.645vx1, regardless of the speed of the
court.

The condition for a ball to enter a rolling mode is
obtained by reversing the inequality in Eqn. (3). For
example, if e = 0.75, D = 0 and ω1 = 0 then Eqn. (3)
indicates that the ball will enter a rolling mode if
µ > 0.203/tan θ1. For the standard θ1 = 16° ITF pace
test, rolling will commence if µ > 0.71. If e = 0.85, then
rolling will commence if µ > 0.67. Under the standard
test conditions and on courts with µ above 0.71, the
Brody bounce model indicates that there should be no
difference in the vx2 = vx1 ratio and very little difference
in Pace. If there are differences in Pace, then Eqn. (2)
indicates that they can arise only from differences in
the values of the COR. It is shown in the present
paper that relatively large differences in Pace are
observed on courts with µ > 0.7, since tennis balls do
not roll when they bounce, and they do not bounce
with D = 0. 

Effects due to finite D

In Brody’s model there is no deformation of the ball or
the surface on which it bounces. In reality, the
situation is complicated by deformation of the ball and
by possible deformation of the surface. As a result, the
normal reaction force does not necessarily act through
the centre of the ball. If we assume that D is finite as in
Figure 1 then conservation of angular momentum
about a point at the bottom of the ball is described by
the relation

Iω1 + mRvx1 − mDvy1 = Iω2 + mRvx2 + mDvy2 (4) 

Here and elsewhere in this paper the sign of vy1 is
reversed so that vy1 is positive if the ball is incident in

the negative y direction. Equation (4) allows D to be
determined from measurements of the speed and spin
of the ball before and after the bounce. Measurements
described below indicate that D is typically about
4 mm for a low speed bounce but it can be as large as
11 mm when a ball impacts obliquely at high speed on
a clay court.

A qualitative explanation for the finite positive
value of D can be found by comparing the bounce of a
ball with the behaviour of a vehicle when the brakes
are applied. Friction on the wheels generates a torque
about the centre of mass which results in rotation of
the vehicle and a consequent shift of the weight
forwards. The additional force on the front wheels
provides a restoring torque and prevents the vehicle
spinning like a ball. The weight of a ball is neglible
compared with the normal reaction force but the front
edge of the ball is forced down onto the surface as the
ball rotates while the back edge rises upwards. While
the ball is compressing, the front edge of the ball
moves into the surface at a greater speed than the rear,
the entry speed being a combination of the transla-
tional and rotational speeds. While the ball is rising up
off the surface, the rear edge rises faster than the front
edge. The amount of compression experienced by the
ball depends on the local ball speed rather than its
weight. Consequently, the normal reaction force will
be larger at the front of the ball than at the rear,
during the whole bounce period. Hysteresis losses in
the rubber will also contribute to a shift in the normal
reaction force. When an automobile tyre rolls, it is
compressed at the front edge and expands at the rear
edge. As a result of hysteresis, the force at the front
edge is larger than the force at the rear, resulting in a
shift in the line of action of the normal reaction force
towards the front of the tyre (Tabor, 1994).

On a non-deformable surface such as concrete, a
positive value of D has no direct effect on the horizon-
tal speed of the ball (since N acts in the vertical
direction) but it acts to decrease the total torque on the
ball so the ball spin is reduced. As a result, the ball can
slide throughout the bounce over an extended range of
values of θ1. For example, suppose that e = 0.75 and
ω1 = 0. Then Eqn. (3) indicates that the ball will slide
throughout the bounce if µ < 0.203/tan θ1 + 0.645D/R.
For the standard ITF pace test and D/R = 0.1, the ball
will slide throughout the bounce if µ < 0.77.
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A ball that bounces with finite D can bounce at a
lower horizontal speed than one that bounces with
D = 0, depending on the values of µ and θ1. If µ and θ1

are both relatively small then the ball will slide
throughout the bounce regardless of the value of D, in
which case vx2 /vx1 will depend on µ according to Eqn.
(1), but it will not depend on D. Conversely, if µ and θ1

are both relatively large then the ball will commence
rolling or biting during the bounce, in which case
vx2/vx1 will depend on D but it will not depend on µ,
unless D itself is a function of µ. 

Effects due to biting
Real balls are not rigid and do not roll when they
bounce. Instead, the bottom of the ball grips or bites
the surface when vx = Rω. Instead of dropping instanta-
neously to zero, the friction force drops slowly to zero
and then reverses direction when the ball bites, as
shown by Cross (2002b). This effect is due to the fact
that the bottom of the ball vibrates in a horizontal
direction when it bites the surface, with a period that
depends on the local tangential stiffness of the ball in
the contact region. For a tennis ball, the horizontal
vibration period is about 5 ms. The ball also vibrates in
the vertical direction when it bounces but it bounces off
the surface after one half period of oscillation (about
5 ms). A simple model describing these effects for a golf
ball is given by Gobush (1994), and a detailed numerical
solution is described by Maw et al. (1976; 1981).

Real balls bounce with Rω2 > vx2 under conditions
where the inequality in Eqn. (3) is reversed. For a
tennis ball, Rω2/vx2 is typically between 1.0 and 1.3
when the ball bites the surface. This is not radically
different from the case where a ball rolls and hence
experimental results for a tennis ball are qualitatively
consistent with the simpler Brody model. The differ-
ence between a ball that rolls and a ball that bites is of
greater significance if the ball stores a significant
amount of elastic energy due to horizontal deforma-
tion and if that energy is recovered during the bounce.
Such an effect is particularly evident in the case of a
superball but it is of less significance for a tennis ball.
Consequently one can treat biting and rolling as
roughly equivalent for a tennis ball.

The bounce of a ball under any condition is com-
pletely determined from measurements of speed, angle
and spin before and after the bounce. Alternatively, the

bounce can be completely specified in terms of the
measured values of the vertical and horizontal coeffi-
cients of restitution, together with a measurement of
D, all three quantities being derived directly from
measurements of speed, angle and spin. The vertical
coefficient, e, is defined above and the horizontal coef-
ficient, ex, can be defined by the relation

ex = − (5)

where vx − Rω is the horizontal speed of a point at the
bottom of the ball. This definition yields the result
that ex = 1 for a perfectly elastic ball with no energy
losses. For such a ball, the speed of the ball at the point
of contact with the surface is reversed by the bounce,
in both the vertical and horizontal directions. By
contrast, if a ball enters a rolling mode during the
bounce then the point of contact comes to rest in the
horizontal direction and then ex = 0.

Unlike e, ex can be positive or negative. The value
of ex characterises the bounce, as follows:

ex = –1 frictionless surface vx2 = vx1

ω2 = ω1

–1 < ex < 0 ball slides throughout bounce Rω2 < vx2

ex = 0 ball rolls Rω2 = vx2

0 < ex < 1 ball grips or ‘bites’ the surface Rω2 > vx2

ex = 1 all elastic energy recovered Rω2 > vx2

If a ball grips the surface then ex = 0, but if the elastic
energy stored in the horizontal direction is not com-
pletely recovered then ex < 1. The magnitude of ex in
this case provides a useful indication of how well the
ball grips the surface and how much additional spin can
be expected as a result of energy recovery. For example,
a superball spins much faster than a golf ball of the same
mass and diameter since ex is about 0.6 for a superball
but is only about 0.1 for a golf ball (Cross, 2002b).

Equations (4) and (5) can be combined to give

= 1 − − (6)

and

Rω2 = Rω1 + − (7) 
D(1 + e)vy1

αR
(vx1 − vx2)

α

D (1 + e) tan θ1

(1 + α)R
(1 + ex) (1 − S)

(1 + 1/α)
vx2

vx1

(vx2 − Rω2)
(vx1 − Rω1)
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Equations (6) and (7) remain valid regardless of
whether the ball slides or rolls or bites but the
essential physics is obscured by the fact that ex, e and D
are experimentally determined parameters. The
expression for vx2/vx1 given by Eqn. (6) is not of much
value when a ball slides throughout the bounce, since
ex is then a complicated function of µ, D and S, as can
be seen by comparing Eqns. (1) and (6). Equation (6) is
better suited to situations where ex is either zero or 1
or close to zero. For a tennis ball, ex varies in a narrow
range from zero to about 0.2 when the ball bites the
surface.

The last term in Eqn. (6) resembles the last term in
Eqn. (1) with µ replaced by D/(1 + α)R. The latter
coefficient represents the coefficient of rolling friction,
which is zero when D = 0 but which is finite when D is
finite. When D is finite, a torque will act on the ball
even if it rolls, causing both the linear and rotation
speed to decrease until the ball bounces off the
surface. The quantity µR = D/(1 + α)R can be formally
identified as the coefficient of rolling friction by con-
sidering the motion of a ball that rolls with vx = Rω
and with finite D, as described by Hierrezuelo et al.
(1995) and by Cross (2000). For a tennis ball,
µR = 0.645D/R.

Effects of finite D and ex can be illustrated by a few
numerical examples. Brody considered the case of a
rolling ball with ω1 = 0, ex = 0 and D = 0. In that case
vx2/vx1 = 1/(1 + α) = 0.645 regardless of the speed of the
court. Now suppose that the ball is incident with zero
spin and that it rolls with ex = 0, D/R = 0.1 and e = 0.75.
According to Eqn. (6), the ball will bounce at a hori-
zontal speed given by

= 0.645 − 0.113 tan θ1 (8)

A ball that rolls and that is incident at θ1 = 20° will
therefore bounce with vx2/vx1 = 0.604. If it is incident
at θ1 = 30° then it will bounce with vx2/vx1 = 0.58. If
D/R increases to 0.3 and if θ1 = 30° then vx2/vx1 = 0.45.
A further reduction in vx2/vx1 arises if the ball
bounces with ex > 0. A typical value of ex for a tennis
ball that bites the surface is 0.1 in which case
vx2/vx1 = 0.610 − 1.129(D/R)tan θ1 when e = 0.75. It
can be seen that the effect of finite D is generally
more significant than the effect of finite ex for a
tennis ball. 

vx2

vx1

Previous measurements of court speed

There exists no sufficiently complete set of data for
any tennis court that would allow the bounce of a ball
to be determined under all or even most conditions of
interest. Published data includes only a limited range
of incident angles, spin and ball speeds for any given
court. Nevertheless, sufficient data is available to make
some useful and interesting comparisons with the the-
oretical estimates described above.

Extensive data sets obtained by filming the bounce
of a ball on various surfaces are given by Thorpe &
Canaway (1986), and by Pallis & Mehta (2000). In
each of these studies, the ball was incident on a variety
of tennis courts at speeds between 20 and 30 m s−1 and
at angles of incidence from about 20° to 30°. A reliable
measurement of the COF can be extracted for only
one court, where the ball was incident at 17°.
Nevertheless, the published data show clearly that

(a) The COR for an oblique bounce on most courts is
typically between 0.8 and 0.9, despite the fact that
the COR for a vertical bounce on a hard surface
must be close to 0.75 for an approved ball. For an
oblique bounce, a tennis ball can therefore bounce
almost as high as a superball (at the same incident
speed).

(b) Thorpe and Canaway measured the COR for a
100 inch (2540 mm) vertical drop on each court,
obtaining a value of 0.65 for two different grass
courts and a value of 0.77 on each of the other
three courts tested. In all cases, the COR for an
oblique bounce was found to be larger than the
COR for a vertical bounce.

(c) The COR for an oblique bounce on grass courts
varies over a wide range. Thorpe and Canaway
obtained a value of about 0.75 for the COR on the
grass centre court at Kooyong and a value of about
0.89 for one of the outside grass courts, while
Pallis and Mehta found that the COR on their
grass court was 0.6. This variability indicates that
the condition of the grass and the underlying soil
plays an important role in determining the COR
on grass. The observed differences for oblique
bounces on grass are almost certainly due to the
fact that (i) the centre court at Kooyong was used
only once a year (for the Australian Open), the
grass was cut very short and the court was rolled
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frequently in order to produce a hard surface, (ii)
the outside grass court was (and still is) used
almost every day by club members, the grass was
kept relatively long to minimise wear and the
courts were rolled infrequently and (iii) the grass
court tested by Pallis and Mehta was still moist
after a shower of rain and the grass was not as
immaculately groomed as the courts used at
Kooyong or Wimbledon.

(d) For a ball incident without spin and at an angle of
incidence of about 20°, vx2/vx1 varies over a rela-
tively narrow range from one court to the next,
typically between 0.60 and 0.65, despite the fact
that players tend to rate different courts as being
of significantly different speed. The slowest court
tested by Thorpe and Canaway was the outside
grass court where the average value of vx2/vx1 for 18
bounces (all at θ1 = 20°) was 0.51. Grass courts are
normally regarded as fast, but the results obtained
by Thorpe and Canaway and also by Pallis and
Mehta show that grass courts can also be slow.
Pallis and Mehta found that vx2/vx1 = 0.49 on their
grass court for balls incident with zero spin at
θ1 = 24°.

(e) On those courts where the incident and rebound
spin of the ball were measured, the data presented
by Thorpe and Canaway indicate the D was
typically between 4 and 8 mm. The courts
concerned were Plexipave and En-tout-cas, the
latter being a clay court constructed from crushed
brick rather than actual clay.

(f) The grass centre court at Kooyong had a COF of
0.64. On this court, the ball was incident at 17°
and at an incident speed of 30 m s−1. If one regards
this as a relatively fast court then the COF of most
other courts is likely to be around 0.7 or higher.

Author’s measurements of court speed

Data on court speed obtained by the author are shown
in Figures 2 to 6. The data were obtained by filming
the bounce of new Slazenger Hardcourt balls on
several different surfaces, using a JVC 9600 digital
video camera operated at 100 frames/second. Bounces
were filmed (a) outdoors on a Rebound Ace and a clay
court and (b) in a laboratory on a smooth concrete
block and on three different surfaces bonded to

smooth, heavy blocks of concrete. Each of the concrete
blocks had dimensions 30 cm × 30 cm × 4 cm and they
were obtained from a building supply shop. The
Rebound Ace surface used in the laboratory was a
factory sample that was significantly smoother than
the outdoor court. The other two blocks were covered
with emery paper, one with P800 grade (nominally
800 silicon carbide particles per inch) and the other
with P150. The P150 surface represents a moderately
coarse grain emery paper, but one can rub one’s hand
firmly on the surface without cutting the skin or
drawing blood. Nevertheless, it acted to rip 10 to 20
strands of cloth material from the ball each bounce,
whereas the finer P800 surface did not. Instead, the
ball left a yellow mark on the P800 surface, represent-
ing a polishing of the cloth rather than a ripping-out
action. The fibres in the tennis balls were 0.03 mm in
diameter; the average particle size in P800 is
0.022 mm; and the average particle size in P150 is
0.097 mm. 

Two vertical ball cans spaced 1.0 m apart were used
to calibrate the horizontal and vertical scales on the
film taken outdoors. The ball was served at about
30 m s−1 or thrown at about 15 m s−1 to land close to
the two cans. Individual bounces where the ball
travelled accurately parallel to the centre line on the
court were selected for analysis. Balls travelling at an
angle greater than 4° across court were identified by
markers placed on the baseline and were excluded
from analysis.

The fastest shutter speed on the camera was 1/500 s,
which resulted in a streaked image of the ball about
two diameters long at the fastest ball speeds. The
streaked image did not introduce a significant error in
speed or angle measurements but it prevented meas-
urements being obtained of ball spin. At low ball
speeds it is possible to zoom up closer to the ball and
obtain reliable measurements of both the ball speed
and spin. At high ball speeds, it is necessary to zoom
out to obtain enough data points to measure the ball
speed, but then the ball image is too small and too
streaked to measure its spin. The laboratory results
were obtained by throwing a marked ball at a speed of
about 7 m s−1 and with negligible spin so that the
incident ball speed and the rebound speed and spin
could be measured. The latter results were obtained
by filming against a 14 mm grid (a 1.2 m × 0.6 m air-
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conditioning vent) to calibrate the vertical and hori-
zontal scales on the film. The spin and horizontal
speed of the ball were each measured to within 1%.
The vertical speeds just before and after impact were
measured to within 2% after correcting for the accel-
eration due to gravity.

Rebound Ace is the court surface now used for the
Australian Open and consists of a 1 mm thick acrylic
upper surface on a sheet of foam rubber bonded to
concrete or asphalt. The acrylic is mixed with sand to
control the texture and speed of the surface and the
rubber is used to provide a cushioning effect under
foot. The speed of the surface also depends on how
the acrylic/sand mixture is applied. If it is spread with
a broom, then the speed depends on whether the
broom is swept across the court, or along the court, or
diagonally since the broom leaves tiny ridges in the
surface. The clay court was constructed from crushed
brick but the grain size was significantly smaller than
for the En-tout-cas court tested by Thorpe and
Callaway, resulting in a court that plays more like
European clay. The advantage of the coarser and more
porous En-tout-cas surface is that it dries rapidly after
a shower of rain. European clay courts are generally
constructed from a fine powder of crushed brick or
tiles and can turn into mud when they get wet.

A surprising result of the measurements is that the
bounce of a ball is quite variable even on surfaces that
appear to be perfectly uniform. The ball itself is a rea-
sonably uniform sphere and there is no obvious
asymmetry in wall thickness or composition, apart
from the seam on the ball. The scatter in the vx2/vx1

and COR data is such that a single measurement at
any given ball speed or angle cannot be regarded as
typical. From an experimental point of view, it means
that at least three bounces are required to characterise
each surface at each angle of incidence. Alternatively,
at least 15 bounces over a range of angles are needed
to establish a reliable trend. From a player’s point of
view the variability in bounce provides an additional
level of difficulty to contend with.

Variations in incident ball speed and angle can be
minimised by using a mechanical ball launcher. No
attempt was made to do so and all results were
obtained either by hitting the ball with a tennis
racquet or throwing the ball by hand, since the vx2/vx1

and vy2/vy1 ratios are not particularly sensitive to the

incident ball speed and since the main objective was to
measure these ratios as a function of the incident
angle. From a practical point of view, it is easier and
quicker to film 100 bounces at various angles when
hitting or throwing the ball: it is less intrusive, there is
no risk of damage to the court surface, and it allows
anyone with a digital video camera to measure the
speed of their own court. The disadvantage is that
about half the bounces must be discarded as being
unsuitable for analysis since it is essential that the ball
trajectory lie in a plane closely perpendicular to the
camera axis in order to obtain reliable measurements
of the speed ratios and angles. In principle, one could
use a second camera to correct for out of plane trajec-
tories, but it is relatively time-consuming to analyse
each bounce even without this correction.

Horizontal speed results

Results obtained by filming elite players serving down
the centre line on the Rebound Ace and clay courts are
shown in Figure 2, together with high speed bounces
on P150 emery paper bonded to a slab of concrete.
The players served at relatively high speed from the
baseline or at a lower speed from points closer to the
net. The players were instructed to hit the ball without
significant topspin. Serves from the baseline landing
near the service line at about 30 m s−1 were incident on
the court at angles between 12° and 14°. Results at
higher angles of incidence were generally obtained at
lower speed, but there was sufficient overlap of speeds
and angles to show that the vx2/vx1 ratio was not
sensitive to ball speed in the range 15 to 30 m s−1. No
results were obtained at high speed and low angles on
the P150 surface since the players were unable to hit
the small target reliably from a long distance. Low
speed, low angle bounces on this surface are described
below. Figure 2 shows the measured ratio vx2/vx1 as a
function of the angle of incidence, θ1, together with
the value of µ (the COF) determined from Eqn. (1).
Each pair of data points corresponds to a single
bounce and each graph shows the result of analysing
up to 20 bounces at various angles of incidence from
about 12° to about 34°. A reliable measurement of µ is
possible only if the ball slides throughout the bounce,
as it does at low angles of incidence. At higher angles
of incidence the ball does not slide throughout the
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whole bounce period, in which case Eqn. (1) can be
used to determine a time average or effective value of
the COF. The values of the COF in Figure 2 represent
the actual coefficient of sliding friction at low values of
θ1, but at high values of θ1, the COF determined from
Eqn. (1) underestimates µ. The effective value of µ is
reduced when the ball grips the surface, since the
friction force drops to zero during the bounce and
then reverses direction. The solid lines in Figure 2
represent lines of best fit to the data, and are based on
the assumption that the data can be fitted by two
straight line segments. One could fit a single smooth
curve through all the data points, but the two straight
line segments were chosen because they provide a
good fit and because of the expectation that there
should be a significant change in slope when the ball
stops sliding. The dashed lines in Figure (2b) are
extrapolations based on the theoretical expectations

that vx2/vx1 = 1 at θ1 = 0 and that µ does not depend on
θ1 when the ball slides throughout the bounce.

The results in Figure 2 show that, for any given
court, the observed vx2/vx1 ratio depends on the angle
of incidence in a manner that is qualitatively consis-
tent with Brody’s model. That is, the ratio decreases as
θ1 increases, up to a limit above which vx2/vx1 is essen-
tially independent of θ1. At that limit, Brody assumed
that the ball would enter a rolling mode but the ball
spin data presented below show that the ball bites
rather than rolls. Also at that limit there is a decrease
in the effective coefficient of friction, since the ball
ceases to slide throughout the bounce. Results
obtained at low ball speeds on the four laboratory
surfaces are shown in Figure 3. These results show the
same general features as the high speed bounces in
that vx2/vx1 decreases as θ1 increases, up to a threshold
at which gross slip ceases and the ball begins to grip
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Figure 2 Measurements of the horizontal speed ratio
vx2=vx1 at high ball speeds (15 - 30 ms¡1) on three
different surfaces. Also shown are calculated values of
the COF (left side scale) as determined from Eqn. (1). The
straight line segments represent linear fits to the data to
highlight the transition from sliding (at low µ1) to biting.
The dashed line in (b) is an extrapolation based on the
theoretically expected result that vx2=vx1 = 1 at µ1 = 0.



the surface. A reliable measurement of µ was not
possible on the P150 surface, but it is at least 1.0, as
shown by the data in Figure 3d. For this surface, a
better fit to the experimental data for the effective
COF was obtained with a quadratic rather than a
linear fit. The measurements shown in Figures 2 and 3
are summarised in Table 1. In Table 1, µ represents the

average value of the COF for bounces in the low angle
sliding mode, S1 = vx2/vx1 at θ1 = 16°, S2 is the average
value of vx2/vx1 in the high angle, biting mode and θT is
the angle of incidence at which there is a transition
from sliding to biting.

As expected, the fastest surface as indicated by the S1

value in Table 1 is the smooth concrete slab, since it has
the lowest COF, and the slowest surface is P150 since it
has the highest COF. The other surfaces are ordered as
expected. However, this is not the case for the S2

values. The fastest surface at high angles of incidence is
the P150 surface (at low ball speeds) and the slowest
surface is the clay court. The court speed at high angles
of incidence depends on the ball speed for the P150
surface. This may also be the case for the other
surfaces, but the P150 surface was the only one tested
at both high and low ball speeds. The four laboratory
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Figure 3 Measurements of the horizontal speed ratio vx2 = vx1 at low ball speeds (6–10 m s–1) on four different surfaces. The COF (left side
scale) determined from Eqn. (1) represents the time average value of F = N during each bounce. The straight line segments are as
described in Figure 2.

Table 1. Summary of results in Figures 2 and 3.

Surface v1 m s –1 m S1 S2 θT

Rebound Ace court 15–30 0.70 0.68 0.45 23°
Clay court 15–35 0.80 0.57 0.41 22°
P150 15–30 − − 0.50 −

Smooth concrete 6–10 0.42 0.74 0.49 35°
Smooth Rebound Ace 7 0.62 0.70 0.54 23°
P800 6–9 0.73 0.65 0.51 20°
P150 7–10 > 1.0 0.56 0.56 < 13°



surfaces were all tested at essentially the same range of
ball speeds. Of these surfaces, the slowest at high
angles of incidence was the smooth concrete slab.
There is almost a complete reversal in the order of
court speeds from low to high angles of incidence. A
noteable exception is the clay court which remains slow
at all angles of incidence.

Vertical speed results

Measurements of the COR, for the same bounces as
those in Figures 2 and 3, are shown in Figure 4. The
COR for the outdoor court surfaces is plotted in
Figures (4a) and (4b) as a function of the incident
angle. On the outdoor courts, the data at low angles
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Figure 4 Measurements of COR on five
different surfaces. Solid lines are linear
or polynomial fits to the data.



was obtained at relatively high ball speeds (25 to
35 m s−1) and the data at higher angles was obtained at
a lower speed (about 15 m s−1). The COR measured
on three different laboratory surfaces is shown in
Figures (4c), (4d) and (4e). The smoother Rebound
Ace COR values are not shown since they are similar
to those on the smooth concrete slab. Both the low
and high speed data for P150 are combined into one
graph (Figure 4e) to show the variation of COR on
this surface with vy1. Also shown in Figure 4e is the
COR for a vertical bounce on the P150 surface. There
is very little scatter in the data for a vertical bounce,
but there is much more scatter for an oblique bounce,
on all surfaces.

Measurements of ball spin, D and ex

Measurements of ball spin for each of the laboratory
surfaces are shown in Figure 5. The spin is plotted in
terms of the dimensionless ratio Rω2/vx2. This ratio
remains less than 1.0 if the ball slides throughout the
bounce and it would be equal to 1.0 if the ball
commenced to roll during the bounce and continued
to roll for the remainder of the bounce period. In fact,
Rω2/vx2 was observed to be greater than 1.0 at high
angles of incidence, indicating that the ball bites the
surface. When a ball bites the surface, the centre of
mass of the ball continues to move forwards but the

bottom of the ball slides backwards as it bounces off
the surface, since Rω2 > vx2.

The results in Figure 5a indicate that the ball bites
the Rebound Ace surface when the angle of incidence
exceeds 20° and it bites the smooth concrete slab when
the angle of incidence exceeds 32°. Figure 5b shows
that the ball bites the P800 surface when the angle of
incidence exceeds 16°. The boundary between sliding
and biting was not established for the P150 surface but
it is at an angle of incidence less than 14°. These
results are consistent with the transitions from sliding
to biting shown in Figure 4.

For each of the bounces in Figure 5, values for D
and ex were obtained using Eqns. (4) and (5). The
results are shown in Figure 6. The average value of D
was 3.7 mm for the smooth concrete slab, 3.6 mm for
the Rebound Ace surface, 4.2 mm for the P800 surface
and 4.1 mm for the P150 surface, with typical varia-
tions in D of about 1 mm between bounces and over
the range of angles investigated. There was no consis-
tent variation of D with angle of incidence and the
average value of D for each surface does not depend
significantly on µ.

If the measured values of D, e and µ are substituted
in Eqn. (3), then one finds that the ball should bite at
angles of 29.7°, 19.7°, 16.7° and 11.8°, respectively, on
the smooth concrete, Rebound Ace, P800 and P150
surfaces. It is assumed here that µ = 1.0 for the P150
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Figure 5. Measurements of ball spin on four different surfaces. A ball that rolls during a bounce would bounce with R!2=vx2 = 1. If the ball
bites then R!2=vx2 > 1. Solid lines are linear or polynomial fits to the data.



surface and the values for e were taken as 0.79, 0.80,
0.82 and 0.85, respectively. These estimates are con-
sistent with the the transitions from sliding to biting
shown in Figures 3 and 5.

The value of vx2/vx1 at each transition point can be
estimated from Eqn. (1). The corresponding values for
the four laboratory surfaces are, respectively, 0.57, 0.60,
0.60 and 0.61. These values are all higher than the cor-
responding S2 values listed in Table 1 (i.e. 0.49, 0.54,
0.51 and 0.56, respectively). However, the S2 values in
Table 1 were obtained by averaging the data at high
angles of incidence where the ball bites and where ex is
typically about 0.1. An exact description of the S2

values in Table 1 is given by Eqn. (6), using the
measured values of D and ex. This does not provide an
improved theoretical estimate of vx2/vx1. Rather, the
observed values of vx2/vx1 agree exactly with Eqn. (6)

since the experimentally determined values of D and ex

are based on the same equations as those used to
derive Eqn. (6).

Based on the above measurements of ex, one can
estimate values of D for the high speed bounces on
the P150 surface and on the Rebound Ace and clay
courts shown in Figure 2. For these surfaces,
vx2/vx1 = 0.50, 0.45 and 0.41, respectively, at θ1 in the
range from 25° to 30°. If one assumes that on each of
these three surfaces the ball was incident with negligi-
ble spin and bounced with e = 0.8 and ex = 0.15 at
θ1 = 25° then from Eqn. (6) we find that D = 5.6 mm
on the P150 surface, D = 8.6 mm on Rebound Ace
and D = 11.1 mm on clay. These estimates do not
depend strongly on the assumed value of ex or on the
assumed value of the initial spin factor S, provided
that they remain small, since these quantities appear

© 2003 isea Sports Engineering (2003) 6, 93–109 105

R. Cross Measurements of the horizontal and vertical speeds of tennis courts

Figure 6. Values of D and ex calculated from the spin and speed data in Figs. 3–5.  



in Eqn. (6) as 1 + ex and 1 − S. Similarly, the estimates
of D do not depend strongly on e, since e appears in
the term 1 + e in Eqn. (6). Consequently one can be
reasonably certain that the low values of vx2/vx1

observed for high angle bounces on each surface are
due primarily to relatively large values of D rather
than unusually large values of ex. Even for a superball,
ex does not exceed 0.5 (Cross, 2002b). The enhanced
value of D observed on clay can probably be explained
by the fact that loose particles on the surface are
swept ahead of the ball to form a mound. This will act
to increase the compression of the ball near the front
edge and it will also provide an additional horizontal
force component acting backwards on the ball
(Hierrezuelo et al., 1995).

Discussion

The results presented above were obtained over a
wider range of ball speeds, incident angles and surface
speeds than obtained previously and they highlight
some significant discrepancies with the rigid ball
bounce model described by Brody. In particular, it has
been shown above that

(a) the COR for an oblique bounce is generally larger
than that for a vertical bounce

(b) the normal reaction force does not act through the
centre of the ball

(c) at high angles of incidence the ball grips the
surface instead of rolling. 

A surprising result found for all surfaces is that at high
angles of incidence, the vx2/vx1 ratio is independent of
the angle of incidence. This is particularly evident for
the P150 surface. Equation (6) indicates that vx2/vx1

should vary with θ1 due to the tan θ1 term, but e, ex and
D all vary with θ1 in such a way that vx2/vx1 remains
essentially independent of θ1. This is predicted for a
rolling or rigid ball but it is not obvious to the author
why it is also the case when the ball bites the
surface.The enhancement of the COR for an oblique
bounce is also surprising, but there are several possible
explanations. Ideally, one might expect that the COR
for an oblique bounce would be the same as that for a
vertical bounce, at least if the vertical component of the
incident ball speed is the same. In fact, the COR for an
oblique bounce can be as large as 0.9. Two suggestions

have previously been made to explain the high COR,
one involving deformation of the surface and one
involving the effect of ball spin. If the ball forms a small
depression in the court surface then it will be deflected
upwards by the front edge of the depression. If the ball
is spinning fast enough, ball deformation might be
reduced (Cross, 2002a). Both of these suggestions are
inconsistent with some of the data in Figure 4. The two
emery surfaces bonded to concrete can be regarded as
perfectly rigid, and the COR is enhanced even at low
ball speeds where the ball spin is relatively small.

An approved ball has a COR between 0.73 and 0.76
when incident normally on a concrete slab at a vertical
speed of 7.06 m s−1. All the balls used in this experi-
ment were taken fresh from a new can and had a COR
between 0.77 and 0.79 under these conditions, which
partially explains the high COR values shown in
Figure 4. However, a large fraction of the bounces
shown in Figure 4 have a COR of 0.8 or larger. There
is a slight enhancement in the COR even on the
smooth concrete slab, and a larger enhancement on
the P800 and especially on the P150 surfaces. These
results indicate that the COR is enhanced on surfaces
with a large coefficient of friction, even when the
surface is perfectly rigid.

A possible explanation is that the ball deforms in a
horizontal direction during the bounce, as well as in
the vertical direction. If one attaches a string to each
side of a ball and pulls horizontally then the ball will
stretch horizontally. If the ball is then placed on a
surface and both strings are cut simultaneously, the
ball will bounce vertically since the ball will exert a
vertical force on the surface as it springs back to its
original spherical shape. Consequently, any elastic
energy stored as a result of horizontal deformation
will act to enhance the vertical rebound speed of the
ball. This effect is likely to be more pronounced if a
ball is incident on a surface with a high coefficient of
friction and if the horizontal speed of the ball is signif-
icantly larger than the vertical speed. This is
consistent with the data in Figure 4. The largest
enhancement in the COR is observed at low angles of
incidence and on surfaces with a large coefficient of
friction. An exception is the result on the P800 surface
where there is a slight reduction in the COR at low
angles of incidence. Most people involved in the game
of tennis are agreed that clay courts are much slower
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than grass courts, at least when referring to courts
prepared for major tournaments. An interesting
question is how this perception of court speed arises,
given that different court surfaces make very little dif-
ference, with a high speed serve, to the transit time of
the ball from end of the court to the other. The results
presented above provide a possible answer to this
question. In terms of the Brody bounce model, the
maximum speed reduction of a ball bouncing
obliquely on a court surface, with zero incident spin, is
given by vx2/vx1 = 0.645. This is the value expected for
a ball that enters a rolling mode, and it is the same for
all courts regardless of the speed of the court or the
angle of incidence. According to this model, differ-
ences in court speed can be expected only if the ball
slides throughout the bounce, in which case vx2/vx1 is
given by Eqn. (1). It can be seen from Eqn. (1) that the
fractional change in vx2/vx1 increases with µ but it also
increases with θ1. Consequently, the biggest change in
the horizontal speed of the ball, and hence the most
noticeable difference in court speed, will arise at rela-
tively large values of θ1, provided that the ball slides
throughout the bounce. Balls that are incident at high
values of θ1 are generally hit higher over the net and at
lower speed, so the time differences on fast and slow
courts will also be more noticeable in both an absolute
and a relative sense.

Suppose that a ball is served at around 200 km h−1

(55.5 m s−1) with little or no spin. The ball slows down
through the air and will land with vx1 about 40 m s−1

and at an angle θ1 of about 12°. On most courts such a
ball will slide throughout the bounce, in which case
vx2/vx1 = 1 − 0.213µ(1 + e). If e = 0.75 then the ball will
bounce with vx2 = 31.1 m s−1 on a court with µ = 0.6 or
at vx2 = 28.1 m s−1 on a court with µ = 0.8. Since the
distance from the service line to the baseline is 18
feet = 5.49 m, a ball landing on the slower court will
take about 19 ms longer to cross the baseline than the
ball on the faster court. This difference may seem
rather small but it makes an important difference to
the player since the ball travels 59 cm in 19 ms at a
speed of 30 m s−1. If the player does not make any
allowance for the change in ball speed, he or she will
hit the ball much too early or much too late. A
separate question is whether the player could pick the
difference in ball speed as being due to a difference in
horizontal court speed or whether it is due to the ball

being served at a different speed or at a different angle
of incidence or a difference in COR. For example it
would be possible for two courts to have different
values of µ and for the ball to bounce with exactly the
same speed if µ(1 + e) is the same on both courts.

A more significant difference between fast and slow
courts would result if the fast court has a low value of e
and the slow court has a large value of e. If
vx1 = 40 m s−1 and θ1 = 12°, then vx2 = 31.8 m s−1 on a
court with µ = 0.6, e = 0.6, while vx2 = 27.1 m s−1 on a
court with µ = 0.8, e = 0.9. In this case, the ball on the
slower court takes 29 ms longer to cross the baseline
than on the faster court. The player must then make a
bigger adjustment for the change in ball speed and an
even larger adjustment for the change in bounce
height, given that the ball would bounce about twice
as high on the slower court.

As described above, differences in horizontal court
speed should be more significant and more obvious at
low ball speeds since the time between the bounce and
the ball reaching the player is longer. However, this is
not necessarily the case according to the Brody
bounce model. A ball hit at low speed over the net is
incident on the court at an angle θ1 typically greater
than 20°, in which case the ball is likely to roll when it
bounces, especially if the ball is hit with topspin. For
example, if D = 0, θ1 = 20°, ω1 = 0 and e = 0.75 then the
ball will roll if µ > 0.56, which includes almost all court
surfaces. In this case, a ball that rolls would bounce
with vx2/vx1 = 0.645 on all court surfaces, regardless of
the speed of the court.

A ball incident with zero spin at a low speed and at
a high angle of incidence will bounce at a different
speed on a different surface only if D or ex is non-zero.
For example, if D = 0.01 m (the other parameters
listed immediately above being held fixed) then the
ball will bite only on courts with µ > 0.75. In that case,
a ball incident on a court with µ < 0.75 will slide
throughout the bounce and will bounce with a greater
horizontal speed than on a court with µ > 0.75.
Furthermore, the horizontal bounce speed is signifi-
cantly decreased for a ball that rolls or bites with
D > 0. For example, if D = 0.01 m, ω1 = 0, θ1 = 20°,
e = 0.75, ex = 0.1 and µ = 0.8, then vx2/vx1 = 0.485. The
same ball incident on a court with e = 0.75 and µ = 0.6
will slide throughout the bounce and will bounce with
vx2/vx1 = 0.62. A ball incident on the service line with
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vx1 = 20 m s−1 would then take about 0.443 s to cross
the baseline on the faster court or 0.566 s on the
slower court, a difference of 123 ms. Such a difference
would be much more noticeable than the 19 or 29 ms
differences quoted above. The speed of a court as
perceived by a player is therefore likely to be based on
low speed, high angle bounces rather than high speed,
low angle bounces, in which case the court speed
depends on both D and µ rather than µ alone.

Conclusions

Thorpe & Canaway (1986) remarked in their study of
court speed that the ability of players to pick differ-
ences in court speed was puzzling since the measured
differences in court speed were quite small on the
courts tested. For a fast serve, the time differences are
also very small. The time taken for the ball to cross
the baseline when served at high speed on a fast court
is typically only 20 ms less than on a slow court. It has
been shown in this paper that relatively large differ-
ences in court speed will be noticed by players if their
perception is based on low speed, high angle bounces
rather than on high speed, low angle bounces. At
incident angles greater than about 20° the ball bites
the surface and the speed reduction is significantly
larger than previously expected. In Brody’s rigid ball
model, the vx2/vx1 ratio is equal to 0.645 on all court
surfaces when the ball is incident with zero spin at
high angles of incidence. Real tennis balls are flexible,
with the result that the vx2/vx1 ratio can be as low as
0.4 on some courts. This is partly due to the fact that
the horizontal coefficient of restitution is greater than
zero when the ball bites the surface but the main
effect is that the normal reaction force on the ball acts
through a point shifted by a distance D towards the
front of the ball. For a clay court, D is about 11 mm,
but on other surfaces D is smaller. The torque ND
acts to reduce the ball spin and to extend the range of
incident angles over which the ball slides before it
starts to bite. The result is that the vx2/vx1 ratio drops
below 0.645 by an amount that increases as D
increases. An additional result found in this study is
that courts that are slow at low angles of incidence are
not necessarily slow at high angles of incidence.

The vertical speed of a court can vary widely
between different courts, as observed by others. It was

found that the COR is enhanced even on rigid
surfaces, particularly on slow surfaces and at low
angles of incidence. This suggests that the increase in
the COR is due to horizontal deformation of the ball,
in which case some of the kinetic energy of the ball
due to its horizontal motion can be chanelled into the
vertical direction. Other explanations are not
excluded, but horizontal deformation of the ball is
probably a significant factor.

The current standard measure of court speed is the
surface pace rating defined by the ITF. This provides a
measure of horizontal court speed at angles of
incidence less than 20° but it is not unique since it is
affected by the vertical speed of the court.
Furthermore, it does not provide a valid indication of
court speed at high angles of incidence. An improved
measure of court speed is suggested by the results in
this paper, whereby the vertical and horizontal speeds
could be specified by measured values of the COR and
the vx2/vx1 ratio at both low and high angles of
incidence. Suitable angles would be 16° and 30°.
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