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Abstract
Measurements are presented of the speed at which six different rods could be swung by four male students. Three of the rods
had the same mass but their swing-weight (i.e. moment of inertia) differed by large factors. The other three rods had the
same swing-weight but different masses. Our primary objective was to quantify the effects of mass and swing-weight on swing
speed. The result has a direct bearing on whether baseball, tennis, cricket and golf participants should choose a heavy or light
implement to impart maximum speed to a ball. When swinging with maximum effort, swing speed (V) was found to decrease
as swing-weight (Io) increased, according to the relation V = C/Io

n, where C is a different constant for each participant and
n = 0.27 when Io 4 0.03 kg � m2. Remarkably similar results were obtained previously with softball bats (where n = 0.25)
and golf clubs (where n = 0.26). Swing speed remained approximately constant as swing mass increased (when keeping
swing-weight fixed). The implications for racket power are discussed.
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Introduction

Many attempts have been made to describe the

power of bats, clubs and rackets, especially in

relation to the perceived increase in ball speed

resulting from the use of modern materials and

construction methods (Brody, Cross, & Lindsey,

2002; Nathan, 2003). For example, it is widely

believed that modern tennis rackets are more power-

ful than old wood rackets, although the evidence for

this is weak. The game of tennis is clearly played at a

faster pace than in the past, but that can be attributed

in large part to the increased fitness of modern

players and a larger racket head that allows players to

hit the ball faster while still maintaining good ball

control. Modern rackets are generally lighter than

old wood rackets and have a lower swing-weight

(defined below), allowing modern players to swing

the racket faster. A light racket will generate a lower

ball speed than a heavy racket if both rackets are

swung at the same speed. A question of interest in

terms of racket power is whether the increased speed

of a light racket is sufficient to compensate for the

reduction in momentum and kinetic energy accom-

panying the decrease in mass. A weak link in this type

of discussion has been the lack of reliable informa-

tion on the effects of changes in mass and swing-

weight on swing speed.

The effects of implement mass and swing-weight

on the so-called ‘‘power’’ of an implement is still an

open question. Swing speed appears to depend more

on swing-weight than on implement mass, but the

reasons for this are not properly understood.

Previous research on the effects of swing-weight

and implement mass on swing speed has used

baseball bats (Fleisig, Zheng, Stodden, & Andrews,

2000), golf clubs (Daish, 1972) and tennis rackets

(Mitchell, Jones, & King, 2000). However, in most

of these studies the effects of mass and moment of

inertia (MOI) have not been determined separately.

An exception was the recent study by Smith, Broker

and Nathan (2003), who analysed the swing speeds

of 16 softball players swinging 20 different bats

modified so that 10 of the bats had the same mass

(but different MOI) and 10 had the same swing-

weight (but different mass). They found that swing

speed depends on swing-weight but it does not

depend on bat mass. Swing-weight itself depends on

bat mass, as well as on bat length and mass

distribution, but swing speed was found to be

essentially independent of bat mass provided that

swing-weight was held constant.
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The study by Smith et al. (2003) was somewhat

restricted in that bat mass and MOI were each

varied over a relatively small range, from 0.695 to

0.879 kg (24.5 to 31.0 oz) and from 0.128 to

0.200 kg � m2 (7000 to 11000 oz � inch2), respec-

tively. In the present study, we chose to study a set

of rods having much larger variations in mass and

MOI, by factors of 2.7 and 11, respectively. To

achieve such large variations, we allowed the rod

lengths to vary, whereas the bats studied by Smith et

al. (2003) were of equal length. Very large varia-

tions in implement mass and MOI are not normally

encountered in any given sport, with the result that

variations in swing speed are usually quite small and

difficult to measure. Much clearer effects are

observed by varying mass and MOI well outside

the normal range. In a recent study of overarm

throwing (Cross, 2004), it was found that throw

speed decreased by a factor of only 2.4 when the

mass of the thrown object was increased by a factor

of 60. Smith et al. (2003) reported that bat swing

speed decreased by only 10% when the bat MOI

was increased by a factor of 1.6. By restricting this

study to a series of relatively light rods, each swung

by one hand, our results are of greater relevance to

the swing of a tennis racket rather than a bat or a

club. Nevertheless, our results are of general

relevance to all types of swinging.

The term ‘‘swing-weight’’ is commonly used by

the sporting community to describe the moment of

inertia (MOI) of an object. However, there is a

noteable exception in the golf literature where the

term swing-weight is used to refer to the first

moment of a golf club about an axis 35.7 cm (14

inches) from the end of the handle (Jorgensen,

1999). In our paper, swing-weight refers to the

second moment or the moment of inertia, as is more

appropriate when an implement is swung. We use

the colloquial term ‘‘swing-weight’’ rather than

moment of inertia because all objects have different

moments about the three principal axes, only one of

which (i.e. the swing-weight) is usually relevant in

determining swing speed.

For practical reasons, swing-weight is usually

measured under laboratory conditions with respect

to a defined axis of rotation close to the handle end.

For example, the swing-weight of a tennis racket is

usually quoted with respect to an axis of rotation

10.16 cm (4 inches) from the butt end of the handle.

The actual axis of rotation may be quite different in

practice. Furthermore, the moments of inertia about

axes through the wrist, elbow and shoulder are all

different and they may each affect the dynamics of

arm motion in different ways. Since different players

tend to use different swing techniques, some with

more wrist action or with more internal rotation of

the arm than others, the effects of swing-weight and

implement mass on swing speed may vary substan-

tially between players.

Experimental procedure

The rods chosen for swinging are shown in Figure 1.

The two wooden rods were modified by the addition

of a 0.036 kg bolt and nut inserted through a hole

near the far end of each rod to increase the mass and

MOI. The six rods varied in mass from 0.208 to

0.562 kg. The MOI for rotation about an axis

through the handle end varied by a factor of 11,

from 0.0089 to 0.0992 kg � m2. However, in all

subsequent references to these rods, we will quote

the mass and MOI of each rod by including the mass

of one hand. The purpose of this is to recognize that

the hand and the rod act dynamically as a single

segment, since both have the same angular velocity

and both are free to rotate about a common axis

through the wrist. In other words, the rod will be

regarded simply as an extension of the hand. In this

way, the effect of a change in rod mass of, say, 0.1 kg

can be seen to represent a relatively small increase in

overall mass of the final segment in the kinetic chain,

as opposed to a relatively large increase in rod mass

alone.

We assume that the hand mass is 0.53 kg for all

four participants, based on a figure of hand mass

being 0.65% of total body mass for males (Kreigh-

baum & Barthels, 1996). All four participants had a

total body mass of between 76 and 85 kg. Assuming

that the hand extends over the last 10 cm of the

handle, the resulting values of Icm and Io are as

shown in Figure 1, where Icm is the moment of

inertia of the rod – hand system about an axis

through its centre of mass, and Io is the moment of

inertia of the rod – hand system about an axis

through the end of the handle. Each rod was held

with the handle end of the rod adjacent to the wrist.

The end of the handle was displaced by about 3 cm

from the wrist axis, which had the effect of increasing

the MOI about an axis through the wrist by less than

1% compared with the corresponding MOI about an

axis through the end of the rod. The corresponding

mass, M, of the rod – hand system is given by M = m

+ 0.53, where m is the mass of each rod as indicated

in Figure 1. Even though the mass of the hand was

greater than the mass of most of the rods, the hand

made an almost negligible contribution to the value

of Io (0.0013 kg � m2). However, the hand makes a

significant contribution to the moments of inertia of

the rod – hand system about other axes of rotation,

including axes through the elbow and shoulder.

Each rod was swung by four male students,

primarily in the sagittal plane and using only one

arm. For identification purposes, the students will be

called Bob, Joe, Ken and Tom. Motion of various
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body segments was restricted as far as possible so

that the rods could be swung using only the upper

arm, forearm and wrist. The students were specifi-

cally instructed not to use any other part of the body,

such as the legs, hips or torso. Measurements were

also made under conditions where the rods were

swung using only the forearm and wrist. In this

manner, it was anticipated that the effects of rod

mass and MOI on arm motion would be clearly

identified without the added complicating effects of

rod mass and MOI on motion of body segments

beyond the shoulder or elbow. Furthermore, by

restricting motion of the arm and the rod to the

sagittal plane, the problem was reduced essentially to

two dimensions. Internal rotation of the upper arm

plays an important role in many swinging styles, but

it did not play any significant role in the present

study. Given that the hand, forearm and upper arm

can each rotate in various planes, there are many

different ways to swing a rod. The present study was

restricted in its scope to just one of those ways (or

two if we include the case where the upper arm

remained at rest), but it was one where each rod

could be swung at near maximum possible speed.

Swing speed was recorded using the arrangement

shown in Figure 2. Each participant was asked to sit

or stand at a selected location and to swing each rod

as fast as possible so that the rod would impact a

pillow located anteriorly. The height of the pillow

was adjusted so that the forearm would be approxi-

mately horizontal at impact. Each swing was

recorded at 240 frames per second using two

Qualisys infrared cameras located approximately

3 m apart in a plane parallel to the sagittal plane

and about 4 m from the sagittal plane. Two cameras

were used to obtain three-dimensional images,

although subsequent analysis showed that motion

of the forearm and rod out of the sagittal plane was

negligible in all cases. Reflective tape was placed on

the elbow, around the wrist, and around each rod at

Figure 1. Rods used in the experiment. The moments of inertia Icm and Io (units kg � m2) refer to axes through the centre of mass and the

handle (left) end, respectively.

Figure 2. Geometry of the experiment. The four open circles show

locations of markers used to record (x,y) coordinates on the

forearm and rod. V denotes the velocity of a point on the rod

60 cm from the handle end.
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two points. For the shortest rod, the tape was located

at points 15 and 27 cm from the end of the handle.

For all other rods, the tape was located 15 and 30 cm

from the end of the handle. Subsequent analysis

showed that the image quality was excellent, with the

tape separation remaining equal to the known

separation within 0.5 mm throughout each swing.

Each participant swung each rod (in random

order) three times, at intervals of about 30 s. Two

participants completed their standing swings before

sitting down to swing the rods, while the other two

reversed this procedure. In the seated position, the

participants held each rod behind their back with

their upper arm resting horizontally along the edge of

a table. They were asked to lean slightly towards the

table to help ensure that their upper arm remained at

rest during each swing and that their elbow also

remained on the table. The starting angle of each rod

was not standardized. Each participant was in-

structed to swing each rod in a manner that felt

natural and comfortable. All four participants started

each swing with the rod behind their back and below

the horizontal position. All rods were swung through

an angle of at least 1508 and sometimes up to 2408
before striking the pillow. In total, 144 separate rod

swings were analysed (6 rods 6 4 participants 6 3

swings 6 2 techniques). Increasing the number of

rods and swings further would have entailed a very

large number of maximum effort rod swings by each

participant, and fatigue would then have been a

significant factor.

Data analysis

Data files from the two cameras were processed to

output centred (x, y, z) coordinates of each marker

over selected intervals of time starting from the

beginning of each swing and ending just before each

rod hit the pillow. The z axis data (towards the

camera) were subsequently discarded since motion

out of the sagittal plane was negligible and since our

primary interest was motion within the sagittal plane.

The y axis is vertical and the x axis is horizontal

throughout this paper. The raw data were processed

to determine the angle of inclination of the forearm,

yF, and the rod, yR, as a function of time, t. The yF

versus time and yR versus time data sets were each fit

by a sixth-order polynomial to calculate the angular

velocity of the forearm, oF, and the angular velocity

of the hand and rod, oR. Even though the fits were

excellent, with a regression coefficient greater than

0.9999 in all cases, greater accuracy towards the end

of each swing was obtained by fitting a sixth-order

polynomial to the last 20 or 30 data points.

Additional accuracy checks were performed by fitting

fifth-order polynomials to the complete data set as

well as the last 20 or 30 data points. Significant

discrepancies were found in some cases, arising from

the fact that the last data point sometimes included

the initial impact of a rod with the pillow. When this

data point was excluded, all polynomial fits for any

given swing generated angular velocities that agreed

within 1% and angular accelerations that agreed

within 5%. Fits over an even smaller subset of data

near yR = 1208 also provided accurate data on the

angular velocity at yR = 1208, but the complete data

set needed to be analysed to determine an appro-

priate angle at which to present the angular velocity

data. The complete data set also provided interesting

information on the time history of the wrist and

elbow forces and torques applied by each participant.

We intend to report on the effects of swing-weight on

swing style in another paper.

Doubt has previously been cast on the value of the

polynomial fit technique when processing kinematic

data (Winter, 1990). A problem can arise if the order

of the polynomial is too low to reproduce rapid

changes in the data, in which case the polynomial will

simply smooth the data. Conversely, a high-order

polynomial fit to a small number of data points can

artificially generate large excursions in slope between

data points even if the regression coefficient is close

to unity. Consequently, we undertook the additional

tests described above to ensure that the fits were valid

and that estimates of the velocity and acceleration

based on those fits were reliable.

The same curve fit procedures were used to

calculate the x and y components of the velocity of

each marker, from which the velocity components

and absolute speeds of selected points along each rod

could be determined by linear extrapolation. Linear

and angular velocity errors were both estimated to be

less than 1%. The quantity of greatest interest in this

paper is the linear speed, V, of any given impact

point on a rod, since this is the speed that determines

the outgoing speed of a struck ball. Many such

speeds could be quoted from our study, but we have

chosen to present primarily the data pertaining to the

speed, V120, of a point 60 cm from the handle end of

each rod at a time when each rod was inclined at an

angle of 1208 to the horizontal (308 past the vertical

position). The 1208 position was chosen in part

because all rods reached this point before striking the

pillow but not all rods were swung past the 1308
position. In addition, the maximum speed of each

rod was reached at a rod angle of about 1208 or at a

slightly larger angle. As a result, rod speeds quoted at

a rod angle of 1208 are almost the same as the rod

speeds at other nearby angles.

Despite the fact that half the rods were shorter

than 60 cm, we have extrapolated data beyond the

end of these rods as if the rods were actually longer

than 60 cm. The 60 cm point was chosen as a typical

impact point for a tennis racket, given that most
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rackets are about 69 – 70 cm long. An assumption

here is that the swing speed of any given rod will

depend primarily on its mass, M, or its moment of

inertia, MOI (about an axis through the end of the

handle), since these are the only two quantities that

determine the dynamics of a rod when it is subject to

a given force and a given torque. Consequently,

swing speed should depend only very weakly on the

length of the rod, L, or on the location of its centre of

mass (commonly known as the balance point). In

other words, for any given M and MOI, a change in

the rod length or the balance point should not have

any significant affect on swing speed. This assump-

tion is justified in the Appendix.

Results and discussion

From each of the three swing trials for each rod, we

selected the maximum linear speed, V120, as

representing the maximum effort swing. The results

are shown in Figure 3 for both the standing and

sitting swings. Apart from one small discrepancy for

Tom, the results show clearly that swing speed

decreases as MOI increases when M is held constant,

regardless of whether the rod is swung by both the

upper arm and the forearm or by the forearm alone.

The one small discrepancy for Tom indicates that

the rod with the lowest MOI was not swung with

maximum effort in the standing position. Indeed,

Tom managed to swing this rod faster using the

forearm alone. The reason is that Tom swung this

rod so fast in the seated position that he felt a

significant sting in his hand, presumably associated

with the fact that the impact point was close to the

hand for this, the shortest rod. When he then swung

this rod in a standing position, he appeared reluctant

to swing it with maximum effort. The results for Ken

are surprising since, for any given rod, the swing

speeds in the seated and standing positions were

approximately the same. Results for Joe using the

constant MOI rods when seated are not included

here, because the wrist marker worked loose during

this series of swings, which did not become apparent

until well after the measurements were completed.

Figure 3. V120 results for both standing and seated positions. For the constant mass rods, log V120 is plotted on the left vertical scale with a

translation to V120 on the right vertical scale.
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Figure 3 shows log V120 versus log Io in order to

test for a power law dependence of the form

V120 = C/Io
n, where C is a constant for each

participant depending on strength and technique.

Since log V120 = log C - n log Io, n is given by the

slope of the log – log graph. This type of power law

provides good fits to the swing speed data for softball

bats where n = 0.25 (Smith et al., 2003), and it also

provides a good fit to golf club data (Daish, 1972).

Daish quotes n = 1/5.3 = 0.19 using clubhead mass

rather than MOI as the variable. If one assumes that

the shaft mass was approximately 0.4 kg in his

experiment, then it is a simple matter to calculate

the MOI for his clubs about an axis through the end

of the handle. In that case, a good fit to his clubhead

speed versus MOI data is obtained with n = 0.26

(over the range Io = 0.166 to 0.412 kg � m2). In our

case, we found that the above power law did not

provide particularly good fits to the data. As

indicated in Figure 3, n was relatively small at low

Io, increased at high values of Io and was larger for

sitting swings than for standing swings. Separating

the data into low and high Io regions defined by the

linear segments in Figure 3, and ignoring the

discrepancy for Tom, we found n values (mean+ s)

as follows: (a) standing, n = 0.12+ 0.02 at low Io

and n = 0.27+ 0.01 at high Io; (b) sitting,

n = 0.16+ 0.05 at low Io and n = 0.35+ 0.02 at

high Io.

The variation of n with Io in our experiment is not

surprising, considering the large range of Io values

studied. In the limit where Io tends to zero, n must

also approach zero, since swing speed will then

depend only on the MOI of the arm. Swing speed

will not become infinite when Io = 0. The above

power law is therefore appropriate only over a

restricted range of Io values. Values of Io less than

about 0.015 kg � m2 are of little practical interest

given that all badminton, squash and tennis rackets

have larger Io values. Considering only the high

range Io 4 0.03 kg � m2 standing data where

n = 0.27, our results are surprisingly similar to those

obtained previously with softball bats (where

n = 0.25) and golf clubs (where n = 0.26). Both

one-handed and two-handed swing speeds therefore

seem to obey the same or very similar power laws

over a wide range of swing styles and swing-weights.

Swinging with the forearm only is a somewhat

different swing technique, as indicated by the higher

values of n quoted above. Changes in rod MOI have

a greater influence on forearm-only swing speeds,

presumably because the rod MOI is then a larger

fraction of the total moment of inertia about the most

proximal axis.

It is emphasized that the power laws described

above have somewhat limited validity. In our own

case, the three data points for each participant were

sufficient to show that a simple power law cannot be

used to describe the variation of swing speed with

swing-weight over an extended range of Io values.

Furthermore, one cannot establish the existence of a

simple power law from only the two highest Io values.

Similarly, one cannot establish the existence of a

universal power law dependence on Io, even with

many data points, if the range of Io is limited.

Nevertheless, a simple comparison between our

results and those of previous studies can be made

by fitting a power law function to the high Io data, in

which case we find that the exponent is very similar

to that found by previous authors. From a theoretical

point of view, a power law exponent of n = 0.5 would

imply that the kinetic energy of a swung implement is

independent of Io, while an exponent of n = 0.33

would imply that the power input is constant (Brody

et al., 2002; Nathan, 2003).

The results in Figure 3 showing V120 versus M

when MOI is held constant are not as easy to

interpret, since in some cases there is a slight increase

in swing speed with M, in other cases there is a slight

decrease, and in some cases V120 is maximized for

the intermediate mass rod. One result that is clear is

that the lightest rod is not necessarily swung the

fastest. In all cases, the lightest rod is swung at

approximately the same speed as the intermediate

weight rod. An even simpler result is obtained if one

averages the swing speeds over all four participants,

in which case V120 is essentially independent of M.

Averaging results over different participants is a valid

procedure when sampling population averages, but

in this case it hides information about individual

differences in swing techniques. The results suggest,

for example, that Bob and Tom might each benefit

by using an intermediate weight racket, but on

average there is no benefit for any player in using a

light, heavy or intermediate weight racket.

Implications for bat and racket power

Given the apparently universal n & 0.26 power law

for maximum effort swinging, it is appropriate to

examine the consequences in terms of bat and racket

power, in a manner similar to that described by

Daish (1972). Daish considered the impact of a

clubhead and a golf ball as a simple head-on collision

between two point masses and found that the

optimum mass, M, of the club head is given by

M = m(1/n - 1), where m = 0.0459 kg is the ball

mass. Taking n = 1/5.3, he concluded that the

optimum mass was 0.197 kg, regardless of the

strength of the player. However, he also noted that

the mass of the clubhead could be varied over a range

of 0.136 – 0.283 kg with only a 1% reduction in ball

speed. A similar calculation can be performed for a

bat or a racket, even though the mass is distributed
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over the length of the implement rather than being

concentrated at the impact point. In this case, one

can define an effective mass, Me, at the impact point

given by

M ¼ M

ð1þMb2=IcmÞ
ð1Þ

where M is the implement mass, Icm is the moment

of inertia for rotation about the centre of mass, and b

is the distance from the impact point to the centre of

mass (Brody et al., 2002). The collision between a

ball and the implement can then be treated as one

between two point masses. For a bat or a racket, the

rebound speed of the ball depends on the location of

the impact point, and is at its maximum typically

about 0.15 m from the tip where Me/M is typically

about 0.4 for a racket and about 0.8 for a baseball

bat. Me is equal to M at the centre of mass where

b = 0 but it is less than M at other impact points.

Consider a ball of mass m that is initially at rest

and struck by a mass Me incident on the ball at speed

V. The speed, v, of the ball after the collision is given

by

v ¼MeV ð1þ eÞ
Me þm

ð2Þ

where e is the coefficient of restitution. Given that all

wooden bats and all rackets vary only slightly in

length and mass distribution, the swing-weight Io will

be directly proportional to the actual mass M to a

good approximation. Hence V = C1/Mn, where C1 is

a constant. Let Me = M/x, where x depends on the

actual impact point. Then

v ¼ C2Mð1�nÞ

ðM þ xmÞ ð3Þ

where C2 = (1 + e)C1. v is at its maximum when dv/

dM = 0, giving

M ¼ xmð1=n� 1Þ ð4Þ

which is a more general version of the result obtained

by Daish. For example, if x = 2 and n = 0.27, then v

is a maximum when M = 5.41m, but if x = 3 (impact

closer to the tip) M = 8.11m. Alternatively, if

n = 0.25 for a particular player, then M = 6m when

x = 2 and M = 9m when x = 3. For a 0.057 kg

tennis ball, there is a range of optimum M values

from about 0.308 to 0.513 kg depending on the

impact point and the particular power law for any

given player. Similarly, for a 0.145 kg baseball, the

optimum bat mass varies from 0.783 to 1.305 kg for

the same values of x and n. However, the plot of v

versus M in Figure 4 (for a tennis ball and racket)

shows that there is a broad maximum in v, in which

case there is no significant advantage to a player in

choosing the bat or racket mass that maximises v

precisely.

Conclusion

A series of six different rods were swung by four male

students with maximum effort. Three of the rods had

the same mass but their swing-weight differed by

large factors. The other three rods had the same

swing-weight but different masses. Swing speed (V)

was found to decrease as swing-weight (Io) increased.

Assuming a power law relation of the form V = C/

Io
n, where C is a different constant for each

participant, it was found that n = 0.27+ 0.01 when

Io 4 0.03 kg � m2 and when the participants swung

each rod using only the upper arm, forarm and wrist.

Remarkably similar results have been obtained

previously with softball bats (where n = 0.25) and

golf clubs (where n = 0.26). Swing speed remained

approximately constant as swing mass increased

(when keeping swing-weight fixed).

The results presented here should add substance

to further work on the subject of racket or bat power.

The elementary calculations presented above show

that changes in racket mass or bat mass have only a

small effect on the power of these implements.

Nevertheless, small changes in power can make a

significant difference to the result of a particular shot

or in the manner in which an implement is used.

Figure 4. Ball speed v versus racket mass M from equation (3) for

two values of n and two values of x. x = 2 corresponds to an

impact near the middle of the strings and x = 3 corresponds to an

impact closer to the tip. In practice, C2 will vary slightly with

impact point, since C1 increases and e decreases towards the tip,

but C2 is assumed to remain constant here.
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Detailed calculations and measurements are needed

to determine the effects of even small changes in

mass or moments of inertia. For example, an extra

0.001 kg added to a racket can change the frame

stiffness, balance point, sweet spot location, centre of

percussion, swing-weight, polar moment of inertia,

vibration frequency and coefficient of restitution, all

of which may affect racket power and swing

technique in subtle ways but in ways that elite

players may be able to detect (Cross, 2001).
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Appendix: Effect of balance point on swing

speed

The dynamic behaviour of a rod that is swung about

any given axis depends only on its mass and its

moment of inertia (MOI) about that axis. Consider

two rods with the same mass M and the same MOI,

Io, about an axis through the end of the handle. We

now show that the moment of inertia of the two rods

will be essentially the same about any other axis

beyond the end of the handle even if the two rods

have distinctly different balance points. Suppose one

rod has a uniform mass distribution along its length

and the other consists of a massless rod with a point

mass M at the far end. Io = ML2/3 for the uniform

rod, where L is the length of the implement. The

MOI for the massless rod is Io = MR2, where R is the

radius of the point mass. If the Io values are the same,

then R = 0.577L. Both rods have the same mass and

MOI, but the overall lengths are quite different and

the balance points are at distances 0.5L and 0.577L

respectively from the end of the handle.

Now consider rotation of each implement about a

different axis, say a distance L/2 beyond the handle

end. The MOI of the uniform rod is then ML2/12 +

ML2 = 1.083ML2 and the MOI of the slender rod is

M(R + L/2)2 = 1.160ML2. The two very different

models of rackets differ by 7% in MOI, which

corresponds to less than a 2% difference in swing

speeds if one assumes a power law dependence with

an exponent n = 0.27. If V = C/Io
n, then the

percentage change in V is n times the percentage

change in Io. Consequently, a shift in balance point

should not affect the swing speed significantly,

provided the relevant axis of rotation does not lie

close to the middle of the implement. In practice, the

axis of rotation of a swung implement is typically

close to the handle end or a short distance beyond

the end of the handle (Brody et al., 2002; Mitchell et

al., 2000; Smith et al., 2003). In that case, any two

rods having the same M and Io will have exactly the

same M and essentially the same MOI, regardless of

the location of the balance point or the length of the

rods and regardless of the axis of rotation.

The change in MOI for the two racket models is

even smaller if one includes the mass of the hand.

Since the hand has a large effect on the total moment

of inertia for axes remote from the hand, any effect

due to a change in the mass distribution of the rod is

even smaller than the above estimate.
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