
Introduction

The bounce of a tennis ball off a tennis court is usually
a simple process in which the ball slides along the
court for a short distance before bouncing. The ball
slows down in a direction parallel to the surface by an
amount that depends on the angle of incidence to the
surface and on the coefficient of sliding friction
between the ball and the surface (Brody, 1984). A
complication arises if the ball is incident with suffi-
cient topspin or if it acquires sufficient spin during the
bounce, in which case the ball stops sliding and

commences to grip the court (Cross, 2003). A ball will
usually grip the court at some stage during the bounce
if it is incident at an angle greater than about 20°. If
the ball is incident without spin and if it grips the
court then the horizontal speed of the ball after the
bounce is typically about half the horizontal speed
before the bounce, regardless of the angle of
incidence. 

The same level of understanding has not been
reached regarding the bounce of a tennis ball off the
strings of a tennis racket. The behaviour of a ball
incident in a direction perpendicular to the string
plane is well known and is well understood, but in
match play the ball rarely strikes the strings at normal
incidence. Elite tennis players apply topspin or
backspin to almost every shot, in which case the ball is
incident obliquely on the strings. The rebound angle
and spin of the ball will then depend on the details of
the interaction between the ball and the strings.
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Measurements have previously been made by several
authors of the rebound spin and angle for an angle of
incidence near 50° (Bower and Sinclair, 1999;
Knudson, 1991; Goodwill and Haake, 2003) but the
bounce process itself has received very little experi-
mental or theoretical attention. To study the bounce
process, at least several different angles of incidence
are needed to determine if and when the ball slides,
rolls or grips the strings when it bounces.

The bounce of a ball off the strings of a racket
differs from the bounce off the court in many respects:

• The ball is usually incident at a large angle to the
string plane, typically within about 40° of the
normal.

• The strings have a low coefficient of sliding friction,
so the string plane is ‘faster’ than most court
surfaces. 

• The string plane is more deformable than a court
surface, having a stiffness about the same as that of
the ball.

• The strings can move relative to each other within
the string plane, in contrast to a typical hardcourt
surface which has no tangential or perpendicular
compliance. 

• The mass of a hand-held racket is much smaller
than the mass of a court, with the result that the
bounce speed off the strings, if the racket is initially
at rest and the ball impacts in the middle of the
strings, is typically about half the bounce speed off
a court. The bounce speed is considerably smaller
for an impact near the tip of a racket. 

• The racket rotates during the bounce. The bounce
angle, therefore, depends on the angle through
which the racket rotates.

• The racket usually approaches the ball at high speed
and hence the bounce speed, spin and angle off the
strings depends strongly on the initial speed and
trajectory of the racket.

For all of these reasons, the bounce of a ball off the
strings of a racket is a much more complicated process
than the bounce off a court. An additional complica-
tion is that very little is known about the friction force
acting between the ball and the strings, or whether the
ball slides, rolls or grips the strings. The main purpose
of the present paper is to present measurements of the
friction force acting between the ball and the strings

and to show how the friction force affects the bounce
speed, spin and angle off the strings. The friction force
was measured by allowing a racket head to move hori-
zontally on rollers to measure its acceleration Since
this is not the normal way a racket is used, additional
results are presented to compare the bounce parame-
ters with those of head-clamped and hand-held
rackets.

Qualitative features of the bounce process

A simple model of the bounce process, based on a rigid
ball approximation, is described by Brody (1984).
Brody noted that the friction force acting backwards
on the ball would slow it down in a direction parallel
to the surface and the torque due to the friction force
would act to increase its rotational speed. If vx is the
horizontal ball speed, ω is its angular velocity and R is
the ball radius, then the rotational speed at any point
on the ball circumference is Rω and the speed of any
point in contact with the surface is given by vx – Rω.
The ball will slide throughout the bounce period
provided vx remains larger than Rω. However, if vx

decreases and ω increases during the bounce to a point
where vx = Rω, then the bottom of the ball will come
to rest on the surface. This situation arises when a ball
rolls along a horizontal surface, in which case the
friction force is essentially zero since there is no
relative motion between the ball and the surface in the
contact region. Brody assumed that the friction force
on a bouncing ball would drop to zero during the
bounce period if the ball entered a rolling mode, and
that there would be no further change in vx or ω
during the remainder of the bounce period. As a con-
sequence, Brody predicted that a ball incident without
spin would slow down by at most 40% in a direction
parallel to the surface and that the maximum spin of
the ball would be that corresponding to the rolling
condition, i.e. ω2 = vx2/R where subscript 2 denotes
values at the end of the bounce period. 

Brody's bounce model remained unchallenged by
experimental data for 18 years, despite the fact that the
model was qualitatively inconsistent with the known
behaviour of highly elastic balls such as superballs, and
it was inconsistent with the exceptionally low bounce
speed of clay courts reported by players. Recent exper-
iments Cross (2002a, 20002b, 2003) have shown that
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(a) the Brody model remains valid for real balls if the
ball slides throughout the bounce period, (b) a tennis
ball incident without spin can slow down by as much
as 60% in a direction parallel to a court surface and (c)
real balls do not roll when they bounce since real balls
(including steel balls) are flexible. Rather, all balls grip
the surface when vx = Rω, as predicted and observed
previously by Maw et al. (1976, 1981). A tennis ball
without spin incident on a court surface will slide
throughout the whole bounce period if it is incident at
an angle less than about 18° to the surface, the
relevant angle being larger than 18° if the ball slides
on a slippery (fast) court and smaller than 18° if the
ball slides on a rough (slow) court. At higher angles of
incidence the ball slides for a short period, then it
grips the surface for a short period, then it releases its
grip, causing the contact area to slide backwards on
the surface.

Ball grip on a stationary ball can be demonstrated if
a heavy weight is placed on top of a tennis ball and if
one attempts to pull the ball in a horizontal direction.
For small values of the pulling force, the ball will
stretch but static friction will prevent the ball from
sliding if the coefficient of static friction is large
enough and if the vertical force is large enough. Under
these conditions, the bottom of the ball will remain at
rest since the pull force is balanced by the static
friction force acting backwards at the bottom of the
ball.

In the case of a bouncing ball, the ball will grip if
the vertical force arising from ball compression is
large enough when the contact area of the ball comes
to rest. The ball may grip for only 1–2 ms before
releasing its grip, but that will be enough to reduce vx

to a value lower than that predicted by Brody, and to
increase ω to a value higher than that predicted by
Brody. During the time that the ball grips the surface,
the static friction force acts backwards on the ball
hence vx continues to decrease and ω continues to
increase. The static friction force acts backwards since
the initial momentum of the ball carries the upper part
of the ball forwards, so the upper part of the ball pulls
forwards on the lower part. The ratio Rω/vx is 1.0
when the ball first grips but it increases to a value
greater than 1.0 while the ball retains its grip on the
surface. At first sight this may seem to be inconsistent
with the bottom of the ball remaining at rest while the

ball grips. However, the remainder of the ball
continues to rotate and to slow down in a direction
parallel to the surface, due to the inertia and flexibility
of the ball. As a result, the ball deforms elastically for a
few milliseconds while the bottom of the ball remains
at rest. When the ball commences its vertical rise off
the surface, the normal reaction force drops and the
ball releases its grip. After grip release the bottom of
the ball slides backwards on the surface since vx – Rω
is negative during the latter part of the bounce. As a
result, the friction force reverses direction during the
bounce and the ball bounces off the surface with
Rω2 > vx2. Further details regarding this process can
be found in Cross (2002b), in Brody et al. (2002) and
in the original articles by Maw et al. (1976, 1981).

The same basic process can be expected for a
bounce off the strings of a racket, apart from the
added complications outlined in the Introduction. In
particular, a ball that grips the strings will tend to drag
the long main strings across the short cross strings and
will drag the whole racket head in the direction of the
incident ball. A parameter of interest in this respect is
the tangential speed of the contact area of the ball
relative to the string plane. The tangential speed can
be positive, zero or negative. A positive or negative
speed indicates that the contact area slides forwards or
backwards respectively on the string plane. If the
relative speed is zero then the ball grips the strings. A
simple indication of whether a ball grips during the
bounce is provided by the parameter
S2 = Rω2/(vx2 – Vx2) where subscript 2 denotes values
after the ball bounces, Rω2 is the peripheral speed of
the ball due to its rotation and Vx2 is the speed of the
racket head in a direction parallel to the string plane.
In order to measure S2, one needs to measure the
speed and spin of the ball after it bounces, as well as
the speed of the racket head. If the ball slides across
the string plane during the whole bounce period then
S2 will be less than 1.0. If the ball rolls across the string
plane during the latter stages of the bounce then the
ball will bounce with S2 = 1.0 . If the ball grips the
strings and then slides backwards until the ball
bounces off the string plane then S2 will be greater
than 1.0 . An additional and even more informative
indication of whether a ball grips the strings is
obtained by measuring the friction force between the
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ball and the strings, as described below. One can
calculate, from the measured friction force, the time at
which the ball grips the strings, the time at which the
ball releases its grip, and the time history of vx and ω
throughout the bounce.

Experimental arrangement

The arrangement used to measure the friction force
between a tennis ball and the strings of a racket is
shown in Figure 1. An old aluminium frame racket was
cut in half to detach the handle, and the head was
mounted in a horizontal plane on two cylindrical
rollers. This particular head was used since the frame
was of uniform thickness, unlike most modern rackets,
and it could therefore move freely in a purely horizon-
tal direction on the rollers. The rollers were made
from solid aluminium rod covered with heat-shrink
plastic tubing to reduce high frequency vibrations
generated during an impact by metal-to-metal
contact. The plastic tubing also helped to ensure that
there was no slip between the head and the rollers.

A ball impacting obliquely on the string plane
exerted a horizontal friction force on the strings,

resulting in horizontal acceleration of the racket frame
with almost no frictional resistance between the frame
and the rollers. The acceleration of the frame was
measured by means of a ceramic, piezoelectric disk
attached to a flat block of insulating material glued to
one end of the frame. The output voltage from the
piezo disk is directly proportional to the acceleration
of the frame and therefore provided a direct measure
of the time-dependent friction force acting on the
strings. The linearity of the piezo accelerometer was
established by rolling a tennis ball at various speeds
towards the racket frame to impact the frame head-on
(at the end diametrically opposite the piezo disk).

The original nylon strings in the racket were left
intact and the string tension was measured at 210 N
using an ERT700 instrument (described by Brody
et al., 2002). The mass of the frame, strings and piezo
assembly was 257 g, and the mass of each roller was
212 g. Since the frame moves at twice the linear speed
of each roller, the effective mass of the frame and the
two rollers was M = 257 + 212 = 469 g. If the frame
translates at speed V, the linear momentum of the
frame plus the two rollers is MV. The mass of the ball
was 57 g. The horizontal momentum of the frame and
rollers after each impact was measured to be equal and
opposite the change in horizontal momentum of the
ball, indicating that there was no slip between the
frame and the rollers. For a ball incident without spin,
the horizontal speed of the frame after each impact
was typically about ten times smaller than the hori-
zontal speed of the ball after the impact. The ball
bounced at a lower horizontal speed when it was
incident with backspin, transferring greater
momentum to the frame, in which case the speed of
the ball was sometimes comparable to the speed of the
frame. The ball bounced at a higher horizontal speed
when it was incident with topspin, transferring very
little momentum to the frame. With a sufficient
amount of topspin, the ball bounced with a larger hor-
izontal speed than it had before the bounce, causing
the frame to accelerate backwards.

The incident and rebound speeds, spins and angles
were measured by filming each bounce with a
JVC 9600 digital video camera. The speed of the
racket frame after each impact was also monitored on
the same recording. The maximum frame rate of this
camera was 100 frames per second, and the minimum
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Figure 1 Experimental arrangement used to measure (a) the friction
force, F, between a tennis ball and the strings of a racket (b) the
velocity and spin of the ball before and after bouncing and (c) the
horizontal speed of the racket head.



exposure time was 2 ms, which meant that only low
speed impacts could be studied to determine the ball
spin. The incident ball speed was typically 3 to 5 ms–1,
lower than the speeds normally encountered in the
game of tennis. Quantitative differences between low
speed and high speed impacts are described in the dis-
cussion section below, but there is no reason to expect
that low speed bounces should be qualitatively
different from high speed bounces. Each ball was
thrown by hand onto the string plane to land near the
middle of the string plane. Moderate topspin or
backspin could be imparted by hand, and additional
data was obtained by rolling a ball down an inclined
plane to impact the strings with larger topspin. To
assist with measurements of ball spin, a line was drawn
around a circumference of the ball with a felt pen, and
a single dot was marked near the line to help
determine the orientation of the ball. Each ball was
projected with the dot facing the camera. At least
three images of the ball prior to and after each bounce
were used to determine the ball speed and spin. A cor-
rection for gravitational acceleration was made to
determine the vertical speed of the ball just before and
after each bounce. Occasionally, a ball was projected
incorrectly with its spin axis not accurately aligned in a
direction parallel to the camera axis. Such impacts
were not analysed. Since it was easy to throw and film
100 balls in about 50 minutes, it was also easy to select
for analysis only those bounces that impacted in the
middle of the string plane, with the spin axis correctly
aligned and with the appropriate incident spin.

Output signals from the piezo were calibrated as a
measure of the friction force, F, by equating the time
integral of the piezo signal to the change in horizontal
momentum of the ball. The time integral was termi-
nated at 7.0 ms, which was the duration of the impact
on the strings. The impact duration is typically about
5 ms for high speed impacts on a hand-held racket, but
the impact duration was extended at low ball speeds
and on a head-clamped racket due to the lower ball
stiffness and the larger effective mass of the racket.
The normal reaction force, N, was not measured, but
the impact duration was measured by impacting a ball
on a small piezo attached to the string plane. The
impact duration varied from about 6.9 ms to about
7.2 ms for all incident ball speeds, since the normal
incident ball speed remained relatively small and large

changes in ball speed result in only relatively small
changes in impact duration (Brody et al, 2002). A the-
oretical estimate of N is shown with the results below
to allow comparison of magnitudes of F and N. At low
ball speeds, N versus time is essentially a half-sine
waveform (Cross, 1999; 2002a) the time integral of
which can be equated to the measured change in
vertical momentum of the ball.

Two additional experiments were performed to
determine how the results obtained with the sawn-off
head on rollers relate to the bounce off head-clamped
and hand-held rackets. In these experiments, the
friction force was not measured but the incident and
rebound ball speeds, spins and angles were measured
for low speed impacts on a Pro Kennex No. 24
graphite racket when (a) the head was rigidly clamped
and (b) the handle was hand-held with the head free to
recoil. For both additional experiments the racket was
strung with a nylon string at a tension of 250 N. Even
though the string tension in the aluminium head was
lower than the string tension in the Pro Kennex
racket, string plane stiffness was about the same given
the larger head size of the Pro Kennex racket (775 cm2

versus 515 cm2). Small differences in string plane
stiffness have very little effect on the rebound spin or
speed of the ball (Bower & Sinclair, 1999; Brody et al.,
2002). The string plane was horizontal, the ball was
thrown by hand onto the string plane to impact near
the middle of the strings and the bounce was filmed
with the same digital video camera described above. A
new Slazenger hardcourt ball was used for all three
experiments. The Pro Kennex racket was 696 mm
long, had a mass of 270 g and its centre of mass was
located 378 mm from the butt end of the handle. The
moment of inertia about an axis perpendicular to the
handle, parallel to the string plane and passing
through the centre of mass was Icm = 0.0123 kg m2.
The racket rotates about this axis when a ball is
incident perpendicular to the string plane and impacts
the middle of the strings.

The head-clamped case was studied since all
previous measurements of the oblique bounce of a ball
off racket strings have been made either with a head-
clamped or with a handle-clamped racket. However,
no attempt has previously been made, either theoreti-
cally or experimentally, to show how such results
relate to a hand-held racket. The bounce angle off a
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hand-held racket is typically about half of that from a
head-clamped racket since the bounce speed in a
direction perpendicular to the string plane is reduced
by a factor of about two. The bounce angle also
depends on the speed of the ball in a direction parallel
to the string plane. The ball slides faster on a hand-
held racket since the normal reaction force and the
friction force are both reduced when the racket head is
free to recoil.

Friction force results

Measurements of friction force

Measurements of the friction force for a ball incident
without spin at several different angles of incidence,
are shown in Figure 2. The force waveforms are con-
taminated by a 830 Hz component arising from high

frequency vibrations of the racket frame. This
component is due to the hoop mode, which corre-
sponds to a vibration within the plane of the frame and
which is excited by a tangential force rather than a
force acting perpendicular to the string plane. The
hoop mode is one where the shape of the frame alter-
nately becomes more circular or more elliptical every
half-cycle. The accelerometer tends to be more
sensitive to high frequency vibrations than to low
frequency vibrations, since for any given vibration
amplitude the acceleration is proportion to the
frequency squared. Nevertheless, the friction force
component of the piezo signal is sufficiently different
to be readily distinguished from the vibrational
component. In general it was found that high
frequency frame vibrations in the racket tended to be
suppressed while the ball remained on the strings and
were more obvious after the ball left the strings. One
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Figure 2 F and N versus
time for a tennis ball
incident with negligible
spin at various angles on
the strings of a tennis
racket. The N waveform
was assumed to be a
half-sine wave of duration
7.0 ms. In (a), the rapid
fluctuations in F occuring
between t = 1 and
t = 5 ms are due to
movement of the strings
within the string plane.



could attempt to filter out the 830 Hz component but
it would compromise the representation of genuine,
rapid changes in the actual friction force observed
during each bounce.

Some of the small, rapid changes in F shown in
Figure 2 represent sudden horizontal movements of
the strings within the string plane. This effect was
confirmed by bonding each of the cross strings to the
main strings with a drop of superglue at each intersec-
tion point. This was done after all other
measurements were completed, with the result that
small, rapid changes in the F waveforms were elimi-
nated. Given that players do not normally bond their
strings at each intersection point, no further measure-
ments with bonded strings were made.

In Figure 2a, the ball was incident at 25° to the
string plane and F remained roughly proportional to
N throughout the bounce. In can be inferred that the
friction force was due to the ball sliding across the
string plane and that sliding persisted throughout the
7 ms bounce period. The ratio of F to N yielded a
time-average value of 0.43 ± 0.02 for the coefficient
of sliding friction, µ.

Figure 2b shows the F and N waveforms for a ball
incident at 36° to the string plane. F remained approx-
imately proportional to N throughout most of the
bounce period but it dropped to zero 2 ms before the
end of the impact. At higher angles of incidence
(Figures 2c and 2d) F dropped to zero at progressively
earlier times during the bounce, and then reversed
direction.

These results are qualitatively the same as those
obtained for balls bouncing on a rigid surface (Cross,

2002b) and are consistent with measurements of ball
spin and theoretical expectations. The measured
values of S2 for each of the bounces in Figure 2 were
respectively (a) 1.15 (b) 1.27 (c) 1.03 and (d) 1.15, sug-
gesting that the ball gripped the surface at all four
angles of incidence. However, the F waveform in
Figure 2a indicates sliding throughout the bounce.
Measurements on a rigid surface indicate that, as the
angle of incidence increases, the ball first starts to grip
the surface not when S2 > 1.0 but when S2 is greater
than about 1.15. A plausible explanation is that the
normal reaction force towards the end of the bounce is
too small to allow the ball to grip if S2 < 1.15. At
higher angles of incidence, the ball starts to grip the
surface at an earlier stage during the bounce, at a time
when the normal reaction force is relatively large.

Figure 3 shows the friction force acting on a ball
incident with backspin and topspin. If a ball is incident
with backspin then it slides across the string plane for
a longer time before it grips the surface, since it takes
additional time for the initial spin to reverse direction.
The horizontal impulse on the ball is therefore larger,
resulting in a larger speed reduction in a direction
parallel to the string plane. Conversely, a ball incident
with topspin commences to grip the strings earlier,
resulting in a smaller reduction in the parallel
component of the ball speed. Figure 3b illustrates an
extreme example where the ball was incident with suf-
ficient topspin to slide backwards at the beginning of
the bounce, with the result that the parallel speed after
the bounce was greater than the parallel speed before
the bounce since the friction force on the ball acted to
accelerate, rather than decelerate, the ball.
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Figure 3 F and N versus time for a tennis ball incident on the strings with (a) backspin and (b) topspin.



Under normal playing conditions, the ball bounces
off the court with topspin but it is usually incident on
the strings with backspin relative to the string plane.
At least, that is the situation when a player attempts to
return the ball with topspin. If the player attempts to
return the ball with backspin then a ball rising off the
court may be incident on the strings with topspin
relative to the string plane. The relative sense of the
spin onto the strings depends on whether the ball is
rising or falling as it approaches the strings, in a frame
of reference where the string plane is vertical and at
rest. A spinning ball that approaches the strings at
right angles is incident neither with topspin nor
backspin.

Analysis of friction force
The effect of backspin on the incident ball is of partic-
ular interest since it corresponds to the usual situation
where a player hits an agressive topspin groundstroke.
In that case, the ball will bounce with a relatively small
velocity component in a direction parallel to the string
plane. This should help the player to control the shot,
given that the ball bounces off the strings in a
direction almost perpendicular to the string plane (in a
reference frame where the racket is initially at rest).
We can examine the details of this process by consid-
ering a specific example, namely the bounce shown in
Figure 3a. The ball was incident with v1 = 3.27 m s–1,
θ1 = 58.5°, ω1 = –34.9 rad s–1 and bounced with
v2 = 2.52 m s–1, θ2 = 75.5°, ω2 = +21.8 rad s–1. The
racket head translated horizontally at
Vx2 = 0.135 m s–1 after the bounce. These parameters
indicate that vx1 = 1.71 m s–1, vy1 = 2.79 m s–1,
vx2 = 0.63 m s–1 and vy2 = 2.44 m s–1. Experimental
errors in the speed, angle and spin measurements were
typically about 2%.

The horizontal speed of the ball at any time t
during the bounce is given by:

vx = vx1 − ∫
o

t

F dt

and the angular velocity of the ball is given by:

Rω = Rω1 + ∫
o

t

F dt

where Io is the moment of inertia of the ball about an
axis through its centre of mass.

R2

Io

1
m

The time history of vx and Rω throughout the
bounce can therefore be determined by integration of
the measured F waveform, and the result is shown in
Figure 4. It can be seen that vx = Rω = 0.70 m s–1 at
t = 3.3 ms. The ball must therefore grip the surface at
about this time, or slightly earlier (at t = 3.0 ms)
when vx − Vx = Rω. Figure 4 shows that F suddenly
reversed direction at t = 4.0 ms, indicating that the
ball suddenly released its grip. During the grip period,
from t = 3.0 to 4.0 ms, ω increased from 12 to
41 rad s–1 and vx decreased from 0.85 to 0.33 ms–1. The
ball cannot rotate as a rigid body during this period
since the bottom of the ball remains at rest on the
strings while the remainder of the ball rotates (at an
average angular velocity of 26 rad s–1) through an
angle of about 1.5°. The result is that internal stresses
in the ball must build up to a point where the ball
releases its grip, in which case the bottom of the ball
will suddenly start to slide backwards on the string
plane. The friction force at the bottom of the ball
therefore changes from a positive to a negative force.
The negative force acts to increase vx and reduce ω
during the time interval from t = 4 ms to t = 7 ms,
so that the ball bounces with vx2 = 0.63 m s–1 and
ω2 = 21.8 rad s–1. 
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The estimate of a 1.5° rotation prior to slip was con-
sistent with a simple qualitative experiment. A 6 kg
block was glued to the top of a tennis ball to simulate a
60 N load, and the bottom of the ball was placed on

Figure 4 Analysis of the bounce shown in Figure 3a. The horizontal
bar denotes the time interval during which the ball grips the
strings.



the strings of a tennis racket. The block was then
pulled horizontally until the ball released its grip. Just
prior to slipping, the top of the ball had moved about
1.5 mm horizontally while the bottom remained stuck,
corresponding to a 1.3° rotation of the ball. In this
experiment the ball slid forwards, in the direction of
the pulling force. If a ball grips when it bounces, then
one might expect that the ball would also slide
forwards when it releases its grip, due to its linear
momentum. The ball grips when vx = Rω. While the
ball grips, Rω increases and vx decreases.
Consequently, the stress in the bottom of the ball
arises primarily from ball rotation, so the ball slides
backwards when the ball releases its grip.

Bounce theory

In the remainder of this paper, measurements and cal-
culations are presented concerning the bounce speed,
spin and angle off the strings of a racket under three
separate conditions where (a) the racket head was
mounted on rollers (b) the racket head was clamped
and (c) the racket was hand-held. It is shown that (a)
laboratory measurements of the bounce off a head-
clamped racket do not provide a valid indication of the
bounce speed, spin and angle off a hand-held racket
and (b) there is no theoretical model currently
available that would allow these parameters to be cal-
culated accurately for a hand-held racket, even if the
corresponding bounce parameters are known from
measurements made on a head-clamped racket. The
perpendicular component of the bounce speed off a
hand-held racket can be calculated approximately
from measurements made with a head-clamped racket,
but the parallel component of the bounce speed is
more difficult to calculate since it depends on the
details of the ball grip process. To the author's
knowledge, the bounce angle of a ball off a hand-held
racket has not previously been measured and the
results presented below are the first such measure-
ments. Similarly, the spin and speed of a ball off a
hand-held racket has not previously been measured
under controlled conditions and when the ball is
incident obliquely on the string plane. Other measure-
ments have been made on a racket clamped by the the
handle, but this method of clamping prevents the
racket moving in a direction parallel to the string

plane, i.e. in the direction of the friction force.
The results presented below also include the first

measurements of the coefficient of sliding friction
between a tennis ball and the strings of a tennis
racquet. Such a measurement requires that the ball
must be incident at a relatively low angle to the string
plane so that the ball slides across the strings through-
out the whole bounce period.

Geometry
Consider the bounce geometry shown in Figure 1
where a ball is incident obliquely on the strings of a
stationary racket. The racket is not normally station-
ary when it impacts a ball, but the analysis is simplified
if we consider the collision in the racket frame of
reference. It is assumed that the strings are in the hor-
izontal plane, and the ball trajectory is in a vertical
plane defined by x and y co-ordinates. The y axis is
taken as vertical and the x axis as horizontal. The
racket may be hand-held or clamped around the head,
or it may be mounted on rollers as in Figure 1. We can
describe all three cases using the same approach, but
the effective mass of the racket is different in each
case. In this paper, the term ‘effective mass’ is taken to
mean the ratio of the applied force at a given point to
the acceleration of that point. The ball is incident with
vertical speed vy1, horizontal speed vx1 and angular
velocity ω1 and bounces with vertical speed vy2, hori-
zontal speed vx2 and angular velocity ω2. The angular
velocities are taken to be positive if the ball has
topspin, and the linear velocities are taken to be
positive when the ball is incident and bounces in the
usual directions. We assume also that the impact point
on the racket recoils at speed Vx2 in the horizontal
direction and at speed Vy2 in the vertical direction. If
the head is clamped then Vx2 and Vy2 are both zero. If
the head is mounted on rollers then Vy2 is zero.

If the ball slides across the string plane during the
impact, it would normally cause the racket to rotate
about its long axis. However, we will assume that the
average position of the ball coincides with the centre
of the strings, in which case we can ignore this
rotation. For a hand-held racket, rotation of the racket
about its centre of mass cannot be ignored, the result
being that the effective mass of the racket at the
impact point is less than its actual mass, as described
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below. If the head is clamped, then the effective mass
of the racket is infinite. If the head is mounted on
rollers then the effective mass of the head is infinite in
the y direction and is equal to the actual mass of the
head in the x direction.

Perpendicular COR
The ball speed in a direction perpendicular to the
string plane can be specified in terms of the coefficient
of restitution (COR), ey, defined by the relation 

ey =

or in terms of the apparent coefficient of restitution
(ACOR), eA, defined by

eA =

The COR is defined in terms of the relative speed of
the ball and the racket at the impact point, before and
after the collision. The ACOR is defined in terms of
the ball speeds before and after the collision, ignoring
the racket speed after the collision but assuming that
the racket is initially at rest. The ACOR is equal to the
COR if Vy2 = 0, as it is when the head is clamped or
mounted on rollers. For an impact at the vibration
node near the middle of the strings, the COR for a
hand-held racket is the same as that for a head-
clamped racket (since there are no energy losses due to
frame vibrations) but the ACOR values are different.
For a hand-held racket, the COR and the ACOR are
related by conservation of linear momentum in the y
direction. If m is the mass of the ball and Me is the
effective mass of the racket in the y direction, then
mvy1 = MeVy2 – mvy2 and hence

eA =

The effective mass of a hand-held racket is given by
(Brody et al., 2002) 

= +

where M is the actual racket mass, b is the distance
between the impact point and the centre of mass (CM)
and ICM is the moment of inertia of the racket about its
centre of mass. Me is equal to M for an impact at the

b2

Icm

1
M

1
Me

(ey – m/Me)
(1 + m/Me)

vy2

vy1

(vy2 + Vy2)
vy1

CM and is typically about M/2 for an impact in the
middle of the strings.

Parallel COR
The ball speed in a direction parallel to the string
plane can be specified in a manner that is analogous to
that in a direction perpendicular to the string plane.
That is, one can define a tangential COR and a tan-
gential ACOR. The vertical COR is a measure of the
energy losses in the ball and the racket arising from
vertical compression of the ball, transverse vibrations
of the racket frame and losses in the strings. The tan-
gential COR is a measure of energy loss arising from
ball deformation in the horizontal direction plus any
horizontal or longitudinal vibration of the frame. It is
defined in terms of the horizontal speed of the contact
point (rather than the horizontal speed of the ball
CM) and is given by (Cross, 2002a) 

ex = –  

where R is the ball radius and (vx – Rω) is the hori-
zontal speed of a point at the bottom of the ball. For a
perfectly elastic ball impacting on a massive surface,
the horizontal and vertical speeds of the contact point
are both reversed by the bounce and ey = ex = 1. If a
ball starts rolling during the bounce then the contact
point comes to rest with respect to the surface and
then ex = 0. If the ball slides throughout the bounce
then the horizontal velocity of the contact point does
not change sign and the ball bounces with ex < 0.

Measurements of the tangential speed of the ball
CM are quoted below in terms of the dimensionless
ratio:

eT =

which is mathematically analogous to Eqn. (3) but it
does not have the same physical significance. The dif-
ference arises from the fact that the vertical speeds of
the ball CM and contact point are the same, but the
horizontal speeds are not. The significance of eT is that
it can be used to compare experimental data obtained
under different conditions where the head is either
clamped or free to translate. For a sliding ball it would
not be necessary to measure the horizontal ball speed
relative to the surface on which it slides since the coef-

(vx2 – Vx2)
vx1

(vx2 – Rω2 – Vx2)
(vx1 – Rω1)
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ficient of sliding friction is independent of the speed of
the ball or the surface and hence the horizontal ball
speed is independent of whether the head is clamped
or free. However, if the ball rolls or grips the surface,
then the horizontal ball speed does depend on the
speed of the surface. In the latter case, eT provides a
useful measure of the change in horizontal ball speed
relative to the surface. For the clamped racket,
Vx2 = 0 and hence eT = vx2/vx1. For the hand-held
racket, Vx2 was not measured accurately but it was
clearly at least 10 times smaller than vx2. The ball was
projected not across the racket but along the racket in
a direction from the tip towards the handle. In that
case, the mass of the hand and arm contributed to the
total effective mass of the racket in the x direction.
Results for the hand-held racket are therefore quoted
in terms of the ratio vx2/vx1 since horizontal motion of
the racket was neglible.

Ball spin
Measurements of ball spin are quoted below in terms
of two dimensionless quantities, S1 = Rω2/v1 and
S2 = Rω2/(vx2 – Vx2), where v1 is the incident speed of
the ball. The parameter S1 is the ratio of the periph-
eral speed of a point on the ball after the bounce to the
incident speed of the ball. Values of ω2 are not quoted
below since they are directly proportional to the speed
of the incident ball which varied slightly from one
bounce to the next. The parameter S1 removes this
variability and allows different bounces to be
compared to examine the effect on ball spin. S1 can be
regarded as a measure of the efficiency by which linear
motion of the incident ball is converted to rotational
motion of the rebounding ball. The parameter S2 is
the ratio of the peripheral speed of the ball to the hor-
izontal speed of the ball after the bounce, relative to
the string plane. A measurement of S2 indicates
whether the ball slides throughout the bounce
(S2 < 1) or whether it grips during the bounce
(S2 > 1), as described above.

Coefficient of friction
Regardless of whether the ball slides or grips when it
bounces, the changes in ball speed in the horizontal
and vertical directions are given by:

∫ F dt = m(vx1 – vx2)

and

∫ N dt = m(vy1 + vy2)

where m is the ball mass, F is the horizontal friction
force acting at the bottom of the ball and N is the
normal reaction force on the ball. The ratio of the
time-average value of F divided by the time-average
value of N can be regarded as a measure of the
effective value of the coefficient of friction, COF,
defined by the relation:

COF =

If the ball slides throughout the bounce then COF is
equal to the coefficient of sliding friction, µ, in which
case F = µN and hence:

= 1 – µ(1 + eA)tanθ1

Equation (12) shows that a ball will slide faster on a
hand-held racket than on a head-clamped racket since
eA is smaller by a factor of about two for a hand-held
racket.

If the ball starts to slide and then grips the surface
then F = µN at the beginning of the bounce but F
drops to zero and may reverse direction during the
bounce, in which case the time-average value of F is
less than the time-average value of µN and hence
COF < µ. Measurements of COF, S2 and ex all provide
useful indications of whether the ball slides through-
out the bounce or whether it grips the surface during
the bounce. 

Shift in N
In theory, the torque acting on the ball is given by FR
and the angular velocity of the ball will increase during
the bounce according to the relation FR = Iodω/dt
where Io = 3.41 � 10–5 kg m2 is the moment of inertia
of a tennis ball of mass m = 57 g and radius
R = 33 mm about an axis through its CM. The
change in angular momentum during the bounce
should therefore be given by R ∫ F dt, where ∫ F dt is

vx2

vx1

(vx1 – vx2)
(vy1 + vy2)
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the horizontal impulse on the ball as given by Eqn. (9).
Experimentally, it is observed that this impulse is
typically too large to account for the observed change
in angular momentum. The torque acting on the ball
is therefore less than FR. Part of the reason is that R is
reduced as a result of ball compression, particularly at
high incident ball speeds. However, it is difficult to
estimate the effect on the angular velocity, partly
because R is difficult to determine and partly because
the moment of inertia of a squashed ball is also
difficult to determine. A simpler procedure is to
assume that R and Io remain constant, and to attribute
the torque reduction entirely to a forward shift in the
line of action of N, by a distance D. In that case the
angular acceleration of the ball is given by
FR – ND = Iodω/dt. This overestimates the actual
shift but it provides a simple method of calculating a
single parameter, D, that can be used to quantify the
combined effects of a real shift in N and a reduction in
R.

Values of D as large as 11 mm have been calculated
for a high speed bounce on court surfaces (Cross,
2003). On a court surface, a finite value of D can be
attributed to the fact that the front edge of the ball is
incident on the surface at higher speed than the back
edge since the ball rotates into the surface at the front
edge and out of the surface at the back edge. The
effect is analogous to the forwards shift in weight of a
vehicle when the brakes are applied, causing the
vehicle to rotate about its CM. The same effect will
occur on the string plane, but in addition the string
plane is deformed by the incident ball in such a way
that it will tend to resist forward motion of the ball.
The normal reaction force can then be shifted
forwards, in the same way that deformation of the
surface resists forward motion of a rolling ball and
shifts the normal reaction force forwards (Hierrezuelo
et al. 1995).

The normal reaction force acts in a direction per-
pendicular to the string plane and has no direct effect
on the tangential velocity. However, if N acts through
a point ahead of the ball CM, it exerts a backwards
torque on the ball, reducing its angular acceleration.
As a result, the ball can slide for a longer time before it
grips the strings. Since the friction force acts for a
longer time, the tangential velocity of the ball is
reduced.

Bounce speed and spin results

Ball incident without spin
Measured values of the ball speed and spin, for the
racket head on rollers, are shown in Figure 5. Data
were obtained over a large range of incident angles for
a ball incident with zero or neglible spin (less than
5 rad s–1). Depending on the incident ball speed and
angle, the ball bounced with ω2 between +30 and
+100 rad s–1. Each data point in Figures 5–7 was
obtained with a measurement error of about 3%, but
the main source of error in all measurements is the
fact that no two bounces are the same, even if one
projects a ball onto a smooth concrete slab. Even
larger differences can arise when a ball impacts on the
string plane of a racket due to the uneven nature of the
surface. Sufficient data points were therefore obtained
to provide a clear and statistically significant trend of
each measured parameter as a function of incident
angle or as a function of ball spin. The trend in each
case is shown by the best fit polynomial curves in
Figures 5–7, and the variation between successive
bounces is indicated by the scatter in the experimental
data points.

Figure 5a shows the dimensionless ratio
eT = (vx2 – Vx2)/vx1 and the parameter labelled COF
which represents the effective coefficient of friction
during the bounce. In Figure 5a, the sliding region
corresponds to angles of incidence less than about 25°
where µ is about 0.45. The coefficient of sliding
friction between the ball and the strings is lower than
that normally encountered between the ball and a
tennis court where µ ranges from about 0.6 on a fast
court to about 0.8 on a slow court (Brody et al., 2002).
In that respect, the strings of a racket can be regarded
as being very fast, at least for the low speed impacts
studied in this paper. At higher angles of incidence eT

remains relatively constant at about 0.6 and the COF
decreases as θ1 increases, partly because the ball stops
sliding at progressively earlier stages of the bounce
(reducing the average value of F) and partly because N
increases at high angles of incidence (since vy1 is
larger).

Figure 5b shows the two dimensionless measures of
the rebound spin, S1 and S2, as a function of the
incident angle θ1. The value of S1 is small at both low
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and high angles of incidence and is a maximum near
θ1 = 30° in Figure 5b. If a player wants to maximize
the spin of the ball then he or she should hit the ball as
fast as possible to maximize v1, in such a way that the
ball is incident at 30° to the string plane. At least, this
is the result inferred from the data in Figure 5b. For a
hand-held racket, S1 is a maximum near θ1 = 40°, as
described below. In Figure 5b the ball slides through-
out the bounce with S2 = < 1.15 at low angles of
incidence. At higher angles of incidence, the ball
bounces with a value of S2 between 1.0 and 1.3. The
same result was found previously for a tennis ball
bouncing on various court surfaces (Cross, 2003).
Other ball types (golf balls, superballs etc.) can bounce
with higher or lower values of S2 depending on the
amount of energy stored and recovered as a result of
the ball stretching in a horizontal direction. The value
of S2 also depends on the elasticity or compliance of
the surface on which the ball bounces. If the strings

are not interlaced (as in a so-called spaghetti strung
racket) then the strings can stretch considerably in the
horizontal direction with the result that the ball
bounces with significantly more spin than in a conven-
tionally strung racket (Goodwill and Haake, 2002).

Figure 5c shows the horizontal coefficient of resti-
tution, ex, and the distance D between the line of
action of N and the centre of mass of the ball. It is
assumed that D is positive if N acts through a point
ahead of the centre of mass. The formula for D is
given by Cross (2002b). A negative value of ex indicates
that the ball slides throughout the bounce and a
positive value of ex indicates that the ball grips the
surface. For a superball, ex is typically about 0.5 or 0.6,
but for a tennis ball ex is typically about 0.1 or 0.2
when the ball grips a rigid surface. The result in
Figure 5c shows that ex is neither enhanced nor
reduced when a ball bounces off tennis strings.
Figure 5c also shows that D is relatively small for a low
speed bounce on tennis strings, but it may be consid-
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Figure 5 Data obtained
from video camera meas-
urements for a ball incident
with neglible spin, as per
Figure 1. Each data point
represents a single bounce
and each solid or dashed
curve is a polynomial fit to
the data.



erably larger for a high speed bounce. If D is positive
then N exerts a torque on the ball in a direction
opposite the torque due to F, thereby reducing the ball
spin. 

Figure 5d shows that the coefficient of restitution
(COR) was about 0.88 for large angles of incidence
and about 0.84 at low angles of incidence. These
results are consistent with previous measurements of
the COR for perpendicular incidence on a head-
clamped racket, although the decrease at low angles of
incidence was surprising. Measurements of the
oblique bounce of a tennis ball on various court
surfaces indicate that the COR is usually enhanced at
low angles of incidence (Cross, 2003). At low angles of
incidence on tennis strings, and at low incident ball
speeds, the ball brushes the strings only lightly and the
normal reaction force is quite small. If the normal
reaction force is small then a significant fraction of the
ball compression will be due to compression of the
cloth cover rather than the underlying rubber. The
low COR observed at low incident angles may
therefore indicate that energy stored in the cloth is
recovered with low efficiency. Alternatively, energy
losses may be enhanced at low angles of incidence due
to vibration of the frame in the horizontal direction.

The overall conclusion from the results in Figure 5 is
that a tennis ball bounces off tennis strings in a manner
that is similar to the bounce off a tennis court and that is
similar to the prediction of Brody (1984). The main dif-
ferences are that the COR is greater off the strings than
off a tennis court, the strings have a lower coefficient of
sliding friction, and at high angles of incidence the ball
spins about 20% faster than predicted by Brody. At high
angles of incidence the ball bounces with eT

about = 0.6, as predicted by Brody. The agreement
here is somewhat coincidental since Brody assumed that
a tennis ball has an infinitely thin wall. If allowance is
made for the fact that the wall of a tennis ball is about
6 mm thick, then Brody would predict that eT = 0.645
at high angles of incidence. The reduction in eT to
about 0.6 and the additional spin is due to the fact that
the ball grips rather than rolls.

Ball incident with topspin or backspin.
As shown in Figure 5a, eT depends only weakly on θ1

when θ1 is greater than 30°. In practice, the ball is

almost always incident on the strings of a racket with
θ1 = > 30° . All the data collected in this important
range of angles are shown in Figure 6a, as a function of
ω1, the angular velocity of the incident ball. Figure 6a
shows that eT depends much more strongly on ω1 than
on θ1. A ball incident without spin slows down by
about 40% in a direction parallel to the string plane. If
the ball is incident with sufficient topspin then the ball
can bounce with a larger parallel speed than it had
before the bounce. If the ball is incident with sufficient
backspin, then it can bounce at right angles to the
string plane, in which case eT is zero, or it can bounce
backwards, in which case eT is negative. The signifi-
cance of this result is that the bounce angle off the
strings depends strongly on the magnitude and
direction of the spin of the incident ball. Most tennis
players are aware of this and will adjust their swing if
they know that the ball is spinning as it approaches.

There is no detailed theoretical model of ball grip
for a tennis ball that one can use to analyse the results
in Figure 6a. However, the results are qualitatively
consistent with the model proposed by Brody (1984).
Using the same assumptions as those made by Brody,
but allowing for finite wall thickness and for finite spin
of the incident ball, it can be shown (Cross, 2002b)
that:

vx2/vx1 = 0.645 + 0.355Rω1/vx1

This relation is compared with the experimental data
in Figure 6a. The fit is reasonably good, indicating
that the effect of the ball gripping the strings is quali-
tatively similar to that of a rolling ball. Equation (13)
does not take into account the fact that N can act
through a point ahead of the ball CM. This is not a
serious omission at low ball speeds but the observed
values of vx2/vx1 at high ball speeds are considerably
lower than predicted by Eqn. (13), as described in the
discussion section.

Figure 5b shows that the spin efficiency parameter
S1 depends on θ1, so it is not appropriate to plot S1

versus ω1 to include all data with θ1 = > 30°. However,
Figure 6b shows the corresponding graph for a subset
of the data within the narrow range of incident angles
55° < θ1 < 65°. Regardless of the direction of the spin
of the incident ball, the ball bounced with topspin and
hence with a positive value of S1. As one might expect,
Figure 6b shows that a ball incident with topspin

14 Sports Engineering (2003) 6, 00–00 © 2003 isea

Oblique impact of a tennis ball on the strings of a tennis racket R. Cross



bounces with greater spin than a ball incident with
backspin. What Figure 6b does not show is that at
large values of ω1, the spin after the bounce is less than
the spin before the bounce, i.e. ω2 < ω1. 

Bounce off Pro Kennex racket
Results obtained by filming low speed, oblique
bounces of a ball on the Pro Kennex racket are shown
in Figure 7. In all cases the string plane was horizon-
tal, the ball was thrown by hand at a speed of 3–5 m s–1

to impact near the middle of the strings, and the ball
was incident with neglible spin (less than 5 rad s–1).
Two sets of results were obtained, one where the head
was rigidly clamped and one where the racket was held
at the butt end of the handle by an assistant. Results
obtained with the head-clamped racket are essentially
the same as those obtained in the first experiment
where the head was free to move horizontally on
rollers. The value of eT was almost identical and so was
the S1 ratio. For the head-clamped racket, eT is equal
to vx2/vx1 since there was no horizontal motion of the
racket. The measured COR was slightly higher on the
head-clamped racket than when the head was
supported on rollers, probably because vibrational
losses in the frame were reduced. 

Significant differences were found for the hand-
held racket, most noticeably in the measured values of
vy2/vy1, but also in the values of vx2/vx1. For a head-
clamped racket, the vy2/vy1 ratio is equal to the COR.
The experimental value of the COR was 0.91 ± 0.01,

regardless of the angle of incidence, as shown in
Figure 7c. For a hand-held racket, the vy2/vy1 ratio is
equal to the apparent coefficient of restitution
(ACOR). The relation between the COR and the
ACOR is given by Eqns. (5) and (6). A theoretical
estimate of the ACOR, based on the measured COR,
is shown in Figure 7d. Not all incident balls landed in
the middle of the string plane (16 cm from the tip),
some landing short or long or slightly wide. Bounces
landing more than 2 cm away from the long axis of the
racket were not analysed and are not represented in
any of the data in Figure 7. All bounces landing within
2 cm of the long axis are included in the data shown in
Figure 7, even if they landed 5 cm short or 5 cm long
in a direction parallel to the long axis. Bounces landing
about 11 cm from the tip of the hand-held racket had
an ACOR of about 0.30, and bounces landing about
21 cm from the tip had an ACOR of about 0.48. In all
cases, the observed ACOR was equal to or slightly less
than the theoretical estimate. The discrepancy can be
attributed to the fact that impacts not coinciding with
the vibration node near the centre of the strings
generate transverse vibrations in the racket frame,
thereby lowering the COR. In addition, impacts away
from the long axis cause the racket to rotate about its
long axis, thereby lowering the effective mass of the
racket and hence reducing the ACOR. 

A consequence of the reduced value of v2y/v1y for a
hand-held racket is that the ball bounces at a lower
rebound angle, as shown in Figure 7e. The rebound
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Figure 6 Measurements of (a) eT and (b) S1, as a function of incident ball spin. Experimental data points in (a) are indicated by solid dots.
Theoretical data points, using Eqn. (13) plus the experimental values of vx1, are indicated by open circles. All curves are polynomial fits to
the data.
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Figure 7 Measured bounce
parameters for a ball
bouncing obliquely on the
strings of a Pro Kennex No.
24 racket with the head
firmly clamped or when the
handle was hand-held and
the head was initially at rest
and free to recoil. Curves
are polynomial fits, with
linear extrapolations to
θ1 = 0 in (a), (b) and (f) to
show the theoretically
expected trend.



angle also depends on vx2, which is larger for the hand-
held racket, thereby enhancing the difference in the
rebound angle. 

The vx2/vx1 ratio for a hand-held racket (Figure 7b)
differs from that for a clamped racket (Figure 7a) in
two respects. First, the sliding region extends to about
θ1 = 40° for the hand-held racket whereas it termi-
nates at about θ1 = 30° on the clamped racket. In both
cases, the coefficient of sliding friction is about 0.45.
The extended sliding region is easily accounted for,
since the normal reaction force on the hand-held
racket is reduced (at any given v1 and θ1). The time
integral of N determines the change in vy which is
smaller for a hand-held racket since vy2 is smaller. As a
result, the friction force is reduced and hence the ball
spin is reduced at low angles of incidence, as shown in
Figure 7f. In addition, vx2 is increased as indicated by
Eqn. (12) and as shown in Figure 7b. The ball must
therefore be incident at a higher angle of incidence on
a hand-held racket before it starts to grip the strings.

Another difference between the hand-held and
clamped rackets is that vx2/vx1 is significantly higher on
the hand-held racket at high angles of incidence. This
is not consistent with Eqn. (13) and is not easy to
explain. A possible explanation is that the ball releases
its grip at an earlier stage during the bounce, due to the
smaller value of N. In that case, the average friction
force is smaller and hence the ball bounces at a higher
speed in a direction parallel to the string plane. One
might expect that the ball should therefore bounce
with reduced spin on the hand-held racket. In fact, it
bounces with the same spin at large θ1 as shown in
Figure 7f. The most likely explanation is that at large
angles of incidence the calculated value of D is about
0.5 mm on the clamped racket and about −1.0 mm on
the hand-held racket. Positive values of D act to reduce
the spin while negative values act to increase the spin. 

Measurements of S2 for the Pro Kennex racket are
shown in Figure 8. These results confirm the fact,
deduced from the data in Figures 7a and 7b, that the
ball grips the strings when θ1 = > 30° on the clamped
racket and when θ1 = > 40° on the hand-held racket.

Discussion

Measurements of the friction force and other bounce
parameters described above show that a tennis ball

bounces off tennis strings in essentially the same
manner as it bounces off a tennis court. That is, the
ball slides throughout the bounce at low angles of
incidence and it grips the surface at high angles of
incidence. The ball subsequently releases it grip, more
rapidly on strings than on a rigid surface. Maw et al.
(1976, 1981) describe the grip release phase as being
gradual and progressive because the normal reaction
force at the edge of the contact area is less than that at
its centre. Consequently, the outer contact region can
commence to slide backwards on the surface while the
central region remains stuck. At least, this is the
situation that one might expect for a ball bouncing on
a rigid surface. When a tennis ball is gripped by the
strings of a racket, it is likely to be gripped firmly and
more uniformly at all points in contact with the strings
since the strings conform to the shape of the ball (or
vice-versa). Consequently, when the strings release
their grip on the ball, the transition to the backward
sliding phase is relatively rapid. The process can be
likened to a block of wood on an inclined plane, where
the block will suddenly release its grip if the incline
angle is gradually increased. 

Arguments are sometimes presented that natural
gut strings provide a better grip on the ball since since
natural gut is more elastic and ‘cups’ the ball more
firmly. That may well be the case, but it does not
guarantee better performance or greater ball spin
since the final spin at exit depends on the magnitude
and duration of the friction force acting backwards on
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Figure 8 Measurements of S2 = Rω2/vx2 for the Pro Kennex racket
when hand-held (black dots) or head-clamped (open circles).
Curves are polynomial fits to the data.



the ball after the strings release their grip. Indeed,
Goodwill & Haake (2003) found no significant differ-
ence in ball spin off natural and synthetic gut strings.
They also found no significant difference in ball spin
off thin and thick strings, contrary to common belief.

The angle of incidence at which a ball will grip the
surface is typically about 20° on a court surface, about
30° on a head-clamped racket and about 40° on a
hand-held racket. These values depend on the coeffi-
cient of sliding friction, on the COR or the ACOR
and on the magnitude and direction of the incident
spin, but can be regarded as typical. In practice, the
ball is usually incident on the strings at an angle
greater than 45° so the ball will usually grip the
strings. In that case, one cannot use conventional
models of ball bounce (e.g. Brody, 1984) to predict the
rebound angle or spin. In the absence of any quantita-
tive model of how a tennis ball grips the strings, one
must be guided by experimental data. The data in this
paper was obtained at low ball speeds. Data obtained
at higher ball speeds by Bower & Sinclair (1999),
Knudson (1991) and Goodwill & Haake (2003) are
compared with the results in this paper in Table 1. In
each case, the authors obtained data at only one angle
of incidence. In Table 1, v1 is given in m s–1, ω1 is given
in rad s–1, eA = vy2/vy1 and eT = (vx2 – Vx2)/vx1. The
tabulated data are representative values averaged over
a range of experimental conditions (e.g. different
string tensions or string types) and are meant to
indicate typical values obtained by the different
authors under different clamping conditions and at
different ball speeds. To make a direct comparison
between each set of measurements, a value of θ2 was
calculated assuming that a ball is incident at θ1 = 50°
and bounces with the values of eA and eT given in the
Table.

As shown in Table 1, the ball bounces at a larger
angle (closer to the normal) when it is incident with
backspin and it bounces at a much smaller angle when
the racket is hand-held or when the handle is clamped.
In general, these two effects have a much bigger
influence on the rebound angle than those due to vari-
ations in string tension, string type or ball speed.
However, for any given topspin forehand, where the
ball is incident with backspin and the racket is hand-
held, the last two effects may be more significant. In
practice, the significance of these effects is somewhat

diminished because the rebound angle off the strings
depends strongly on the trajectory of the racket. For
example, suppose that a difference in string tension
results in a 3° difference in rebound angle when
measured on a racket initially at rest in the laboratory.
If the same racket is swung towards the ball, then the
rebound angle off the racket may differ by only 1°,
depending on the initial speed and trajectory of the ball
and the racket. This effect was overlooked by Bower &
Sinclair (1999) and is described in more detail by Cross
(2000) and by Brody et al. (2002).

Table 1 Bounce parameters observed by different authors

Author  How held v1 θ1 ω1 eA eT θ2

Cross On rollers 5 30 – 80 0 0.88 0.57 61.5º
Cross On rollers 4 30 – 80 –40 0.88 0.20 79.2º
Cross Head clamped 5 30 – 80 0 0.91 0.57 62.3º
Cross Hand-held 5 40 – 80 0 0.40 0.70 34.3º
B & S Handle clamped 20 45 0 0.50 0.51 49.4º
Knud Handle clamped 19 64 0 0.44 0.70 36.8º
G & H Head clamped 24 50 0 0.91 0.46 67.0º
G & H Head clamped 41 50 0 0.86 0.39 69.2º
G & H Head clamped 24 50 –400 0.85 0.20 78.8º
G & H Head clamped 41 50 –400 0.82 0.28 74.0º

Several studies have shown that the COR and the
ACOR for perpendicular incidence both decrease as
the ball speed increases, a result that can be attributed
mainly to higher fractional ball losses at high impact
speeds. The energy loss in the strings is much smaller
than the loss in the ball. For example, Casolo (1994)
found that the COR for a ball incident normally on a
clamped racket decreases from about 0.90 at low ball
speeds to about 0.80 at an incident speed of 40 m s–1,
while Goodwill & Haake (2003) found that the COR
decreased from 0.91 at 24 m s–1 to 0.86 at 41 m s–1 for
a ball incident at 40° to the normal.

Bower & Sinclair (B & S in Table 1) projected a ball
at q1 = 45° onto the middle of the strings of a handle-
clamped racket, allowing the head to recoil and
vibrate. The ball was incident without spin at speeds
from 16 to 24 m s–1. The string tension was 180, 225
or 270 N, and the clamping position on the handle
was varied to simulate variations in frame stiffness.
The measured value of eA varied from 0.45 for a
flexible racket strung at high tension, to 0.54 for a stiff
racket strung at low tension. The corresponding
values of vx2/vx1 varied over a narrow range from 0.50
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to 0.52. These values were not quoted directly but can
be calculated from the quoted rebound angles. In
Figure 7b, the corresponding value of vx2/vx1 at
q1 = 45° is 0.60 . The difference is probably due the
fact that eT decreases as the ball speed increases, a
result that is apparent from the data given by
Goodwill & Haake (2003).

Knudson (Knud in Table 1) describes an experi-
ment where a ball was projected at 19.1 m s–1 without
spin at θ1 = 64.4° onto the middle of the strings of a
handle-clamped racket. eT ranged from 0.69 to 0.72,
similar to the results for the hand-held racket shown
in Figure 7b. In a subsequent experiment (Knudson,
1993) the ball was projected without spin at the same
angle but at a higher speed (28.9 m s–1) and the ball
bounced at an angle closer to the normal, indicating
that eT was lower than in his first experiment. The
rebound speed was not quoted so no quantitative
estimate can be made of eT in the second experiment.

Goodwill & Haake (G & H in Table 1) projected a
high speed ball at θ1 = 50° onto the string plane on a
head-clamped racket. The ball was incident at speeds
up to 41 m s–1 and with ω1 varying from +100 to
−600 rad s–1. The value of eT, for a ball incident with
zero spin on a racket strung at a tension of 70 lb
(154 N) was 0.46 at v1 = 24 m s–1 and decreased to
0.39 at v1 = 41 m s–1. These values are considerably
smaller than the value 0.60 measured on the head-
clamped racket in this paper, and indicate that eT

decreases as the ball speed increases. This effect can be
attributed to a larger deformation of the ball and the
string plane at high ball speeds, with the result that D
is also larger. For the head-clamped results in this
paper, D = 0.5 mm for a ball incident without spin at
θ1 near 50°. The results presented by Goodwill and
Haake show that D increased from 3.8 mm at
v1 = 24 ms–1 to 5.6 mm at v1 = 41 ms–1 while ex

remained constant at about 0.05. Consequently, one
can attribute the reduction in vx2/vx1 directly to an
increase in D, as described by Cross (2003). 

Goodwill & Haake also found that eT decreases as
the amount of backspin increases. At ω1 = −400 rad s–1,
eT was 0.20 at v1 = 24 m s–1 and 0.28 at v1 = 41 m s–1.
While both of these values are lower than those
obtained for a ball incident with zero spin, eT increased
with ball speed, whereas it decreased with ball speed

when ω1 = 0. This effect can be explained qualita-
tively using the rolling ball model (Brody, 1984). Even
though this model is quantitatively incorrect at high
ball speeds, Eqn. (13) shows correctly that vx2/vx1

decreases as ω1 becomes more negative, but for a given
amount of backspin vx2/vx1 increases as vx1 increases.
The latter effect presumably outweighed the effect
due to finite D since D decreased significantly when
the ball was incident with backspin.

Conclusions

When a tennis ball is incident on the strings of a
tennis racket at an angle within 50° to the normal, the
ball commences to slide and then grips the strings.
While the contact area remains at rest on the strings,
the ball continues to decelerate in a direction parallel
to the string plane and the angular velocity continues
to increase due to the static friction force acting
backwards on the ball. The ball then releases its grip
and the contact region starts sliding backwards on the
string plane. The sudden reversal in direction of the
friction force acts to accelerate the ball in a direction
parallel to the string plane and to decrease the angular
velocity. The ball bounces with topspin off the strings
but the spin is lower after the bounce than it was
during the bounce. 

The coefficient of restitution in a direction perpen-
dicular to the string plane is typically about 0.90 for a
low speed bounce near the middle of the strings but it
decreases to about 0.85 for a high speed bounce. This
information, when combined with measurements of
racket mass and moment of inertia, is sufficient to
calculate the ball speed in a direction perpendicular to
the string plane, for a hand-held racket at any given
swing speed, provided the impact is near the middle of
the strings. Alternatively, a measurement of the
ACOR at various impact points on the string plane
provides sufficient information to calculate the per-
pendicular component of the ball speed for an impact
at any given point on the string plane. In the latter
case, it is not necessary to know the racket mass or its
moment of inertia, although both parameters affect
the measured ACOR values.

The bounce speed of a ball in a direction parallel to
the string plane is more difficult to calculate since it
cannot be characterised by a single number analogous
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to the COR. At low ball speeds and for an impact on a
head-clamped racket, the ball speed can be estimated
from Eqn. (13). In that case, vx2/vx1 is essentially inde-
pendent of the angle of incidence but it depends
strongly on the magnitude and direction of the spin of
the incident ball. If the ball is incident at high speed
then the vx2/vx1 ratio is reduced substantially due to
deformation of the ball and the string plane. If the
racket is hand-held, the vx2/vx1 ratio increases since the
normal reaction force is reduced and hence the
friction force is reduced. The vx2/vx1 ratio has not yet
been measured for a hand-held racket when the ball is
incident at high speed with backspin or with topspin.
Furthermore, there is no theoretical model incorpo-
rating ball grip that would allow the ratio to be
predicted or to be deduced from laboratory measure-
ments on a head-clamped racket. There is therefore a
need for such measurements to be made. The simplest
procedure would be to film high speed bounces off a
handle-clamped racket, but the best and most realistic
procedure may well be to film players on the court
under actual or simulated playing conditions. 
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