
Physics of overarm throwing
Rod Crossa)
University of Sydney, Sydney, NSW 2006, Australia

!Received 22 April 2003; accepted 24 October 2003"

Measurements are presented of the speed at which objects of different mass can be projected by an
overarm throw. Light objects can be thrown faster than heavy objects, although the difference in
speed is not as large as one might expect. For a factor of 60 increase in the thrown mass, there was
a decrease of only 2.4 in the throw speed. The relatively small change in throw speed is due to the
fact that the force that can be applied to a thrown object increases with object mass. Estimates of the
muscle forces involved indicate that the increase in force with mass is primarily an inertial rather
than a physiological effect. The total kinetic energy of the mass, hand, and the forearm was found
to be almost independent of the object mass, and the throw speed is almost independent of the mass
of the upper arm. © 2004 American Association of Physics Teachers.
#DOI: 10.1119/1.1634964$

I. INTRODUCTION

It is intuitively obvious that one can throw a baseball
faster than a brick because the baseball is lighter. If the force
applied to each object is the same and if both objects are
accelerated through the same distance, then both objects will
have the same kinetic energy. In practice, one can apply a
larger force to the brick, so the brick will have greater kinetic
energy. The additional force on the brick is not quite large
enough to propel it at the same speed as a baseball, but the
percentage difference in speed is much smaller than the dif-
ference in mass. In this paper, measurements of throw speed
versus object mass are described and simple models of
throwing are presented to explain the results.
The results should be of particular interest to those in-

volved in the teaching of elementary physics in life or sports
sciences courses. One of the problems in teaching physics to
such students is the difficulty of obtaining relevant and reli-
able data on the forces and energy involved in human move-
ment. An example of this problem concerns the optimum
angle of jumping, or of throwing a shot put to obtain the
maximum range. The angle depends not only on the physics
of the trajectory, but also on the fact that the applied biome-
chanical forces depend on the angle at which the force is
applied.1 In the context of throwing, the applied biomechani-
cal forces also depend on the mass of the thrown object and
its speed.
Throwing provides an interesting but relatively compli-

cated departure from conditions normally encountered in the
classroom. As physics teachers, we are used to simplifying
real world problems so that, for example, the force applied to
an object is independent of time and it is either independent
of mass or is proportional to mass !in a gravitational field".
Throwing at maximum speed involves conditions where the
applied force increases with mass, but is not directly propor-
tional to mass. The force also varies with time, the object
moves in an arc of varying radius, and the force acts in a
direction that is neither parallel nor perpendicular to the ob-
ject path.
The primary physics questions of interest in throwing are

how does the applied force vary with mass of the thrown
object, and why does it vary with object mass? The purpose
of this paper is to provide answers to these questions because
they are not available in the teaching or the research litera-
ture. There is a suggestion in the physiology literature that

heavy objects can be thrown only at low speed because
muscles develop large forces only at low contraction speeds.
However, it is shown that the main effect involves elemen-
tary physics rather than physiology.
For the throwing experiment, the objects chosen varied in

mass by a factor of 60, from 57 g !a tennis ball" to 3.4 kg !a
lead brick". Each object was thrown at least twice and up to
four times by five male subjects at close to maximum pos-
sible speed. As expected, all subjects threw the tennis ball
faster than the lead brick. A question of interest was whether
one can identify a parameter that remains constant, such as
the kinetic energy of the object, the total kinetic energy of
the object plus the arm, or some other parameter such as the
input power. The biomechanics of throwing is obviously im-
portant, but not the main consideration. There have been
many studies of the biomechanics of throwing,2–5 but in al-
most all cases the mass of the object thrown was not varied.
An exception is described in Ref. 6 where the mass of the
arm was varied by attaching weights.

II. EXPERIMENTAL PROCEDURE

The types of thrown objects are listed in Table I. Each
object was thrown overarm by four male students and by the
author. The small 200-g cylindrical brass mass was thrown
by only two students because it became apparent that it was
slightly dangerous to throw this mass at high speed toward a
person holding a radar speed gun. None of the students ex-
celled at a sport involving throwing, and none were particu-
larly strong or athletic or frail. Each had their own style of
throwing and maintained that style throughout the experi-
ment. For example, Adam consistently leaned backward as
his throwing arm swung forward, some stepped and leaned
forward when throwing, and David stood with both feet
firmly planted on the ground throughout each throw. No one
lifted their front leg like a baseball pitcher.
Each thrower was instructed to throw each object in a

horizontal direction as fast as he could toward another stu-
dent located 70 feet away. The second student aimed a radar
speed gun toward the thrower and read out the maximum
speed for each throw. Each throw was also filmed at 100
frames/s using a JVC9600 digital video camera pointing at
right angles toward the throwing arm. The velocity of the
thrown object also was measured from the video film as a
check on the speed recorded by the radar gun. In some cases
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the object was thrown upward at angles up to about 30° to
the horizontal. The radar gun was pointed horizontally and
therefore recorded only the horizontal component of the ve-
locity. The throw speeds quoted below refer to the absolute
speed, v , determined from the video film rather than the
horizontal component, vx . The heavier masses tended to be
launched at higher angles to the horizontal, possibly because
the throwers were accustomed to releasing a thrown object at
a fixed time rather than at a fixed angle. Alternatively, the
throwers may have had difficulty holding onto the heavy
objects for a sufficient length of time to release them in a
horizontal direction. The radar gun data proved to be redun-
dant, but it provided useful feedback during the experiment
because it encouraged the students to try harder to beat their
previous throw or to beat the other students.
A simpler procedure would be to record the thrown dis-

tance rather than the throw speed, but the distance depends
on the launch angle and also on the drag force through the
air. For a tennis ball, the drag force reduces the horizontal
speed of the ball by about 25% while it is in the air, regard-
less of the initial ball speed.7

III. EXPERIMENTAL RESULTS

The speed of each thrown object as a function of its mass
is shown for each subject on a log–log scale in Fig. 1. The
speed of each object was taken as the average of the two
fastest throws. If only two throws were attempted, the throw
speed was taken as the fastest throw. By using a log–log
scale, we can determine whether there is a simple power law
dependence of the form v!k/mn, where k is a constant, v is
the speed, and m is the object mass. For very small values of
m, less than say 10 g, we would expect that n!0 because the
throwing speed will be limited only by the speed at which
the thrower can swing the arm. At higher values of m, the
data could be fit using two straight line segments, with n
%0.15 in the range 50 g"m"730 g, and with n about 0.4
when m#730 g. The fits are shown in Fig. 1 and the corre-
sponding values of n are given in Table II.
If the kinetic energy of each mass remained constant for

each thrower, n would be 0.5. In practice n"0.5, a result that
indicates that the mass of the arm is an important factor
limiting the speed of a thrown object. If the maximum power
input were constant,7,8 then n would be 0.33. Even though
Fig. 1 appears to show that there are two distinct regions for
n, this distinction is a somewhat artificial result due to the
small number of masses thrown. We could equally well fit a
smooth curve to the data with n changing continuously, as
described below.

IV. THEORETICAL MODEL

In principle, we could analyze the action of throwing by
modeling each body segment as a series of connected rods,
each with its own mass and moment of inertia. A measure-
ment of the rotation speed of each segment would determine
the torque acting on each segment. However, we will first
consider a much simpler model in which all segments are
replaced by a single ‘‘arm’’ of mass M, length L, and moment
of inertia I. An object of mass m is located at one end of the
arm and the other end is pivoted at the shoulder !or some
other fixed point".
We assume for simplicity that the pivot point remains at

rest. We also assume that the arm is rotated through a fixed
angle & by a torque ' before the mass m is released. The
work, W, done by the applied torque is then

W!! ' d&!
1
2 mv2$

1
2 I(

2, !1"

Table I. Mass, m, of each thrown object.

Object m !kg"

Tennis ball 0.057
Cricket ball 0.16
Brass cylinder 0.20
Bocce ball 0.73
Lead block 1.42
Steel cylinder 2.10
Lead brick 3.40

Fig. 1. Throw speed, v , vs thrown mass, m, for five male throwers. Straight
line segments are separate fits to the m"730 g and m#730 g data for each
thrower.

Table II. Values of the exponent n in the relation v!k/mn.

m range !g" Adam David Hamilton Hamish Rod

50–730 0.20 0.14 0.14 0.16 0.12
#730 0.42 0.33 0.37 0.41 0.36
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where v!L( is the release speed of the mass m and ( is the
angular velocity of the arm at the instant of release. If we
further assume that the arm has a uniform mass distribution,
then I!ML2/3, and hence

W!
1
2 mv2" 1$

M
3m # , !2"

so

KE!
1
2 mv2!

Wm
!m$M /3" . !3"

The total available energy is shared between the arm and the
mass m. The energy given to the mass m increases as m
increases, provided that the torque applied to the arm !and
hence the work done" does not decrease significantly as m
increases.
The measured variation of the kinetic energy with m for

two of the five throwers is shown in Fig. 2. Also shown are
two-parameter fits to the data assuming that KE has the form
KE!Am/(m$B), where A and B are adjustable parameters.
According to Eq. !3", we can identify A as a measure of the
work done, and B is nominally one-third the mass of the
single-segment arm. The fit was quite good for all throwers,
indicating that the work done in throwing an object is essen-
tially independent of the mass of the thrown object. Equation
!3" also can be used to obtain good fits to the v vs m data in
Fig. 1, and the result is that v and the exponent n both vary
smoothly with m.
The small scatter in the data and the relative insensitivity

of the fitted curve to B did not allow for a measurement of B
to better than about %30%, but A could be determined to
within about %10%. The actual arm mass for each thrower
can be estimated as a simple proportion of total body mass.
According to published data2 the average mass of the upper
arm, forearm, and hand for males is, respectively, 3.25%,
1.87%, and 0.65% of total body mass. Forearm plus hand
mass is 2.52% of total body mass. Table III summarizes
these data for the five throwers, together with the value of
M!3B obtained from the curve fits.
The values for 3B listed in Table II are less than half the

mass of the whole arm and are approximately equal to the
mass of the forearm plus the hand for each thrower. An ex-
ception is the result obtained for Adam. He had an unusual

throwing action where the hand was kept close to the shoul-
der throughout most of each throw, resulting in a relatively
low moment of inertia about the shoulder axis.
The data in Table III indicate that the mass of the upper

arm is not a significant factor in determining the speed of the
thrown objects, and that the speed is limited only by the
mass of the hand and the forearm. This result was unex-
pected and suggests that the single segment model of the
throwing arm may not be realistic. However, there is a sim-
pler explanation. That is, the single segment model is realis-
tic, and the upper arm does not play a significant role in
limiting the speed of a thrown object. The angular velocity of
the upper arm decreases substantially during the latter part of
the throw, while the angular velocity of the forearm increases
rapidly. The angular displacement of the two arm segments is
shown as a function of time in Fig. 3 for two of David’s
throws. The apparent shortening of the arm segments in Fig.
3 indicates that the segments are inclined toward or away
from the camera. The maximum acceleration of the thrown
mass, and hence the maximum force on this mass, occurs
during a time when the upper arm is almost at rest. Con-
versely, the acceleration of the thrown mass is relatively
small while the upper arm is rotating at maximum angular

Fig. 2. Measured KE of each thrown mass vs m for David and Rod, with
best fit curves defined by the relation KE!Am/(m$B).

Fig. 3. Positions of the shoulder, upper arm, forearm, and thrown mass at
0.04-s time intervals. The !x,y" origin is a point at the bottom left corner of
the video film. Time t!0 corresponds to the instant at which the mass was
released.

Table III. Parameters deduced from the total body mass !BM" and the ki-
netic energy data.

Quantity Adam David Hamilton Hamish Rod

BM !kg" 78 82 62 74 81
0.025 BM 1.95 2.05 1.55 1.85 2.02
3B !kg" 0.90 2.13 1.53 1.50 1.74
A !J" 94 179 99 149 121
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velocity. Consequently, the inertial properties of the upper
arm do not play a major role in determining the ball speed.
This interpretation is supported by an interesting result ob-
tained by Southard,5 who found that the speed of a thrown
ball increased slightly when mass was added to the upper
arm.
The mass of the upper arm is more likely to be a signifi-

cant factor in the game of cricket, where the ball is bowled
rather than thrown. In that case the ball speed is limited by
the fact that the arm must be kept straight, without bending
the elbow. This constraint has the effect of increasing the
moment of inertia of the whole arm !about the shoulder axis"
and it also prevents any torque being applied to the forearm.
To compensate for the reduced ball speed, the bowler is al-
lowed to run at high speed toward the batter before releasing
the ball.

V. TWO SEGMENT MODEL

Further insights into the physics of throwing can be ob-
tained by considering a two segment model of the throwing
arm, as shown in Fig. 4. Suppose that the forearm plus hand
have mass M 2 , length L2 , and the upper arm has mass M 1
and length L1 . We assume that both segments have a uni-
form mass distribution, the upper arm is pivoted at the shoul-
der !which remains fixed in space", the upper arm rotates at
angular velocity (1 , and the forearm rotates at angular ve-
locity (2 . The elbow rotates at speed v1!(1L1 with respect
to the shoulder, and the hand rotates at speed v2!(2L2 with
respect to the elbow. We assume for simplicity that both
segments rotate in the same vertical plane, although each
segment tends to rotate in a different plane in practice. Sup-
pose that an object in the hand is released at a time when the
upper arm is inclined at an angle &1 to the vertical, and the
forearm is inclined at an angle &2 to the vertical. The release
speed, v , is given by

v2!v1
2$v2

2$2v1v2 cos!&1$&2", !4"

and the total kinetic energy, KE, of the two arm segments is
given by

KE!
v1
2

2 "M 2$
M 1

3 #$
1
6 M 2v2

2$
1
2 M 2v1v2 cos!&1$&2".

!5"

The most efficient throwing action results when KE is a
minimum for a given value of v . If we express KE as a

function of v and v1 , then it is easy to show that KE is a
minimum when v1!0, in which case KE!M 2v2

2/6, regard-
less of the value of &1$&2 . In hindsight, this result is obvi-
ous. If an object is thrown at maximum speed, then any
motion of the upper arm would result in a loss of energy that
could otherwise be used to propel the object. Such a result
implies that kinetic energy and angular momentum is trans-
ferred from the upper arm to the forearm during the throw in
such a way that the kinetic energy and the angular momen-
tum of the upper arm is reduced to zero. A transfer of energy
and momentum from one body segment to a more distal
segment is known in the biomechanics literature as the ki-
netic link principle, whereby each body segment involved in
any rapid movement transfers energy to the next in a sequen-
tial manner.2–5 If the speed of the upper arm is zero when a
mass is thrown, then the speed of the thrown mass is inde-
pendent of the mass of the upper arm, as found in our ex-
periment.
An essential and surprising feature of the sequential link

between body segments, commonly overlooked in the bio-
mechanics literature, is that more work is done by each seg-
ment than if it acted alone. For example, suppose that wrist
action alone can propel a 140-g baseball at a speed of 3 m/s.
The work done by the wrist is then 0.63 J. Such a result
could be obtained if the wrist exerted a constant force of say
6.3 N acting over a distance of 0.1 m. A final flick of the
wrist could therefore increase the throw speed from say 20 to
23 m/s, resulting in an increase in ball energy of 9 J. More
work is done on the ball because the same 6.3-N force acts
over a larger distance for the same time. The additional en-
ergy is extracted from the forearm which decelerates because
an equal and opposite force of 6.3 N is applied to the fore-
arm. It can be inferred from this example that maximum
energy is transferred to a thrown object if the thrower acti-
vates muscles in the correct sequence !for example, legs, hip,
shoulder, elbow, and wrist" with appropriate time delays be-
tween each group of muscles, rather than activating all
muscles simultaneously. An extension of this concept is pro-
vided by a spear thrower9 or a club or bat or racquet, each of
which acts as an additional link in the chain and allows an
object to be thrown or hit at a greater speed than by means of
the hand alone.

VI. FORCE MEASUREMENTS

Measurements of the instantaneous forces applied to throw
an object were made by analyzing the video film of each
throw. Plots of the x and y coordinates of a thrown object
were used to obtain the vx and vy velocity components, and
the latter components were used to obtain the ax and ay
acceleration components. Small errors in the !x,y" coordi-
nates can lead to large errors in the (ax ,ay) components,
unless particular care is taken with the data analysis proce-
dure. A positional error of only 2 or 3 mm in y can easily
produce a result where the vertical acceleration due to grav-
ity is a factor of 2 larger or smaller than the accepted value.
In the present case, this type of error was minimized by
obtaining the velocity and acceleration components in two
separate stages, prior to release (t"0) and after release (t
#0), and by matching all components at t!0. Best fits were
made to the data for the following polynomial functions,
after the x, y, and t origins were shifted so that x!y!0 at
t!0:10

Fig. 4. Two segment model of throwing arm.
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x!$ vx0t$b2t2$b3t3$b4t4$b5t5$b6t6 ! t"0 "

vx0t ! t#0 "
, !6"

y!$ vy0t$c2t2$c3t3$c4t4$c5t5$c6t6 ! t"0 "

vy0t&4.9t2 !g#0 "
. !7"

The b and c terms are coefficients determined by the curve
fitting procedure, and vx0 and vy0 are the velocity compo-
nents of the thrown mass at t!0. The second derivatives of
x and y were matched by setting b2!0 and c2!&4.9 so that
ax!0 and ay!&9.8 m/s2 at t!0. Using this procedure, it
was possible to obtain good fits to the data, with regression
coefficients greater than 0.999 in all cases.
Throwing involves accelerated motion under conditions

where the applied force is neither parallel nor perpendicular
to the direction of motion. Relatively large forces can be
generated in a direction perpendicular to the path of a thrown
object, but they do not act to increase the speed of the object
or to increase its kinetic energy. The force acting in a direc-
tion parallel to the path of the object is given by mdv/dt .
For the largest masses, the parallel force includes a signifi-
cant component due to gravity. The Fx and Fy components
of the force applied by the thrower were therefore deter-
mined from the relations Fx!max and Fy&mg!may . The
parallel or tangential component FT!F cos) was then de-
termined from the angle ) between the F and v vectors.
Typical results of the FT calculations are given in Fig. 5

for two of David’s throws. FT increases to a maximum well
before the instant of release and decreases to zero at release.
FT is a maximum at a time when the forearm is horizontal
and commencing its rapid forward rotation. The object is
released at a time when the forearm is approximately vertical
and rotating at maximum speed. The peak value of FT acting
on the 57-g ball was 25 N !45 times its weight" and the peak
value of FT on the 3.4-kg mass was 195 N !5.8 times its
weight". There is a factor of 60 difference in the thrown
mass, a factor of 2.3 difference in the throw speed !19.5 vs
8.5 m/s in Fig. 5", a factor of 7.8 difference in the peak force,
and a factor of 11.3 difference in the kinetic energy of the
thrown mass.
A simple estimate of the tangential force applied to each

object also was obtained from measurements of the speed at
release, v , and the time over which each object was acceler-
ated. The throw duration, T, was taken as the time interval
between release !forearm approximately vertical" and the
time at which the forearm was horizontal and commencing
its rapid forward rotation. The average tangential force ap-
plied during the time T was calculated from the relation F̄
!mv/T . The values of F̄ obtained by this method were es-
sentially the same as the peak FT values obtained by the first
method. The latter result was coincidental, but can be attrib-
uted partly to the fact that the assumed throw duration was
less than the actual duration, and partly because the change
in speed during the time T was less than v . At the nominal
start of the time interval T, the thrown object was moving
forward at about one-third of its final speed and the tangen-
tial force was at its maximum value. Prior to this time there
was no clearly identifiable start of the throw period because
the thrown object was almost stationary for a significant time
interval while the elbow moved rapidly forward.
Figure 6 shows the force, F̄ , and throw duration, T, as a

function of the thrown mass, averaged over three throws for
each mass thrown by David. Similar results were obtained
for all throwers, with force and throw duration both increas-
ing with mass. Because each thrown mass was accelerated

Fig. 5. Tangential force, FT , acting on the lightest and heaviest masses as a
function of the instantaneous speed during two of David’s throws, at fixed
time intervals prior to release.

Fig. 6. Average force, F̄ , and throw duration, T, as a function of the thrown
mass, averaged over three throws for each mass thrown by David.
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over approximately the same distance, the kinetic energy of
each mass increased approximately in proportion to the ap-
plied force.

VII. FORCE–VELOCITY RELATIONS

While researching this topic, I came across several articles
in the physiology and sports science literature11–13 that made
the same surprising claim that heavy objects can be lifted or
thrown only at low speed while light objects can be lifted or
thrown more rapidly because muscles develop larger forces
when contracting slowly and smaller forces when contracting
rapidly. The latter effect is known as the force–velocity re-
lation for muscles. My surprise was that this relation was
apparently being used to account for the inertia of an object.
Most physicists would probably assume that heavy objects
can be lifted only at low speed because they are heavy. For
any given applied force, light objects will accelerate faster
than heavy objects. However, when lifting or throwing an
object at maximum speed, the force acting on the object
increases as the mass of the object increases or as the speed
of the object decreases. If the force increased in direct pro-
portion to the mass, and if each object were lifted or thrown
through the same distance, then heavy objects could be lifted
or thrown at the same speed as light objects. In fact, the force
increases at a lower rate than the mass, which is the real
reason that light objects can be lifted or thrown faster.
The results in Fig. 5 appear to contradict the force law for

muscles. At the beginning of the throw period, the applied
force increases as the speed of the object increases. It is only
toward the end of the throw period that the applied force
decreases as the speed of the object increases. An object is
thrown not by a single muscle but by several different
muscle groups acting in sequence. At the beginning of the
throw period in Fig. 5, the object is accelerated primarily by
rapid rotation of the upper arm while the forearm rotates at a
lower speed. The muscles in the shoulder acting on the upper
arm propel the upper arm and elbow forward, causing the
forearm and the object in the hand to move forward. Presum-
ably, the force on the upper arm decreases as the elbow ac-
celerates, with the result that the force on the forearm and
hence the force on the thrown object also will decrease as the
elbow accelerates !at a decreasing rate with time". At least
that would be the result if the forearm were completely pas-
sive and pulled along only by the fact that it is attached to the
elbow. If the muscles acting on the forearm are activated
soon after the upper arm muscles are activated, then there
will be an increase rather than a decrease in the force acting
on the thrown object. The initial increase in force shown in
Fig. 5 presumably corresponds to increased activation of the
muscles attached to the forearm. Once the muscles are fully
activated, the applied force subsequently decreases as the
object accelerates.
An apparent force–velocity relation for muscles results if

one plots the maximum tangential force, FT , or the calcu-
lated value of F̄ , as a function of the speed of each thrown
object. Such a plot is shown in Fig. 7 for David’s throws.
Figure 7 shows that the maximum force that can be applied
to an object decreases as the speed of the object increases.
However, the plot in Fig. 7 does not provide a valid test of
the force–velocity relation for muscles and gives rise to an
apparent inconsistency between the results in Figs. 5!a" and
5!b". Figure 5!a" shows that the maximum force exerted on
an object when throwing a tennis ball at a speed of about 6

m/s is about 25 N, whereas Fig. 5!b" shows that a force of
about 180 N can be exerted on the lead brick when it is
moving at 6 m/s.
The force exerted by the muscles is not the same as the

force exerted on the object. Consider the situation shown in
Fig. 8 where a muscle force Fm is exerted on the forearm and
where Fm exerts a torque '!Fmd!Id(/dt about an axis
through the elbow; I is the combined moment of inertia of
the forearm, the hand, and the mass m located in the hand. If
the object–elbow distance is L, then the mass will move at
speed v!L( with respect to the elbow. If we assume for
simplicity that the elbow remains at rest and the mass m
moves at speed v , then the force acting on m is given by

F!m
dv
dt !mL

d(

dt , !8"

and hence

F!!mLd/I "Fm . !9"

The force exerted on the object must therefore be divided by
mLd/I to estimate the muscle force. If m were much larger
than the mass of the forearm, then I!mL2 and F!dFm /L
would be directly proportional to Fm , F would be indepen-
dent of m and would be significantly less than Fm . In the
present experiment, m was either much less than the mass of
the forearm or comparable to the mass of the forearm. When

Fig. 7. F̄ as a function of the speed of each thrown object averaged over
three throws for each mass thrown by David.

Fig. 8. The force F!mdv/dt acting on a mass m in the hand is determined
by the muscle force Fm which exerts a torque '!Fmd about an axis through
the elbow.
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m is small, the rotation speed of the forearm is limited only
by its moment of inertia, in which case the force applied to m
is directly proportional to m and to the force exerted by the
muscles.

VIII. THROW WITH FOREARM ONLY

The muscle forces exerted when throwing an object are
difficult to determine from kinematic data due to the large
number of muscles and linkages involved. Even if one were
to measure the net force and torque acting on each segment,
that information would be sufficient to determine only the
magnitude and the line of action of the net force acting on
each segment. Given that the upper arm exerts a force on the
forearm through the elbow joint and several different muscle
groups exert a torque on the forearm, there is no unique
solution for the individual forces involved.14 Furthermore,
most limb muscles run over two or more joints so the con-
traction of any one muscle affects more than one segment.
The problem is further compounded by the fact that single
muscles rarely act alone and by the fact that motion of any
one segment affects other segments linked to it. A separate
experiment to determine the muscle force on the forearm was
therefore conducted, by throwing a tennis ball and a bocce
ball with the hand and forearm only. The upper arm was held
at rest in a horizontal position on a table and each ball was
thrown as fast as possible in a horizontal direction by the
author. A video was used to determine the throw speed and
the throw duration T. The forearm was initially at rest and
inclined at an angle &!20° to the horizontal. The throw
duration was taken as the time to accelerate the forearm from
&!25° to the ball release (&*90°) position.
The tennis ball was accelerated to 9.5 m/s in 0.20 s, and

the bocce ball was accelerated to 6.3 m/s in 0.25 s !averaged
over five throws in both cases". The throw speeds were each
about half the throw speeds shown in Fig. 1. The average
tangential force on the tennis ball, mv/T , was 2.71 N and the
average tangential force on the bocce ball was 18.4 N. The
moment of inertia of the hand and forearm alone was ap-
proximately 0.077 kgm2. The elbow–ball distance was L
!0.37 m, and hence I!0.085 kgm2 with a tennis ball in the
hand, and I!0.177 kgm2 with the bocce ball in the hand. If
we use Eq. !9" and the assumed value of d!5 cm, we find
that the average muscle force was 218 N when throwing the
tennis ball, and 241 N when throwing the bocce ball. The
average muscle force was only slightly larger when throwing
the bocce ball, despite the fact that the tangential force on the
bocce ball was 6.8 times larger than the tangential force on
the tennis ball. The additional tangential force on the heavier
ball was therefore due primarily to its inertia, rather than the
increased muscle force arising from the lower contraction
speed. The total kinetic energy of the forearm and the ball
was similar in each case !16.5 and 21.0 J for the tennis and
bocce balls, respectively", indicating that a similar amount of
work was done by the muscles.
The angular position and acceleration of the forearm when

throwing the tennis ball is shown in Fig. 9. The applied
torque '!Id(/dt is not maximized when the muscles acting
on the forearm are first activated, but is a maximum just
before the ball is released. One can infer from this result that
the muscles acting on the forearm take about 0.15 s to be-
come fully activated, as assumed in Sec. VII.

IX. THROWING VERSUS SWINGING

The original motivation for this study was related to a
problem in ball sports such as baseball, golf, cricket, or ten-
nis, where the implement !bat, club, or racquet" is swung
rather than thrown. Should players choose to use a light or a
heavy implement in order to impart maximum speed to the
ball? A light implement can be swung faster, but a heavy
implement is more effective in transferring energy into the
ball. By ‘‘effective’’ we mean that if two implements of dif-
ferent mass are swung at the same speed toward the ball, the
ball speed will be greater when it is struck by the heavier
implement. Even though the heavier implement is more ef-
fective, it is less efficient because it retains a larger fraction
of its initial energy after the collision. When swing speed and
energy transfer are considered together, it is not obvious how
the resulting ball speed will depend on the mass of the imple-
ment. Some insights can be gained by considering the phys-
ics of the problem,7,8 but the relation between swing speed
and implement mass is not well known. If the total kinetic
energy of the implement and the arms remains constant, as in
the present experiment, then a small increase in ball speed
can be expected as the mass of the implement is increased.
This increase needs to balanced by the fact that heavy imple-
ments are less maneuverable, so the choice for a player is
one of optimizing the power of the implement and the con-
trol that the player can exert in directing the implement to-
ward its intended target at the desired speed and angle of
approach.
A number of studies13,15–17 have been undertaken to deter-

mine the relation between swing speed and the mass of the
implement that is swung. However, in none of these studies
has a clear picture emerged regarding the factors that deter-
mine the swing speed. The problem is complicated by the
fact that the swing speed of an extended object such as a bat
or a racquet depends on both its mass and its moment of
inertia. The present experiment on throwing was devised to
eliminate one of these variables.

Fig. 9. Angular displacement, &, and acceleration, +!d(/dt , of the fore-
arm vs time when only the forearm is used to throw a tennis ball. The solid
curve is sixth-order polynomial fitted to the experimental data !closed dots"
to calculate the acceleration, assuming that +!0 at t!0 !the time at which
the ball was released".
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X. CONCLUSIONS

When an object of mass m is thrown by hand, the tangen-
tial force acting on the object is given by F!ma , where a is
its tangential acceleration. If m is much smaller than the
mass of the hand, then a will be independent of m and will
be limited only by the moment of inertia of the hand and
forearm and by the forces that can be developed by the
muscles involved in throwing. Under these conditions, F will
be directly proportional to m. If m is comparable to or larger
than the mass of the hand, then a will decrease as m in-
creases due to the increased inertia at the end of the forearm.
If one assumes that the torque applied to the various arm
segments is unaffected by an increase in m, then one can use
a simple one or two segment model of the arm to estimate
the change in F as a function of m. Experimentally, it was
found that the muscle torque acting on the forearm was al-
most independent of the thrown mass, and that the total ki-
netic energy of the hand, forearm, and mass in the hand was
essentially independent of the mass of the thrown object.
Throwing can therefore be regarded for physics teaching pur-
poses as a relatively straightforward problem in undergradu-
ate mechanics, without being too concerned about subtle or
unfamiliar biomechanical or physiological effects.
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